
Realistic synthesis of cao shu of Chinese calligraphy
Jinhui Yu*, Qunsheng Peng

State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310027, P.R. China

Abstract

In Chinese calligraphy cao shu is regarded as a kind of free form art which differs from other styles greatly in
its less constrained strokes and brush textures. In this paper we present a framework for synthesizing cao shu
realistically. In our system, we adopt different brush texture patches (BTP) collected from hand-written artworks
to represent the solid and hollow strokes appearing in cao shu. BTP can be extended to fit the required length by
use of texture synthesis, smooth transitions between adjacent BTP over the stroke are achieved by a Markov
Random Field (MRF)-based interpolation technique. With a few parameters we can reproduce typical stroke
forms of cao shu, variations of brush texture, the ink amount as well as wetness of the stroke. Our model is also
able to synthesize characters of cao shu with different levels of detail that are applicable to scalable font design,
very high-quality publishing, computer-aided education and electronic practice of calligraphy.

Keywords: Modeling, Chinese calligraphy, Line and curve generation, Desktop publishing, Fine arts.

1. Introduction

Chinese calligraphy, the Chinese art of writing,
has a long history in China. Through thousands
years of evolution, many styles and forms have
been developed and established, namely the zhuan
shu (seal character), li shu (clerical script), kai shu
(regular script), xing shu (semi-cursive style) and
cao shu (cursive style), as shown in Fig. 1.

Fig. 1. Examples of zhuan shu, li shu, kai shu, xin shu and

cao shu

Different styles of Chinese calligraphy express

different personalities and serve for different
purposes at different times. Zhuan shu and li shu are
mainly for official writings and zhuan shu is the
precedent of li shu. Li shu adheres to some strict
prescriptions with minimal variations in the writings.
Kai shu evolves from these two precedents and is
the most commonly used style today due to its

* Corresponding author. Tel. + 86-571-87951045; fax + 86-

571- 87951780
E-mail address: jhyu@cad.zju.edu.cn (Jinhui Yu)

regular forms and legibility. With an injection of
"motion" or flow in kai shu, the words become
more fluid and indefinite. Such style is named xing
shu, which is more expressive and dynamic in its
forms, albeit less legible. Lastly, cao shu is one that
is written with rapid strokes. Like the
impressionistic paintings, cao shu tries to generate
the spirit of the words while ignoring the form
details. It is normally regarded as a kind of art
capable of expressing thoughts and emotions.

Chinese calligraphy depends heavily on its
expressive brush strokes. Many brush models were
proposed in the past two decades. Strassmann
modeled the ink-laying process of bristle brush on
paper [1]. Ink spreading effects were simulated by
ink diffusion models in [2,3]. Lee proposed a model
to describe the interaction between the ink and the
virtual paper [4]. Creation of calligraphic artwork
with a virtual brush based on classic artificial
intelligence, fuzzy logic, knowledge engineering
can be found in [5-7]. Way and Shih focused on
Chinese landscape paintings and synthesized rock
textures by drawing texture strokes on the model
constructed by the user [8]. Many other papers
proposed a similar brush approach to tackle the

mailto:jhyu@cad.zju.edu.cn

problem of painterly rendering [9-12]. Xu et al
adopted a complex solid model to simulate the
behavior of the brush [13]. Several image-based
systems produce an image for a painterly effect by
placing a jittered grid of short brush strokes over an
image [14-18]. Markosian et al used the image
moments of the color difference image to place
rectangular brush stroke [19].

To represent the geometric shape of Chinese
characters in Chinese calligraphy, several
approaches have been proposed such as shape
description with cubic Bezier curves and straight
lines [20,21], or skeletal strokes [22]. Other
methods focus on the brush stroke’s boundary
[23-25] and its trajectory [26]. Shair and Rappoport
introduced a parametric method to compactly
represent existing outline- based oriental fonts [27].
Ip et al developed a fractal-based outline font
description which is able to capture the outline
characteristics of calligraphic writing [28]. Based
on the shape representation of a character, the
process of rasterization is applied to generate the
image of the character, for the purpose such as
desktop publishing [29]. Problems of generating
new fonts were addressed by Coueignoux [30] and
Pan et al [31]. Henmi and Yoshikawa described a
virtual calligraphy system [32]. Wong and Ip used
the cone and some ellipses to synthesis Chinese
calligraphic writings including zhuan shu, li shu, kai
shu and xing shu [33]. There are also hardware
approaches to implementing brushes, such as the
one by Greene [34].

