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Abstract
Understanding how people perceive the visual complexity of shapes has important theoretical as well as practical implications.
One school of thought, driven by information theory, focuses on studying the local features that contribute to the perception
of visual complexity. Another school, in contrast, emphasizes the impact of global characteristics of shapes on perceived
complexity. Inspired by recent discoveries in neuroscience, our model considers both local features of shapes: edge lengths
and vertex angles, and global features: concaveness, and is in 92% agreement with human subjective ratings of shape
complexity. The model is also consistent with the hierarchical perceptual learning theory, which explains how different layers
of neurons in the visual system act together to yield a perception of visual shape complexity.
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1 Introduction

Whenviewing objects constructed of different shapes, people
perceive various levels of complexity. Differences in visual
complexity have a bearing on information processing. For
instance, it takes more time and cognitive effort to process
complex shapes than simple ones [52]. Complex objects
are easier to discriminate, but harder to remember. Simple
objects, in contrast, are easier to remember, but harder to
differentiate [29]. The level of complexity can also affect
aesthetic perception. In general, objects or shapes with an
intermediate degree of complexity receive the highest aes-
thetic ratings [22].

Understanding how people perceive the visual complexity
of shapes has important theoretical as well as practical impli-
cations. On the one hand, it can advance knowledge of how
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our brains process information and aesthetics [14,48]. On
the other hand, it can also provide guidance for interfaces for
mobile phones, computer software, images, and web pages,
and for the industrial design of such items as company logos,
icons, and products of practical use [9,38,52]. Furthermore,
understanding of human perception of shape complexity has
important implications for the field of computer vision, for
tasks such as shape analysis, pattern recognition, and object
recognition [46,53].

What factors contribute to the perception of complexity?
How can we predict perceived levels of shape complexity?
Over the past 50years, numerous studies have been con-
ducted to explore this topic, and dozens of metrics have been
proposed for computing shape complexity. However, despite
all these efforts, there is a lack of systematic understanding
or a cohesive model of how various parameters contribute to
the perception of complexity.

One school of researchers, mostly influenced by informa-
tion theory [44], suggests that shape complexity is directly
associated with the amount of information contained in a
shape. The more information or features a shape has, the
more effort is required to process it; as a result, the shape is
perceived as more complex. Mathematically, one can com-
pute the entropy encoded by the shape to represent its degree
of complexity [40]. The challenge, however, is which mea-
sures of entropy are most relevant to perceived complexity.

Attneave [2,3] was among the first group of researchers
inspired by information theory to study visual complexity. A
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typical procedure used in these studies involved collecting
human subjects’ ratings of the visual complexity of a set of
random polygons or shapes. Various metrics were then used
to calculate the features of these shapes, which were corre-
lated with the subjective ratings. A series of studies showed
that the following metrics correlate with human perceptual
ratings: the number of independent turns, angular variabil-
ity [3], the perimeter of shape [42], the variance of interior
angles, means of x and y coordinates, second moment of
deviation of side length, variance of side lengths, largest
radial length, perimeter length [8], and quantities derived
from the contour, especially its concave parts [20].

One major drawback of these studies is that they were
exploratory and the list of suchmetrics is endless. Researche-
rs would often attempt to calculate as many metrics as they
could think of, and report those that they found to be cor-
related with subjective ratings, without giving systematic
psychological explanations. Indeed, Brown and Owen [8]
found only a small subset of the proposed 80 or so measures
being perceptually relevant.

In contrast to this bottom-up, local feature-driven approach
, another school of researchers argues that the goal of human
perception is to see higher order of structure, in other words,
to extract higher-order invariants of visual information, such
as affordances [49]. Therefore, they suggest that overall pat-
terns or global characteristics of objects significantly impact
people’s perception of visual complexity.

This school of theory can be traced back to gestalt psy-
chology [31], which argues that our perception tries to see
the overall form, and to extract invariance. Attention is
focused on the overall patterns of stimulation rather than
small details [23]. For example, previous research has shown
that symmetrical objects are perceived less complex [21]. van
der Helm and Leeuwenberg [12] developed a holographic
coding language to predict visual complexity of shapes, and
the structural information in their code represents those shape
regularities that are invariant under scaling. These results are
also consistent with design principle that advocates symme-
try, balance, and equilibrium, due to their increased order [5],
and hence a reduced level of complexity.

In summary, researchers have proposed different metrics
to measure the amount of information or local features con-
tained in shapes, such as edge lengths and angles, as well
as global shape characteristics, such as symmetry and bal-
ance. Though these findings contribute to the understanding
of complexity, a unified understanding of the relationships
of these metrics is necessary.

