
Communication Protocol Decomposition and
Component-based Protocol Submodule1

Tianzhou Chen, Quan Gan, Wei Hu, Jinhui Yu

College of Computer Science, Zhejiang University, Hangzhou, P.R.CHINA, 310027
{tzchen, whopawho, ehu, jhyu}@zju.edu.cn

Abstract. Due to evolving network technologies as well as increased and vary-
ing demands of modern applications on embedded systems, general-purpose
protocol stacks are not always adequate. We examine the usefulness of compo-
nent-based software engineering for the implementation of software communi-
cation systems. We present an architecture that allows dividing protocol soft-
ware into fully de-coupled components. By plugging required components
together, that is, loading proper protocol submodules for communication ser-
vices, we rapidly prototype flexible, robust, and application-tailored communi-
cation protocols. The primary goal is the configurability of communication ser-
vices, that is, the configurability of protocol submodules for each
communication service according to application requirements and network ca-
pabilities. The achieved communication system supports efficiently and coor-
dinately the multiple communication services customized by the coexisting ap-
plications.

The task of communication systems is to provide communication services for applica-
tions that exist in the system. We abstract the implementation of communication ser-
vice customized by given application to a communication subsystem. A communica-
tion subsystem upgrades a given basic communication service in order to provide a
target service requested by the application. However, the design and analysis of its
architecture will be the most untrivial task, since the properties of this communication
scheme will severely impact the performance of the whole system. In order to handle
this, we have concentrated on the communication mechanisms, primitives and ab-
stractions. To allow reuse, selection and integration of different modules, the commu-
nication and the computation will be separated and encapsulated. The communication
subsystem is modeled as an ensemble of communicating modules. Each module is de-
fined by its interface and its content where the interface is composed of a set of ports
on which external or internal operations can be performed. This abstraction is reached
when the module is represented by the protocol component and the communication is
seen as the combination of requests and services. The protocol components serve as
basic communication functions. They encapsulate the implementations of the protocol
mechanisms, and provide the services externally by interfaces of them. The commu-
nication model is meant to manifest a unique interpretation of associations between
components as a set of fundamental communication primitives. Moreover, these
components may request other ones for services by interfaces, or their contents can be

1 This work is supported by the national 863 high technology project and HP Embedded Labo-

ratory of Zhejiang University.

composed of other component instances. Hence the communication subsystem is a
stacking of all the required components, which are plugged together to realize a given
communication service.

Due to various communication devices and application requirements the configura-
tions of customized communication subsystems may be distinct. Therefore it is im-
portant to structure communication systems in a way that different subsystems can be
supported and coordinated efficiently. We can employ different protocol components
to serve the communication request that exists in different subsystems accordingly.
Moreover, we support run-time reconfiguration of the communication subsystem. We
examine the efficiency of the subsystem at run-time. When it does not adapt to the
request of the application, more suitable component will be loaded to replace the one
that does not match. This enables communication subsystems to adapt dynamically to
changes in application requirements (e.g., switching from unreliable to reliable data
delivery), communication system resources (e.g., buffer space and CPU load), and
network characteristics (e.g., network congestion and routing). The replacement of
protocol component is transparent to applications or the other components that refer
to it as long as the interface remains the same. Proper communication components are
dynamically loaded, that is, they are loaded into communication subsystem without
rebooting the device. Communication subsystem adaptivity is important since appli-
cations and networks are dynamic entities that are not necessarily served most effec-
tively by statically configured mechanisms.

The protocol component serves as the element of the communication system. It
implements the basic communication service. These components are captured ele-
gantly through the decomposition of the protocols. Protocol functions can often be
provided by different algorithms (called mechanisms). Different mechanisms of one
protocol function are implemented by the corresponding components while the inter-
face remains the same. We give the name submodules for these correlative compo-
nents. The novel approach to protocol component presented herein is that we can im-
plement application- and device-customized submodules for the same communication
function. New execution properties extending an existing service can be added by
writing additional submodules and including them in the existing component suite.

This work is deployed on the platform of Linux, hence the protocol components
are just implemented by Linux modules, which can be loaded into the kernel or re-
moved dynamically without rebuilding the kernel. Our novel approach is to remove
the original TCP/IP protocol stack from the Linux kernel. However, we load the cor-
responding modules that implement the communication components into the kernel
after it starts up. These components will now provide the services that are provided
originally by the TCP/IP functions.

There is approximately 1% performance lost compared to the monolithic imple-
mentation after the component-based mechanism is introduced, yet it is for the ex-
pense of encapsulation. However, the communication mechanisms can be tailored
according to the device types and the applications running on them, which result in
various protocol components that feature quite different performance characters. Thus
we devise customized communication system with quite an increase in performance
compared to the monolithic implementations.