Cao shu is distinctive from other styles of
Chinese calligraphic writings, not only for its
indefinite forms, but also for the variation of
textures (hollow stroke) inside its strokes due to the
speed of writing. No wonder synthesizing those
characteristics of cao shu is much challenging and
interesting. In this paper, we propose an
image-based methodology for synthesizing cao shu
of Chinese calligraphy. We target the kinds of cao
shu images written by calligraphers and reproduce
the visual effects we observe in those images. We
started from the masterpiece by a famous Chinese

calligrapher, Mr. Zhengming Wen (1470-1559),
partially because his work is difficult to model
realistically using existing techniques.

We have developed a system to synthesize cao
shu that mimics the styles of selected samples. At
the high level, our system implements the following
five steps as shown in Fig. 2.

Fig. 2. Overview of our approach

During off-line preprocessing, we collect a few
typical brush texture patches (BTP) from the
samples of hand written artworks to build up a
brush texture library. During subsequent on-line
steps, stroke skeleton or trajectory is generated by
interpolating some key points specified or
predefined by the user, variations of brush texture
over the stroke are determined by composing
different BTP along the stroke which is segmented
with the threshold of curvature of the stroke
skeleton. If the BTP’s length is shorter than the
desired segment of the stroke skeleton, the BTP is
extended to fit the required length by use of a
texture synthesis technique. Smooth transitions
between different BTP are achieved by a
MRF-based interpolation technique. Our main
contributions are the system architecture, the
method of BTP blending using MRF-based
interpolation and the controlling mechanism of BTP
over the stroke based on the curvature value of the
stroke skeleton.

The remainder of the papers is organized as
follows. Section 2 describes the brush texture
library. Sections 3-7 address the main issues in
composition of BTP over the stroke, extension of
BTP in length, blending BTP using MRF-based
interpolation, stroke form, ink and wetness control.
Section 8 illustrates results of synthesized
characters while section 9 draws a brief conclusion.

Length

Extension

BTP

Library

Stroke

Skeleton

BTP

Blending

BTP

Composition

Synthesized

Stroke

2. Brush texture patch (BTP) library

During the writing process of cao shu, following
the rapid movement of the brush, different brush
textures are produced over different parts of the
strokes. From the aesthetic point of view, the
underlying beauty of cao shu lies in its expressive
form which reveals the thoughts and feelings of the
calligrapher and inspires the spontaneous response
from the viewer's mind. From the physical point of
view, variations in forms as well as inside textures
of the strokes are caused by the decrease of ink
amount due to the absorption of the paper as well as
the complex movements of the brush such as
moving, pressing and turning. Consequently,
strokes appear wet in the first few characters and
dry after them. The wet strokes usually have
smooth boundary with less or no texture variations,
while dry strokes have rough boundary with more
texture variations, as illustrated by Mr. Wen’s
calligraphic work in Fig. 3.

Fig. 3. Characters digitized from Mr. Zhengming Wen’s

calligraphic work

The first step of our approach is to collect
suitable BTPs from hand written samples to build
up the brush texture library. After careful study of
Mr. Wen’s artwork with 180 characters, we copy
manually some typical BTPs with different amount
of ink and wetness, namely BTPm (m=1,…NBTP,
where NBTP is the number of the texture patches
collected and in our implementation NBTP is set to
9), those BTPs are of the same size LBTP × WBTP
where LBTP and WBTP are the length and width of the

BTP respectively, and WBTP corresponds to the
normal width of strokes in hand written samples.
All BTPs are placed in the decreasing order of ink
amount in the brush texture, as shown in the left
column in Fig. 4.

Fig. 4. BTPs collected from samples (left column) and

BTPs extended in length (right column)

3. BTP composition

From Fig. 3 we can see that hollow strokes
appear most likely in the segments between stroke
turning points at which the stroke changes its
curvature. Hollow strokes are connected with solid
strokes or other hollow strokes with different
textures at turning points of the stroke. In this
section we describe how to detect turning points
along the stroke in our model.

Fig.5. Stroke skeleton with turning points detected using

δc= 0.001 (left) andδc=0.02 (right).