Recent advances in neuroscience, especially concerning
how the human visual cortex encodes shape information,
offer a possible reconciliation for the two schools of thought
on visual complexity. The neurosciencefindings shed light on
several key characteristics of how our brains process visual
information.

Such research has shown that visual information process-
ing is hierarchical [13]. Hubel and Wiesel [27] first discover
that different types of neurons exist in the visual cortex. Sim-
ple cells with a narrow receptive field only respond to lines
having a particular orientation, and are often referred to as
line detectors. Complex cells with bigger receptive fields
respond best to moving edges in a specific direction, and
are called motion detectors. Hypercomplex cells with large
receptive fields respond best to edge changes, and are angle
detectors. These three different types of neuronwork together
to decompose a visual shape into different parts for object
recognition.

Since the pioneering work of Hubel and Wiesel, further
research has shown that the perception of visual objects or
shapes takes place in the ventral cortical pathway, i.e., the
what pathway. First, the information is processed in the pri-
mary visual cortex (V1), and then the secondary cortex (V2).
During these stages, shape information is encoded as local
features, such as specific orientations in V1 [27], and com-
binations of orientations in V2. Studies have shown that in
the intermediate stages (V3/V4), neurons encode shapes of
intermediate complexity, and are sensitive to curvature [53].
At later stages, including the inferotemporal (IT) cortex and
the lateral occipital complex (LOC), neurons encode more
complex and global shape information, even including faces
and places [28].

Information processing in the visual cortex is performed
in a feedforward manner: information is propagated from the
lower layers of the cortex to higher levels [35]. There is also
a feedback loop from the higher levels to the lower ones.
For instance, Murray et al. [39] use functional MRI to mea-
sure activity in LOC, a higher visual area for object shape
perception, and in V1. They observed significantly increased
activity in LOC and decreased activity in V1when visual ele-
ments form coherent shapes. This supports the notion that the
activity of neurons in lower levels is reduced when neurons
in the higher levels can make sense of a visual stimulus.

Basedon these neuroscience researchfindings,wehypoth-
esize that both local and global features contribute to the
perception of visual complexity, and that computational
metrics which are biologically driven could better predict
people’s subjective ratings of visual complexity. For instance,
at a higher level of the visual system, neurons are sen-
sitive to coherent shapes and overall patterns [53]. This
can be mapped to the global features of objects, such as
unroundness or shape concaveness, consistent with Gestalt
psychology’s notion of seeking good forms. At lower levels
of the visual cortex, neurons are specific and directly respond
to the strength of the stimulus. For example, the edge length
of a shape might be associated with the number of activated
neurons. As the length of line increases, however, the activa-
tion may not scale linearly, but logarithmically. In addition,
lower levels of neurons are sensitive to orientation change,
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so vertex angle entropy might be a good measure of this
stimulus.

Apart from 2D shape complexity, several researchers
attempt to measure 3D shape complexity. In 2005, Ross-
ignac [45] discussed several complexity measurements
for 3D shapes, including algebraic complexity which mea-
sures the degree of polynomials needed to represent the
shape exactly in its implicit or parametric form, topolog-
ical complexity which measures the number of handles
and components or the existence of non-manifold singulari-
ties, non-regularized components, holes or self-intersections,
morphological complexity which measures the smoothness
and feature size, combinatorial complexity which measures
the vertex count in polygonal meshes, and representational
complexity which measures the footprint and ease-of-use of
a data structure, or the storage size of a compressed model.
Butt and Biswas [17] used the orthogonal convex hull and an
orthogonal convex skull are used together to derive the com-
plexity of an object. Cortical-shape measure was proposed
to represent localized shape complexity as the difference
between the observed distribution of local surface topology
[30]. Kwon et al. [33] introduced the concept of feature shape
complexity and adopted it as the criterion for the simplifica-
tion of feature-based 3D CAD models. Wimmer et al. [34]
proposed total absolute curvature to quantify complexity of
curved surface shapes aiming at style design.

3D objects exhibit different shapes from different views,
a 3D object may appear quite simple from one view, and
much more complex from another view. Also, the concepts
of metrics for 3D shape complexity differ significantly from
those for 2D shape complexity. We thus confine our study
to 2D shape complexity and present our framework of shape
complexity in the next section.

