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Abstract We present an approach for animating cracks and
fractures in cartoon style. In our method we take a 2D hand-
drawn object as input and then construct a 2.5D model of
the object in order to approximate the object volume. Next,
we generate the Voronoi textures on the 2.5D object model
for visual abstraction of cartoon cracks. Further, cracking
gaps on the Voronoi textures are widened progressively un-
til Voronoi cells split apart and finally fall onto ground ac-
cording to simplified physical rules. With minimum user in-
tervention, our model is able to generate cartoon cracks and
fractures animations procedurally, as demonstrated by ex-
amples given in the paper.

Keywords Procedural modeling · Cracks and fractures ·
Non-photorealistic rendering · Cartoon animation

1 Introduction

In the Oxford dictionary some examples are given to show
that a crack is used to refer to a very tiny or incompletely
separated fracture. Thus, crack fracture is a process of break-
ing objects into small pieces which may then fall under grav-
ity and reach their rest conditions when touching other ob-
jects such as ground as well as fallen pieces. In cartoon ani-
mation those effects are used for adding realism and drama
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in animation. Figure 1 shows an example of hand-drawn
crack and fracture effects taken from TV commercial ani-
mations. Animating cartoon crack fractures is far from easy
by hand, because it requires animators to draw many broken
pieces in a frame and animate them with multiple frames
in a visually convincing manner. Animator’s work load can
be reduced significantly if these effects can be generated by
procedural models.

In recent years, some approaches of physically based
modeling of crack fractures on 3D objects have been devel-
oped. However, these methods focus on realistic effects thus
cannot be used straightforwardly in cartoon animation be-
cause of inconsistency in visual style. Thus, we have to seek
for different solutions to animate crack fractures in cartoon
style, using just 2D painted objects and the background. Pur-
suing this goal therefore imposes the following challenges
different from those in 3D realistic crack fracture animation.

(1) Currently physically based approaches for animating
crack fractures require 3D models of objects for phys-
ical computation. While in traditional cartoon anima-
tions objects are drawn in 2D, and it is very difficult
to reconstruct 3D models from 2D cartoon drawings in
general.

(2) Restricted by using 2D painted objects, we have to intro-
duce 3D information such as thickness to broken shapes
derived from 2D painted unbroken objects and animate
them in a visually convincing manner.

(3) Sometimes, object shadows on the background maybe
drawn before they crack. During the cracking process,
object shadows should also vary as objects break into
pieces. Our model should be able to handle shadow vari-
ations as well.

In this paper, we propose a procedural approach for mod-
eling cartoon crack fractures. Our method takes 2D hand-
drawn objects as input and then creates cracks on it and
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Fig. 1 Hand-drawn crack and
fracture effects

breaks the object into fragments. By observing cartoon crack
fractures drawn by hand, we identify some simple patterns
and parameters that will guide our procedural techniques
and provide an interactive control to the animator.

2 Related work

The methods used in computer graphics for generating
crack fractures can be loosely grouped into two categories:
physical approach and non-physical approach (procedural
model).

2.1 Physical approaches

Many researchers have undertaken physical simulation to
model cracks. A mass–spring system was used to reproduce
crack patterns in microsphere monolayers [1], and to model
tree bark [2], cracks in surfaces [3], and in volumes [4].
Gobron and Chiba used cellular automata to crack multi-
layer surfaces [5] and simulated materials peeling off of sur-
faces [6]. Paint cracking and peeling were also simulated
using a two-layered model on a 2D grid [7]. Federl and
Prusinkiewicz used wedge-shaped finite elements to model
cracks formed by drying mud and tree bark [8, 9]. Iben and
O’Brien [10] extended the finite elements method to gen-
erate cracks from a stress field defined heuristically over a
triangle discretization of the surface.