We generate the skeleton of a stroke by

interpolating a set of key points (bigger dots in Fig.
5) specified or predefined by the user. Suppose the
skeleton of stroke Pi has N points (i=1,..N), among
them there are M turning points TurnPj (j=1,...M
and M<N). We determine these turning points by
calculating the curvature of the curve at each
sample point and comparing it with a prescribed
thresholdδc, if the curvature value is greater thanδ

c, the current sample point is regarded as a turning
point, otherwise not. Obviously, smallδ c would

result more turning points detected, as shown by
lines across the stroke in Fig. 5. Our interface
displays positions of the turning points over the
stroke, the user can varyδc to get the result desired.
With turning points detected the stroke is divided
into M-1 segments, each segment is associated with
an appropriate BTP according to some aesthetic
rules as well as the physical movement and state of
the brush at the time. Detailed mechanism to select
BTP for each segment is described in section 7.

Since a stroke may be composed of segment with
different BTPs, the visual continuity between these
BTPs must be guaranteed. To this end, we lay the
solid stroke or strokes with heavy ink across turning
points, transitions between those strokes and other
hollow strokes actually take place near the turning
points in each segment. Let TranP1 and TranP2
denote points at which transitions take place in the
segment and TurnPj and TurnPj+1 be the end points
of the segment, the position of TranP1 and TranP2

can be determined with a local coordinate l∈[0,1]
(where l=0 corresponds to TurnPj and l=1
corresponds to TurnPj+1). To avoid stiff appearance
of the resultant stroke, we let parameters l1 and l2

vary randomly in the range [0.1,0.35] and [0.65,0.9],
respectively to pick up the transition points. With
TranP1 and TranP2, the segment defined by TurnPj
and TurnPj+1 can be divided further into three parts,
the appearance of the segment is then determined by
inserting the appropriate BTPs in the middle part
and other strokes in the two ending parts, as detailed
in section 5.

4. BTP extension in length

Although strokes in cao shu may vary in both
width and length, variations in length are usually
more dynamic. Thus, the BTP collected may not be
long enough to fit the length of the synthesized
stroke, it is therefore necessary to extend the BTP to
fit the required length.

Problem of extending BTP to the required length
actually falls in the area of texture synthesis, we
adopt the idea proposed in [35] to synthesize the
brush texture in real-time with a simplified Markov

Random Field (MRF) based approach.
First, we calculate the length of the segment

defined by TurnPj and TurnPj+1, namely SgLj, and
compare it with LBTP, the length of BTPm to determine
if the extension of BTP in length is necessary. In the
case of extension is needed, we assume the Markov
property of the brush texture BTPm, and estimate the
local conditional MRF density p(BTPm|BZ), where BZ
is the boundary zone of the texture BTPm as a band of
width wb to the right border of BTPm, we search BTPm
for all texture patches with a moving window of size
LTP × WBTP, where LTP is equal to half of LBTP and wb
is set four pixels wide, as suggested in [35]. The
results of the search form an empirical histogramψ,
we just pick up an element fromψand connect it to
the right border of BTPm as its extension. For
implementation detail and how the final synthesized
texture would be changed when δ takes on different
values, please refer to [35].
 If the extended brush texture is still not long
enough to cover the required length, we repeat the
above procedure in a recursive manner until the
required length is reached. Results of brush texture
extension in length are shown in the right column in
Fig. 4.

5. Blending brush texture using MRF-based
interpolation

With the extended brush textures and the three
parts of a stroke segment described in section 3, we
can compose a temporary brush texture patch of
size SgLj × WBTP for the jth segment of the stroke
with three sub-patches of same width but different
length , and . 1

jSgL 2
jSgL 3

jSgL

Fig. 6. Results of RGB-based interpolation (left) and
MRF-based interpolation (right)

Obviously, the sudden change in texture between

sub-patches is not acceptable, a texture blending
process is then applied to compose a segment of the
stroke with continuous stroke texture appearance.
Nevertheless, conventional interpolation of RGB

values between corresponding pixels of different
brush textures would not produce desired result, as
shown in the left column in Fig. 6, this is because
the texture transition in cao shu is not caused by
simply overlapping different brush textures.

Our solution to this problem is MRF-based
interpolation between two brush textures. Suppose
textures in the two adjacent sub-patches are BTPm
and BTPn respectively, we first define a transitive
patch Zts in-between the two sub-patches and set wts

the length of Zts, a random value from 0.15SgLj to
0.2SgLj. Next, we find the two boundary sections Zm

and Zn of BTPm and BTPn located at their right and
left end respectively, the width of both Zm and Zn are
set to wb, and then interpolate values (grayscale) of
corresponding pixels and in Zk

mP k
nP m and Zn to get

the reference values of the pixels in a section of Zts
with the same wb. Since wb is normally less than wts,

we subdivide Zts into a number of sections, namely
Zti, (i=1,…Mb= wts/ wb) and

k
n

k
m

k
ti uPPuP +−=)1((u∈ [0,1] and k=1,…Nb) (1)

where represents the reference value of the kth
pixel in Z

k
tiP

ti, u is the interpolation variant and Nb is
the number of pixels in the section. As u increases,
Zti is filled with different reference values, in the
case of wt<wb, we let wts=wb.