2 Overview of our approach

We use a regression model to describe polygon shape com-
plexity, because regression analysis offers a rich set of tools
for assessing both the proposedmodel and the significance of
variables in the model. A regression model relates responses
to predictor (or explanatory) variables via

Ci = Xiβ + εi , (1)

whereCi denotes the response for the i th sample observation
(i = 1, . . . n, where n is the number of observations), Xi is a
set of predictor variables, and β denotes their weights. Noise
is represented by error terms εi , assumed to have mean zero.

Having chosen a set of predictor variables, a model may
be constructed by choosing β tominimize the sum of squared
errors between the predictions Xiβ and the observations Ci .
The optimal value of β is given by

Human evalua�on of
shape complexity 1C

Comparison between
andC2 C’2

A set of variables Xi

Variable selec�on
via SPSS

Training data set 1S

Model via regression analysis
& Mont Carlo cross valida�on

Test data set 2S

Human evalua�on of
shape complexity 2C

Model evalua�on of
shape complexity 2C’

Fig. 1 Framework for developing models of shape complexity

β̂ = argmin
β

n∑

i=1

(Ci − Xiβ)2. (2)

Figure 1 shows the framework of our approach. It starts
from construction of a training data set S1 and human eval-
uation of shape complexities as C1 (yellow boxes). We then
choose a set of variables Xi intended to capture certain
features of a class of shapes reflecting their complexity,
including both new variables and existing variables from
previous works, as candidate predictors. We run variable
selection via SPSS to automatically remove insignificant pre-
dictors of complexity, and obtain a linear regressorwith fewer
variables. To avoid over-fitting to the training data used in this
process, we adopt Monte Carlo cross-validation to obtain the
final regression model (pink boxes). We also evaluate our
model using a separate test data set S2, by comparing the
model’s prediction of complexity C ′

2 with the human evalu-
ations C2 on S2 (blue and green boxes).

3 Construction of variables

3.1 Variables capturing local shape features

As stated earlier, a school of researchers, including Attneave
[2], consider perception as amatter of processing information
contained in shapes. In particular, they reason that the more
information a shape has, themore effort is required to process
it, so the shapewould be perceivedmore complex. Shannon’s
information theory may be used to quantify the amount of
information contained in a shape. Shannon entropymeasures
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the uncertainty associated with a random variable, i.e., the
expected value of the information in a message.

Let X be a discrete random variable taking values x with
distribution

p(x) = Pr[X = x], (3)

where Pr[X = x] is the probability of variable X taking value
x . The entropy H(X) of X is defined as

H(X) = −
∑

x∈X
p(x) log p(x). (4)

and measures the average uncertainty of the random variable
X . It quantifies the expected amount of information in the
statement that X has a certain value, measured in bits with
logarithms of base 2.

Next, we consider how to apply Eq. 4 to measure the
entropy of vertex angles to obtain a local variable measuring
shape complexity.

3.1.1 Weighted vertex angle entropy H′
˛

Attneave [2] finds through experiment that information is
concentrated along contours of shapes, particularly at those
points of the contour where its direction changes most
rapidly. Following Feldman and Singh [20], we consider a
shape contour of length L , sampled at n uniformly spaced
points separated by intervals Δs = L/n (see Fig. 2). From
point to point along the sampled curve, the tangent direction
changes by an angleΔφ, or α, called the turning angle. Feld-
man and Singh take α as a random variable and assume that
α follows a von Mises distribution centered on α = 0 [20]:

p(α) = A exp(b cos(α)), (5)

where b is a parameter modulating the distribution and A is
a normalizing constant (depending on b but not α). Positive
values ofα correspond to clockwise turns and negative values
to counterclockwise turns. The von Mises distribution is the
natural analog of aGaussian (normal distribution) for angular
measurements [26]. It agrees with a variety of empirical data,
including the turning curves of orientation selective neurons
in the primary visual cortex [50] as well as human observers’
visual expectations about how smooth curves are likely to
continue [19].

The angular entropy associated with α is then:

H(α) = −p(α) log p(α). (6)

Combining Eqs. 4 and 5, one can calculate the angular
entropy of a polygon, Hα , by treating each angle in the poly-
gon independently, as done in Page et al. [40] and Feldman

Fig. 2 Von Mises distribution of turning angles for a polygon
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Fig. 3 Repetitive visual stimulation, following Attneave [2]

and Singh [20]. This gives a total angular entropy:

Hα =
∑

v∈P

H(α(v)). (7)

where v is the vertex of polygon P .
Unfortunately, the above approach overestimates the

entropy in the presence of repeated angles, which are no
longer independent. As noted by Attneave [2] in considering
an ornamented ink bottle on the corner of a desk shown in
Fig. 3, the 13 right angles on the left shoulder of the bot-
tle contain less than 13 times the information of the angle
in isolation at the corner of the table. Attneave attributes
such information reduction to the repetitiveness of the pat-
tern, without offering a quantitative measurement. We can
use Eq. 4 to calculate the information associated with the
repetitive pattern if its probability can be estimated.