In addition to being used for cracks, physically based
methods have also been used to simulate objects that are
being broken or torn apart. Terzopoulos et al. [11] mod-
eled elastic deformation with mass–spring systems, and this
work was a precursor to the later work by Terzopoulos and
Fleischer [12], which extended the approach to plastic de-
formation and fracture: when a spring stretches beyond its
elastic limit, it breaks. Norton et al. [13] and Mazarak et al.
[14] took similar approaches by attaching voxels together
with springs which break when the local pressure or force
exceeds a designated yield limit. The model of Norton et al.
was used to produce an animation of a teapot being smashed,
while that of Mazarak et al. was used to generate 3D debris
from explosions. Beside mass–spring systems, finite ele-
ments have also been widely used to simulate brittle fracture
[15, 16], ductile fracture [17], elasto-plastic materials and

interactive fracture [18], and the fracture and deformation
of voxelized surface meshes [19]. Other algorithms include
generating fracture on elastic and plastic materials with the
virtual node algorithm [20], a membrane-bending model for
thin shell objects [21], and a meshless framework [22].

2.2 Procedural methods

The physical models tended to be slow and difficult to con-
trol. Since our work focuses on cartoon simulation of crack
fractures, non-physically based procedural methods such as
Voronoi diagram-based simulation are quicker and easy to
control, thus they appear quite adequate for our modeling
task.

In the Voronoi-based methods, cracks are produced ei-
ther by interpreting all Voronoi boundaries as cracks, or
by explicitly tracking the progress of a crack through the
network; fragments are abstained by tessellating the ob-
ject with Voronoi polygon. Worley [23] postulated a general
texture synthesis primitive based on the nth-order Voronoi
diagram. Although Worley did not explicitly address the
use of his primitive for cracks, it is clear from the exam-
ples he provided that crack patterns can be generated us-
ing his technique. Voronoi diagrams were also suggested
by Raghavachary [24] as a lightweight way of produc-
ing realistic-looking cracks. In Raghavachary’s method,
Voronoi sites are scattered across the polygons of an input
mesh, and the Voronoi diagram computed. Mould [25] fur-
ther generates Voronoi diagram of a weighted graph based
on an input image, resulting image-guided fractures.

Beside Voronoi diagram, procedural crack pattern also
can be generated by other ways. Wyvill et al. [26] form
cracks based on the Distance Transform algorithm on a 2D
surface to replicate Batik painting cracks. Martinet et al. [27]
learn crack patterns from a real picture, map them to an ob-
ject’s surface, carve out a volume to generate crack depth
and then break the object into fragments.

Our work falls into the category of procedural methods.
Here we focus on cartoon animation of crack fractures rather
than realistic simulation of crack fractures. Figure 2 shows
an overview of our algorithm. First we take as input a 2D
hand-drawn object and, in order to preserve the volume of
the fallen pieces, we then cut the input object into two parts,
one is the front half seen by the viewers, the other is the back
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Fig. 2 Algorithm overview

Fig. 3 2.5D model of the input object

half occluded by the front half Sect. 3. Next, the Voronoi tex-
tures are generated on these two parts (Sect. 4) to simulate
the cartoon cracks. Further, the cracking gaps on the Voronoi
textures are widened progressively until Voronoi cells split
apart (Sect. 5) which finally fall onto ground according to
simplified physical rules (Sect. 6).

3 Surface and volume approximation

In the 3D case when an object breaks into pieces, the total
volume of the fallen pieces is equal to the volume of the un-
broken object. While in our system the input object is drawn
on 2D, thus, just breaking the drawn object into 2D broken
pieces could not show the volumetric appearance of the un-
broken pieces supposed to be in 3D. We have to therefore
seek for a solution to introduce additional volume in the 2D
broken pieces.

Usually it is very difficult to generate 3D object models
from single 2D cartoon drawings, so we construct the front
and back half of the input object to approximate its surface
area instead. The front half (FH) is manually segmented
from the drawn object (right of Fig. 3), and the back half
(BH) is constructed by two parts: the first is the remaining
part of the segmented input object (as indicated by red dash
lines on the left of Fig. 3), and the second is the region oc-
cluded by the FH (as indicated by blue dash lines on the left
of Fig. 3). This region is assigned the color of the original
image on the non-shadow region in the remaining part of the

segmented object. The two images of FH and BH are stored
in two layers with depth order assigned as a 2.5D model for
later use. Compared with hand-drawing many broken pieces
involved in cartoon crack fractures, our interactive segmen-
tation and construction of FH and BH significantly reduces
the animator’s workload.