Note that Zm, Zn and Zti are of the same size. We
define a local window moving from top to bottom
within each section and calculate the distance
between the local texture within each window, that
is, d(,) and d(,) (k=1,…Nk

tiP k
mP k

tiP k
nP a), where Na

is the number of pixels located in the local window.
We put the matched patches from BTPm and BTPn if
d(,)<δk

tiP k
mP w and d(,)<δk

tiP k
nP w into ψm and ψn,

where δw is a prescribed constant. From
experiments we have found that the size 4 × 3 is big
enough for the local window to capture the texture
features in BTPm and BTPn. Finally we fill Zti by
taking the value of u as the probability to select ψm
or ψn and then picking up an element at random in
the selected ψm or ψn.

Results of our MRF-based interpolation are
shown in the right column in Fig.6. Comparing with
results of RGB-based interpolation in the left
column in the same figure, we can see that
MRF-based interpolation is able to produce natural
transitions between different textures.

In addition to dealing with transitions between
different brush textures, we can also apply our

interpolation scheme to generate new brush textures
varying between BTPm and BTPm+1 (m=2,…NBTP-1),
as shown in Fig. 7. The resultant brush textures can
be used as new BTPs in our system. This unique
feature allows us to mimic the texture variations
beyond the limited samples of BTP in the brush
texture library. Whether to adopt the BTP in the
brush texture library or the interpolated one is
controlled with equal probability by the system.

Fig. 7. New textures interpolated using 5th and 6th texture

patch (left), 6th and 7th texture patch (right) taken from the

brush texture library.

6. Stroke form control

Since variations of stroke forms in cao shu are
more dynamic than other styles in Chinese
calligraphy, stroke form control in cao shu is more
difficult. Nevertheless, based on the observation
from hand written samples shown in Fig.3, it is still
possible for us to use a few control parameters to
define typical strokes. In our system we classify
stroke forms into four types, namely LEAF1,
LEAF2, CONST and TIPPING, and their
relationships with corresponding stroke forms can
be found in Fig. 8:

Type Brush width Variants in the sinusoidal

functions

LEAF1 Bw=WBTP•sin(v) v = (FaS + us (FaE - FaS)) π

LEAF2 Bw= WBTP •sin2(v) v = (FaS + us (FaE - FaS)) π

CONST Bw= WBTP

TIPPING Bw= WBTP •cos(v) v=0; (us≤T)

v=0.5π(us-T)/(1-T); (us>T)

Fig. 8. Stroke form types

where Bw is the instantaneous brush width of a
stroke during writing process, it is calculated by
scaling WBTP with sin(v) or cos(v); the variant v is
derived by some other parameters, such as FaS and
FaE (FaS<FaE) which control the initial and
ending phase of the sinusoidal functions; us∈ [0,1]
is the parameter of the stroke skeleton with us=0
and us=1 corresponding to the first and last point of

the stroke skeleton, respectively. In the type of
TIPPING, T ∈ [0.8,0.9] varies randomly in the
defined range and controls where tipping takes
places on the stroke. It is not difficult to figure out
the corresponding stroke forms from their
definitions and the user can generate the required
stroke forms by specifying relevant parameters.

Inspired by the idea of using the ellipse for stroke
form control [33], we integrate the ellipse with the
stroke form type for further control of stroke form.
Unlike the Wong and Ip’s stroke control model
presented in [33], where the ellipse need to be both
rotated and scaled according to the different parts of
the stroke, our model adopts a single parameter θ
which controls only the ellipse’s orientation and
remains unchanged over the stroke. The
instantaneous width of the stroke is determined by
scaling the reference stroke width BrefW with a
factor fat calculated with the following equation:

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=⎥
⎦

⎤
⎢
⎣

⎡
×⎥

⎦

⎤
⎢
⎣

⎡ −
)5.0sin(
)5.0cos(1

)
)

θ
θ

cos()sin(
sin()cos(

π
π

θ
θ

t

t
t ang

ang
fa

RFa (2)

where RFa<1 is a scaling factor and the minor
radius of the ellipse is determined by multiplying
the major radius of the ellipse by RFa; angt is the
tangent of the stroke skeleton. Equation (2) actually
represents the intersection between a circle with the
radius fat in the direction of the stroke skeleton’s
norm and the ellipse rotated with degree θ.