If a turning angle α is repeated m times in a polygon, we
may assume that α appears independently each time (as we
do not know what is coming next), so the probability pm(α)

is:

pm(α) =
m∏

t=1

p(α), (8)
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where p(α) is the probability of α appearing once. The cor-
responding entropy Hm(α) is:

Hm(α) = −
m∏

t=1

p(α) log
m∏

t=1

p(α). (9)

It is easy to prove that

−
m∏

t=1

p(α) log
m∏

t=1

p(α) < −
m∑

t=1

p(α) log p(α). (10)

Thus, the information contained in a repetitive pattern is
smaller than the total information contained independently
by the elements in the pattern. If several repetitive pat-
terns appear in the polygon, we calculate their entropies
using Eq. 9. The total entropy in a polygon is then the
sum of entropies associated with non-repetitive patterns and
entropies associated with repetitive patterns.

It is also apparent that in Fig. 3, vertices associated with
longer edges (e.g., at the corner of the table) appear visually
stronger than those adjacent to short edges (e.g., at the shoul-
der of the ink bottle). Based on this observation, we propose
weighting angular entropy to take edge lengths into account:

H ′
α =

∑

v∈P

w(v)H(α(v)). (11)

where w(v) is the ratio of the area of the triangle defined
by the vertex v and its two neighboring edges to the area of
the entire polygon, and α(v) is the angle at v. Obviously, the
maximum possible value of w(v) is 1.

3.1.2 Weighted edge length information H′
L

Attneave [3] proposes that increasing the length of a line adds
information, but at a decreasing rate. Using this psycholog-
ical finding, we propose an empirical formula for directly
estimating the information of the edge length as below:

H(l) = log(1 + l). (12)

where l ≥ 0 is edge length. Obviously, H(l) increases as
l increases, but at a decreasing rate, which agrees with the
experimental psychological findings.

As mentioned before, repetitive pattens may cause visual
information redundancy [2]. Similar to the weight vertex
angle entropy, given a segment of length l repeated n times,
we define the information associated with this segment as

H(l) = log(1 + l) ∗ (1 + ln(n)). (13)

The total information of edge lengths HL in a polygon can
be obtained by summing the information for all the edges in

the polygon:

HL =
∑

e∈p

H(l(e)). (14)

where e is the edge of polygon P , and l(e) is the length
at e. Furthermore, polygons with greater variation in edge
length appear more complex than those with less variation
and, inspired by angular variability [3] thatmeasures the aver-
age difference between adjacent angles in a polygon, we use
the standard deviation of edge lengths in a polygon to weight
the total information in the following fashion:

H ′
L = (1 + D(l))

∑

e∈p

H(l(e)). (15)

where D(l) is the standard deviation of edge lengths.

3.2 Variables capturing global shape features

3.2.1 Concaveness CV

Considering the global aspects of a shape contributing to its
complexity, we start from concaveness. Concaveness may be
measured by the difference in area between a polygon and
its convex hull [7], and quantified as a ratio between 0 and 1:

CV = (AC − A)/AC . (16)

where AC is the area of the convex hull, and A is the area of
the polygon.

Both Brinkhoff et al. [7] and Su and Bouridane [49] have
used Eq. 16 as an indicator of shape complexity, regarding a
shapewhich strongly differs from its convex hull as complex.
Our regression analysis (provided later) finds that this vari-
able is not a significant predictor of complexity.We therefore
seek a new measurement of convexity instead.

3.2.2 Convexity N′

The three shapes shown in Fig. 4 are taken from Psarra and
Grajewski [42]. Although having an area much smaller than
its convex hull, shape (c) visually appears simpler than shape
(b). This is because four longer edges in shape (c) are drawn
close enough for them to formanL shapewhich looks simple.
The overall shape of (a) is close to a its convex hull, and thus
looks also simpler than shape (b).