In order to show the volumetric appearance of the broken
objects in our model, it is necessary to introduce thickness to
FH and BH derived above. Generally this is also a hard task
as the broken objects may have varying structures which re-
quires sufficient knowledge of the objects to add appropriate
thickness to fit the 3D shape of the broken objects. Fortu-
nately, in cartoon animation broken objects are often drawn
with simple structures, which we can divide into two cate-
gories: the first includes solid objects such as sculptures and
walls, etc., and the second includes objects that are vacant
inside such as bowls. Details of adding thickness to these
two kinds of object are given in Sect. 6.

4 Voronoi textures

Voronoi diagrams were commonly suggested in [23–25] as
a way of producing realistic-looking cracks and fractures.
We also adopt the well-known Voronoi diagram to simulate
crack textures appearing in hand-drawn crack fractures as
shown in Fig. 1.

Voronoi diagrams were first discussed by Peter Lejeune
Dirichlet in 1850. However, it was more than a half of a cen-
tury later in 1908 that these diagrams were written about in a
paper by Voronoi, hence the name Voronoi diagrams. Given
n distinct points (sites) P = p1,p2, . . . , pn in the plane, the
Voronoi polygon (cell) of a point pi , VP(pi), is defined to
be the set of all points q in the plane for which pi is among
the closest point to q in P . That is,

VP(pi) = {
q : |pi − q| ≤ |pj − q|, i �= j

}
. (1)

The union of the boundaries of the Voronoi polygon is
called the Voronoi diagram of P , denoted by VD(P ), as
shown by solid lines in Fig. 4. A Voronoi edge is the bound-
ary between two Voronoi polygons and a Voronoi vertex is
the intersection of three or more Voronoi edges.
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Fig. 4 Voronoi diagram (solid) and Delaunay triangulation (dot)

There are many algorithms for constructing the Voronoi
diagram [28], including the calculation of Voronoi diagrams
using graphics hardware [29]. We adopt the simple algo-
rithm by Lischinski [30] for the incremental construction of
the Delaunay triangulation and the Voronoi diagram. For im-
plementation details of the algorithm, please refer to [30].

In our system, we synthesize a Voronoi diagram on two
layers of FH and BH as the basic model for crack fractures.
This involves seeding the interior of contours with seed
points distributing evenly or centrically, triangulating the re-
sulting point set, and constructing the Voronoi network. The
VD(P ) constructed above only models underlying structures
of the cartoon crack fractures. To animate these cartoon ef-
fects we need to incorporate appropriate rendering and con-
trolling mechanisms, as detailed in the following two sec-
tions.

5 Modeling cracking

Cracking is a process that usually starts from some positions
where the object is hit, cracks advance on the object and the

gaps of cracks widen progressively until the object is bro-
ken into pieces. Thus modeling cracking involves simula-
tion of crack advancing and gap widening along the edges
of Voronoi cells in the Voronoi network.

Firstly, several Voronoi vertices are chosen by the user
as activating seeds, as shown by the red points in Fig. 5(a).
Each activating seed nucleates a cracking line for each con-
necting edge, and the cracking line zigging along its corre-
sponding edge at a certain speed, set by L = L0 + �L ∗ t ,
where L0 is the initial length, �L the speed and t the time,
as shown by the dark bold lines in Fig. 5(b). When a crack-
ing line reaches an inactivated vertex, this vertex became a
new activating seed, which trigs more cracking lines, as il-
lustrated in Fig. 5(c). The cracking propagation process ter-
minates until all cracking lines have reached the contours or
vertices activated previously.

As for crack widening, the earlier emerged crack lines
are wider than those new ones. We model this by assigning
age to the cracking line width; the older, the wider. In our
system we set the speed of cracking line widening by W =
W0 + �W ∗ t , where W0 is the initial width, �W the speed
and t the time. Cracks animating starts on the FH layer first,
and then to the BH layer, as shown in Fig. 6.

6 Modeling fracturing

When cracking lines transverse the whole object, the second
phase begins: the object shatters into small fragments which
then fall on other objects such as floor and ground. During
the falling period, fragments may interact with each other
under the gravity, causing rotation, collision and piling up
of fragments, such as those happened in 3D.