Fig. 9. Comparison of the ellipse controlling mechanism

between Wong and Ip’s (middle) and our system (right)

Fig. 9 shows the difference between Wong and

Ip’s model and ours in using the ellipse to control
stroke forms. Although stroke turning shapes in kai
shu can be recreated very well by both rotating and

scaling the ellipse as did in [33], for generating
stroke form shown in Fig. 9, our ellipse controlling
mechanism is easier than Wong and Ip’s model
because we avoid the complex setting of rotating
and scaling parameters over the different parts of
the stroke.

7. Ink and wetness control

Ink and wetness control is achieved by choosing
appropriate BTP in the brush texture library. In our
system, all BTP samples in the brush texture library
are indexed according to their appearance of ink
and wetness. We provide two parameters Base and
RndM for determining the index of the desired
stroke, that is, InkIndex=Base+RndM (1<InkIndex
≤NBTP). Clearly, a smaller Base would result wet
brush stroke and inversely bigger Base would result
dry brush stroke. The use of RndM makes brush
texture vary more naturally in the resultant strokes
and we found from our experiments that RndM∈
[0,4] would produce satisfactory results.

8. Results

In this section we give some examples to
demonstrate the flexibility of our model on
controlling stroke forms and textures inside strokes.
In Fig. 10 and 11, the left of each figure is the
digitized image of the real art work, the middle
illustrates strokes with turning points indicated, and
the right demonstrates the synthesized image (All
the synthesized images shown in this paper are
superimposed on an image of Xuan paper texture to
improve visual effect).

In Fig. 12 we show variations of a Chinese
character under different parameters. The digitized
image of the real art work is given in Fig. 12 (a).
Synthesized examples with varying degree of
wetness are shown in Fig. 12 (b), (c) and (d). In
addition to ink and wetness control, our model
allows interesting variations such as brush radius
reduced or increased by modifying some of the
brush parameters, corresponding examples are
given in Fig. 12 (e) and (f). It should be pointed out

that, since the parameter WBTP corresponds to the
normal width of strokes BTP in Fig. 3, the width of
synthesized stroke should be close to WBTP. If the
width of synthesized stroke is set to a large value,
say two times WBTP, the resultant texture in the

synthesized stroke would have zooming effect. One
solution to this problem is to build BTP library with
multiple widths, and the system picks up the
corresponding BTP according to the brush
parameter specified by the user.

Fig.10. Digitized image of a real art work (left), strokes with turning points indicated (middle) and synthesized image

(right)

Fig. 11. Digitized image of a real art work (left), strokes with turning points indicated (middle) and synthesized image

(right)

9. Conclusions

This paper presents the results of our recent
research on the synthesis of cao shu in Chinese
calligraphy. We have proposed, implemented, and
demonstrated a modeling framework that enables
the creation of calligraphic work of cao shu with a
few parameters controlled by the user. The
convincing simulation results validate our model,
which captures the essential features of hand

written characters of cao shu – stroke trajectory,
stroke form and brush textures. The use of BTP
collected from hand-made work makes the
synthesized characters almost indistinguishable
from those written by hand. Actually cao shu can
be regarded as a kind of work in-between
calligraphy and painting because of its indefinite
variations in stroke form, length and texture, this

modeling theme is therefore applicable to
brush-painting artworks as well. Other applications
of our work are scalable font design, high quality

publishing, computer-aided education and
electronic practice of calligraphy.

(a) (b) (c)

(d) (e) (f)

Fig. 12. (a) Digitized image of a real art work (b) Image synthesized without hollow strokes (c) Image synthesized with wet

strokes (d) Image synthesized with dry strokes (e) Image synthesized with brush radius reduced (f) Image synthesized with

brush radius increased

Acknowledgements

We thank anonymous reviewers for their
suggestions and comments. This work is supported
by the National Natural Science Foundation of
China (No. 60373037), National Nature Science
Foundation of China for Creative Research Group
(No. 60021201) and National Key Basic Research
and Development Program of China (973 program)
(No. 2002-CB- 312101).

References

[1] Strassmann S. Hairy brushes, Proceedings of

SIGGRAPH’86, 1986, p.225-232.

[2] Kunii T.L, Nosovskij G.V. and Hayashi T. A diffusion

model for computer animation of diffuse ink painting.