Figure 4 also shows that shape (c) differs more from its
convex hull than shape (b) does. Let us consider a new vari-
able N formeasuring the convexity of a shape. It is inefficient
and cumbersome to compute the shape’s medial transform
and use the radius associated with medial transform points
to determine convexity. Instead, we first convert the polygon
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Fig. 4 Three L shapes, following Psarra and Grajewski [42]

under consideration into a binary image and then calculate a
distance map for the polygon. The distance map labels each
pixel inside the polygon with its distance to the nearest pixel
on the boundary of the polygon. Let the maximal distance
of the pixels in the distance map of the polygon be DP . Let
the maximal distance of the pixels in the distance map of
the convex hull of the polygon be DC . We use their ratio to
measure the convexity of a given polygon shape:

N = DP/DC , (17)

Clearly, N lies in the range [0,1]. N approaches 0 as the
polygon approaches a thin curved line, indicating that the
shape looks very concave globally. On the other hand, when
N approaches 1, the polygon is close to its convex hull. One
cannot, however, use N directly. As noted earlier, shape (b)
appears most complex, while shape (c) has the minimum
value of N among the three. Incorporating this characteristic,
we perform a nonlinear transformation on N to obtain a new
variable N ′:

N ′ = sin(πN ). (18)

We have also experimented with other nonlinear trans-
formations, such as N ′′ = sin(πN 2), and found the above
notion to be the most appropriate.

3.2.3 UnroundnessM′

We propose another global variable, unroundness M , and
define it as the difference in area between the polygon A and
its equivalent circle AE (i.e., a circle whose perimeter equals
that of the polygon):

M = (AE − A)/AE , (19)

We again need to apply a nonlinear transformation to M
for exactly the same reason as for N , and define a modified
M :

M ′ = sin(πM). (20)

3.3 Other variables in existingmodels

In order to build the most effective model, we combine our
variables described above with a range of variables taken
from existing models [3,10,40]. These include.

Three variables from Attneave [3]: the number of turns
CT (i.e., changes in direction or corners), symmetry S (a
symmetric object has a value 1 and an asymmetric one a
value 0), and angular variability AV (the average difference
between adjacent angles in a polygon). Curvature entropy
Hθ by Page et al. [40] is approximated by the turning angle.
Three variables from Chen and Sundaram [10]: V1 = (1 +
R)min(Cdis,Cangle), V2 = (1 + R)max(Cdis,Cangle), and
V3 = (1 + R)P , where Cdis is global distance, Cangle is
local angle, P is a perceptual factor and R a randomness
measure (for full definitions see Chen and Sundaram [10]).
Wealso includeCdis,Cangle and P , R, totaling eleven existing
variables.

These eleven variables, together with the previous five
quantifies: edge length informationH ′

L , turning angle entropy
H ′

α , concavenessCV , convexity N ′, and unroundnessM ′, are
taken as predictor variables Xi in our initial regressor. Table 1
summarizes all the sixteen representative variables measur-
ing shape complexity.

We expect that any reasonable measure of shape complex-
ity should be scale invariant, because our formula includes
terms such as edge length information which is scale depen-
dent. To ensure scale invariance, we normalize each shape
in the training data set and the new data set mentioned later
by dividing all distances in the shape by the mean distance
between all pairs of vertices of the shape, following [4].

To determine the relative importance of each variable, we
next normalize all the variables by feature scaling

x ′
i = xi − xmin

xmax − xmin
. (21)

where xi is the value of variable Xi , and xmin and xmax are
its extremal values over all training and test shapes. We also
use the same normalization method to calculate the average
human evaluation score.

4 Human subjective ratings

Thirty shapes with different levels of complexity were
selected fromprevious studies [2,5,36,42] as the training data
set (shown in Fig. 5).

Thirty students (including undergraduates and postgrad-
uates) were recruited, 17 male and 13 female, aged 18–31,
from Zhejiang University, China, as subjects in the study.
Each subject was individually presented with the user inter-
face shown in Fig. 6. The experiment starts by presenting
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Fig. 5 The training data set with different levels of complexity selected
for this study

Fig. 6 The user interface for pairwise comparison

two different shapes randomly selected from the experimen-
tal data set. The subjects indicated which shape they perceive
to bemore complex by clicking theLeft orRight button. They
can also click theMiddle button to indicate no perceived dif-
ference in complexity between the two shapes. A score of 1
is given to the more complex shape and 0 to the other shape,
or 0.5 to each if no difference. The subject then clicks the
Next button to retrieve the next pair of shapes. The experi-
ment terminates when all shape pairs have been scored. To
reconsider the previous decision, a subject could push the
Previous button to redisplay the previous pair of shapes and
redo the comparison. With a total of 435 (30 × 29) pairwise
comparisons, the study took each participant about 20min to
complete.