Fragments obtained with above procedure are, however,
just 2D shapes of Voronoi cells, which could not be used
straightforwardly to produce realistic rotations, collision and
piling up of fragments as they appear in 3D. To add realism
to cartoon fracturing, we add thickness to each fragment to

Fig. 5 Algorithm of dynamic
cracking texture

Fig. 6 Cracking texture
animated in three different
frames
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obtain its 3D counterpart, which is far easier than construct-
ing the complex 3D model for the broken object. We con-
struct a 3D fragment by copying a Voronoi cell and move it
along the direction of the cell normal to a distance denoted
by d , which equals the thickness of the fragment specified
by the user, as illustrated in Fig. 7. Faces other than the front
one is assigned by the user.

For the solid objects such as sculptures and walls, the
thickness of the fragments should be increased so that they
appear reasonably bigger than the thinner fragments derived
from some objects such as bowls. In our system we sim-
ply increased the thickness of fragments for solid objects to
1.5d , which is sufficient to simulate cartoon fragments de-
rived from solid objects.

Once the 3D models for fragments are obtained, they are
animated physically. Suppose all fragments are made of the
same materials and the same density, they all fall as the solid
bodies to the ground plane under gravity. When collision
of fragments arises during falling, we treated it as the elas-
tic collision or inelastic collision according to the material

Fig. 7 Modeling 3D fragment

defined. In our implementation, fragments falling, colliding
and piling up are simulated by use of the Physx library [31].

Since the background picture in cartoon is also painted
on 2D, there is no 3D information available for calculating
the collision between falling fragments and the ground. We
therefore set up a virtual 3D ground plane interactively on
the background picture to support the physical simulation of
fragments falling and piling up process.

We also set some mechanical characteristics required by
Physx, including the density of the object, the gravity, the
restitution parameter, friction parameter. With these settings,
the position of every fragment in each frame can be calcu-
lated by Physx library. In order to speed up the process, we
use the bounding box instead of the 3D mesh of each frag-
ment in colliding detection.

7 Treatment of shadows

Shadows of broken objects are treated in two phases: the first
is cracking phase in which objects just begin to crack, thus
objects still remain their shapes, so do their shadows. Thus,
no shadow animation is required in this phase. The second
is a fracturing phase in which the objects break down into
pieces, consequently shadows of broken pieces vary as they
fall. Since we have obtained 3D fragments using the pro-
cedure described in Sect. 6, shadow animation can be done
with the traditional shadow map algorithm.

Fig. 8 Cracking and fracturing
of a bowl
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Fig. 9 Cracking and fracturing of a house

Fig. 10 Cracking and fracturing of a cartoon character

8 Results

To demonstrate the usability of our system, we have cre-
ated three animations of cartoon crack fractures under vary-
ing conditions. Our system is implemented with Microsoft
Visual C++ and OpenGl Libraries. All cartoon cracking
and fracturing animations are generated in real time on a
2.5 GHz Pentium PC with 2048 MB of RAM.

In the first example we show a cracking and fracturing
bowl. The bowl first cracks and then shatters into pieces, and
finally falls on the ground, as shown by a strip of 9 frames
sampled from the animation in Fig. 8. The second example
is a cartoon house breaking, as shown by a strip of eight
frames in Fig. 9.

The last example is a cartoon character breaking, as
shown by the example of Cinderella in Fig. 10. Such effects

may be used in cartoon, say Cinderella becomes a sculpture
made of mud when cursed by the witch, and then breaks.

9 Conclusion

In this paper we present a theme of modeling cracking and
fracturing effects for cartoon animation. Our work is the first
attempt to model cracking and fracturing effects for 2D car-
toon objects, procedurally.

The limitation of our method is that the resultant anima-
tion of crack fractures cannot be seen from arbitrary views in
3D. This is because we only reconstruct the 2.5D model for
cartoon objects instead of their full 3D model. Nevertheless,
this is not a serious problem because in cartoon animation
they are often depicted most expressive content seen from
certain view angles and our model seems adequate for the
task at hand.
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In future work we intend to model more complex effects
in cartoon animation including the explosions, earthquake,
etc.
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