We sum the scores given to each shape and average the
results for all the subjects. Divided by the number of shapes,
complexity values are normalized within the range [0,1].

5 Regression analysis

Some predictors of shape complexity use a single vari-
able [40,42,44], while others are based onmultiple variables.
Typically, a linear combination of multiple variables is used
with weights assigned heuristically or experimentally [7,10,
49]. Determination of those weights remains generally unad-

dressed. Attneave used regression models [2] to analyze the
relationships between manually judged complexity and var-
ious explanatory variables based on geometric properties of
shapes. We also use regression analysis to obtain the final
model. We determine which variables make little contribu-
tion to the model by running the variable selection procedure
in SPSS to automatically remove variables that are not signif-
icant predictors of complexity, and obtain a linear regressor
with three variables.

In linear regression analysis, the fitting process optimizes
the model parameters to make the model fit the training data
as well as possible. It generally turns out that the fitted rela-
tionship appears to perform poorer on a new data set than
on the data set used for fitting [18]. This is called overfit-
ting, likely to happen when the size of the training data set is
small. An overfit model has poor predictive performance, as
it overreacts to minor fluctuations in the training data. Using
a larger training set would, however, reduce the effectiveness
of the subjective scores, due to the quadratically increasing
experimental time needed for pairwise comparisons, and thus
subjects’ lack of concentration. We therefore derive a more
accurate estimate of model prediction using the Monte Carlo
cross-validation [16].

5.1 Monte Carlo cross-validation

MonteCarlo cross-validation is a simple yet effectivemethod
to avoid an unnecessarily large model. It reduces the risk of
overfitting of the data [54], and has been shown asymptot-
ically consistent [47]. In Monte Carlo cross-validation, the
data set (of size n) is randomly split into complementary
subsets: a training set St (of size nt ) and a testing set Sv (of
size nv, nv = n − nt ). We set nv 33% of n, as suggested
in [24], perform regression analysis on the training set, and
then validate the analysis on the other subset. In this manner,
multiple rounds of cross-validation are performed using dif-
ferent partitions, and the validation results are averaged over
the rounds.

In this study, 10 rounds of Monte Carlo cross-validation
are performed using different partitions, and the results are
averaged over the rounds. Our equation of final regression
model for perceived complexity is

C = 0.676H ′
L + 0.262N ′ + 0.142H ′

α + 0.051 (22)

Table 2 shows the statistics of our model. The model
using three predictors is able to explain 91.6% of the vari-
ance in shape complexity, and statistically significant (Sig. =
0.000). Our model can therefore efficiently describe the per-
ception of shape complexity. All predictors make significant
contributions as their associated p values are lower than 0.05.
The coefficients H ′

L , N
′ and H ′

α (Reg.Coe f column) indicate
that H ′

L plays more important role than the other two predic-
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Table 2 Statistics of final
regression model

Var. R2 = 0.929 Adj. R2 = 0.916 Std. Er. = 0.072 F = 72.224 Sig. = 0.000
Reg. Coef. Std. Er. Std. Coef. t Sig.

H ′
L 0.676 0.177 0.496 5.317 0.001

N ′ 0.262 0.063 0.439 4.735 0.002

H ′
α 0.142 0.057 0.250 2.666 0.031

(Const.) 0.051 0.038 1.498 0.263

Fig. 7 Complexity scores of the training data set with 30 shapes eval-
uated by the subjects (in red) and the linear regressor (in blue)

tors in predicting the human perceived complexity of shapes.
Both regression analysis and deep learning are inspired by
the human neural hierarchical structure. Although a deep
learning approach is now widely used in image and pattern
recognition [6,43], training a deep learning model needs a
massive dataset. Our training dataset is not big enough for
training a good deep learning model. On the other hand, our
model can generate meaningful features (edge length, ver-
tex angle entropy, convexity) that enable users to understand
exactly how given shapes are measured, rather than simply
output a result in a black-box fashion, such as [15,37].

To aid further understanding of the above statistics, Fig. 7
illustrates the complexity scores of the training data set with
thirty shapes evaluated by the subjects (red line) and regressor
(blue line) .

5.2 Bivariate correlation analysis

To evaluate the effectiveness of our regression model, we
conduct bivariate correlation analysis. Previous research has
performed various kinds of non-parametric bivariate correla-
tion analysis, including Pearson correlation test, Spearman’s
rank correlation test andKendall rank correlation test [25,41],
to compare values of visual complexity assessed by humans
and by computer models. These tests rank values to assess
relationships. Kendall rank test is usually preferred to Spear-
man’s rank correlation test for a small data set with a large
number of tied ranks.

Table 3 Statistics of performances associated with different models
over 10 rounds

St Sv

Average RP/Sig. 0.964/0.000 0.959/0.000

Average RS/Sig. 0.943/0.000 0.918/0.000

Average τ/Sig. 0.824/0.000 0.796/0.000

SD of RP/Sig. 0.007/0.000 0.009/0.000

SD of RS/Sig. 0.004/0.000 0.020/0.000

SD of τ/Sig. 0.013/0.000 0.022/0.000

Average of MSE 0.004 0.009

SD of MSE 0.001 0.003

Table 3 shows three average correlation coefficients and
associated 2-tailed Significance (Pearson correlation coef-
ficient, denoted as Average RP/Sig.; Spearman’s rank
correlation coefficient, denoted asAverage RS/Sig.; Kendall
rank correlation coefficient, denoted as Average τ/Sig.), for
both the training sets (St ) and the testing sets (Sv). They
serve to evaluate the average prediction performances of our
regression models on different training and testing sets. We
also show the average mean squared error (denoted as Aver-
ageMSE) [32] betweenmodel evaluated scores andmanually
evaluated scores over 10 rounds, the standard deviation (SD)
of three average correlation coefficients and MSE over 10
rounds for both training and testing sets to evaluate the vari-
ation of prediction performances in Table 3. The table clearly
shows that our regression models yield a highly significant
correlation between human and computer evaluated results
with high accuracy since the three average correlation coef-
ficients are high and associated average Sig. are less than
0.05 with low average MSE. Furthermore, the low SD of
correlation coefficients and MSE indicate that the variation
of prediction performances is small over 10 rounds. Our
regression models provide prediction of high accuracy and
the explanatory variables in regression models are of high
predictive power in shape complexity evaluation.

Figure 8 shows the average RP , RS , τ and average MSE
over regression models of shape complexity for 10 rounds,
where red lines represent the training set and blue lines the
testing set. The regression models indeed show high perfor-
mances with high average RP , RS , τ and low average MSE
for both training and testing sets.
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Fig. 8 Performance curves with a average RP correlation coefficient,
b average τ correlation coefficient, c average RS correlation coefficient
and d average MSE over regression models for 10 rounds

6 Model test with a new data set

We further verify whether our regression model is effective
for a new set of shapes.Weuse the new set of 30 shapes shown
in Fig. 9, again selected from the previously used shapes [2,
5,14,42]. We also made modifications to several shapes by
adding small notches along their boundaries, to make them
more complex than the original ones. We conducted another
user study to assess the complexity of the new set. The scores
evaluated by the same group of subjects are shown by the red
line in Fig. 10. We use the regression model (Table 2) to
compute the complexity of each of those 30 shapes, with the
results shown as the blue line in Fig. 10.

Table 4 shows the three correlation coefficients and asso-
ciated 2-tailed Significance and mean squared error (MSE)
between the model results and the manually evaluated scores
for the new data set. Again, our regression model clearly

Fig. 9 The new set of shapes

Fig. 10 Complexity scores of the new set of 30 shapes evaluated by
subjects (in red) and the regression model (in blue)

Table 4 Correlation coefficients
and MSE between the model
results and the human evaluated
scores for the new set

RP/Sig. 0.937/0.000

RS/Sig. 0.939/0.000

τ/Sig. 0.798/0.000

MSE 0.014

yields a highly significant correlation between human and
computer evaluated resultswith high accuracy, since the three
average correlation coefficients are high and associated aver-
age Sig. are less than 0.05 with low average MSE. This
indicates that our regression model also has high prediction
performances for the new data set.

7 Comparison to other methods

Table 5 compares our method with other 3 methods,
i.e., Chen’s model [10], Attneve’s model [3] and Page’s
model [40], by Pearson correlation test (RP ), Spearman’s
rank correlation test (RS), Kendall rank correlation test (τ ),
and mean squared error (MSE). It also shows that Page’s
model performs better than Chen’s model and Attneave’s
model, but poorer than our method (see the statistics in
Table 4).
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Table 5 Correlation coefficients and MSE between results of other 3
models and the human evaluated scores for the new data set

Chen Attneave Page

RP/Sig. 0.633/0.000 0.623/0.000 0.818/0.000

RS/Sig. 0.642/0.000 0.496/0.005 0.840/0.000

τ/Sig. 0.490/0.000 0.382/0.003 0.668/0.000

MSE 0.043 0.047 0.037

8 Discussions

8.1 Both global and local features contribute to
visual complexity

Our results clearly show that both global and local features
contribute to the perception of visual complexity of shapes,
thus agree with biological studies [27,28]. Specifically, the
final linear regressionmodel includes one global feature, i.e.,
concaveness, and two local features, i.e., edge length entropy
and turning angle entropy. The three variables combined can
account for approximately 92%variance of human subjective
rating of the complexity of the same shapes. The performance
is superior to earlier results [2,10,40]. This supports our ini-
tial hypothesis that both global and local features of shapes
are important during information processing in determining
visual complexity. Therefore, both schools of researchers,
i.e., on information theory, such as Attneave [2], and on
global invariance [11], are partially correct.

8.2 Biologically relevant statistical features
correlated better with human subjective ratings

One may ask why the three features play a more impor-
tant role in human perception of shape complexity than the
other 13 selected features. We argue that these three features
are more biologically relevant. For instance, edge length is
directly associated with line detectors of simple cells, and
turning angle is also associatedwith angle detectors of hyper-
complex cells, in both V1 and V2 areas [27]. Unlike V2, V4
is tuned for object features of intermediate complexity, like
simple geometric shapes. Therefore, global features, such
as unroundness and concaveness, are more related to the V4
area or even higher areas, such as IT and LOC [53]. The other
features, such as number of turns, angular variability, sym-
metry, or randomness, are less biologically relevant. Even
though partially account for the variance of human percep-
tion, they are not significant enough to be included in the
final regression model. These results are also consistent with
Zheng et al.’s [55] findings that biologically relevant statis-
tical features correlate better with human subjective ratings
of web page complexity.

Fig. 11 Ten least/most complex shapes among the two sets as deter-
mined by our model

8.3 Hierarchical perceptual model of visual
complexity

How do local and global features interact with each other
to yield the perception of shape complexity? We believe that
the hierarchical perceptual model proposed byAhissar offers
feasible explanations [1]. Ahissar categorizes neurons into
three hierarchical levels: the lower, intermediate, and higher
levels; neurons at the lower levels are more peripheral and
specific for information coding and higher levels are more
central and generic. She proposes that the visual process-
ing of stimuli takes place first not at the lowest nor at the
highest levels, but at intermediate levels, where neurons are
selective for generic perceptual objects. If the processing is
successfully accomplished, then neurons at the lower levels
are not activated. The principle is that lower-level neurons
are recruited for a visual perceptual task only when needed.
Additional analysis by lower peripheral visual neurons takes
time and resources, as demonstrated by feature combination
processing [51].

According to Ahissar’s hierarchical perceptual learning
model [1], when viewing a common and simple shape, such
as a circle, intermediate levels of neurons are activated and
converge at higher levels, producing perception and behav-
ior appropriate to the concept of the circle, e.g., a ball, while
lower and peripheral neurons are not involved in this pro-
cessing. Most complex and less common shapes, however,
cannot be analyzed by higher levels in the perceptual hier-
archy alone. Peripheral and specific neurons are recruited to
process the information, resulting in simultaneous activations
of neurons at multiple levels of the hierarchy.

Figure 11a, c shows the top ten least complex shapes
among the two data sets as determined by our model. These
shapes have strong global features, such as concaveness, and
weak local features. In contract, shapes with weak global
features and strong local features, e.g., Fig. 11b, d, are con-
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sidered complex and less common. This is consistent with
the hierarchical perceptual learning model that the activity of
neurons at a lower-level decreases when neurons at a higher
level can explain a visual stimulus.

9 Conclusions

Inspired by the latest empirical neuroscience evidence and
perceptual learning theory, we have proposed a multi-level
model of visual complexity, taking into account both local
and global features. Our final regressionmodel based on only
three predictors can explain 92% of the variance in shape
complexities determined by human subjects. Monte Carlo
cross-validation allows us to sacrifice fitting accuracy to the
training data to provide better generalization to new data.
Ourmajor contributions are twofold. First, our computational
metrics are biologically inspired, and therefore can better
predict subjective perception of visual complexity. Second,
we have proposed a model based on the reversed hierarchical
theory which integrates various complexity metrics.

Future study needs to validate our model with more data
sets, and also to provide better understanding of the relation-
ships between various parameters. We also wish to extend
this work to practical applications, e.g., the complexity of
logos, application program icons. Since more visual infor-
mation, such as color, is involved in practical application, we
plan to design new user studies capable of effectively eval-
uating the complexities of shapes and colors, and to explore
new predictive variables suitable for color perception.
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