Proceedings of Computer Animation’95,1995, p.98-102

[3] Zhang Q., Sato Y., Takahashi J., Muraoka K., and

Chiba N. Simple cellular automation-based simulation

of ink behavior and its application to Suibokuga-like

3D rendering of trees. Journal of Visualization and

Computer Animation. 1999; 10(1): 27-37.

[4] Lee J. Diffusion rendering of black ink paintings using

new paper and ink models. Computers and Graphics,

2001; 25:295-308.

[5] Nakamura T., Itoh H., Seki H., and Law T. A writing

system for brush characters using neural recognition

and fuzzy interpolation. Proceedings of 1993 Internat-

ional Joint Conference on Neural Networks, 1993, p.

2901-4.

[6] Yamasaki T. and Hattori T. Forming square-styled

brush-written Kanji through calligraphic skill knowl-

edge. IEEE Proceedings of Multimedia’96, 1996, p.

501-4.

[7] Wei X., Lu S., Song M., and Luo B. Computer pattern

design and painting technique based on aethetics

knowledge. Computer Aided Drafting, Design and

Manufacturing, 1992; 2(2):32-40.

[8] Way D.L and Shih Z.C. The synthesis of rock textures

in Chinese landscape painting. Proceedings of Euro-

graphics’01, 2001, p. C-123-C-131.

[9] Lee J. Simulating oriental black-ink painting. IEEE

Computer Graphics and Applications.1999; 19(3):

74-81.

[10] Baxter B., Scheib V., Lin M.C., and Manocha D. DAB:

interactive haptic painting with 3D virtual brushes.

Proceedings of SIGGRAPH’01, 2001,p. 461-8.

[11] Curtis C.J. Computer generated watercolor. Proceed-

ings of SIGGRAPH’97, 1997, p. 421-430.

[12] Saito S. and Nakajima M. 3D physically based brush

model for painting, SIGGRAPH’99 Conference

Abstract and Applications, 1999, p. 226.

[13] Xu S.H., Tang M., Chen D.R., and Dong J.X. A solid

model based virtual hairy brush. Proceedings of

EUROGRAPHICS’02, 2002, p. 513-531.

[14] Adobe Systems. Adobe Photoshop 5.0

[15] Haeberli P., Painting by numbers: Abstract image

representations. Proceedings of SIGGRAPH’90, 1990,

p. 207-214.

[16] Hertzmann A. Painterly rendering with curved brush

strokes of multiple sizes. Proceedings of SIGGRAPH’

98, 1998, p. 453-460.

[17] Litwinowiz R. Processing images and video for an

impressionist effect. Proceedings of SIGGRAPH’97,

1997, p. 407-414.

[18] Treavett S.M.F. and Chen M., Statistical techniques

for the automatic synthesis of non-photorealistic

images, Proceedings of the 15th Eurographics UK

Conference,1997. p. 201-210.

[19] Markosian L., Meier B.J., Kowalski M. A., Holden L.

S., Northrup J.D., Hughes,J. F. Art-based rendering

with continuous levels of detail, Proceedings of

NPAR’2000, 2000, p. 59-66.

[20] Chua Y. Bezier brush strokes. Computer Aided Design,

1990; 22(9):5505.

[21] Nishita T., Takita S., and Nakamae E. A display

algorithm of brush strokes using Bezier functions.

Proceedings of CGI’93, Computer Graphics Internat-

ional Conference, 1993, p. 244-257.

[22] Shu S. and Lee I. Drawing and animation using

skeletal strokes. Proceedings of SIGGRAPH’94, 1994,

p. 109-118.

[23] Ahn J.-W., Kim M.-S., and Lim S.-B. Approximate

general sweep boundary of a 2D curved object,

Computer Vision, Graphics & Image Processing, 1993;

55(2): 98-128.

[24] Posch K.C and Fellner W.D. The circle-brush

algorithm, ACM Transactions on Graphics, 1989,

8(1):1-24.

[25] Lim S.-B. and Kim M.D. Oriental character font

design by a structured composition of stroke elements.

Computer Aided Design, 1995; 27(3): 193-207.

[26] Hobby J.D. Digitized Brush Trajectories. Ph.D thesis,

Stanford University, 1985.

[27] Shamir R. and Rappoport A. Quality enhancements of

digital outline fonts. Computers & Graphics, 1997;

21(6):713-725.

[28] Ip HHS, Wong HTF, Mong FY. Fractal coding of

Chinese scaleable calligraphic fonts. Computers and

Graphics 1994; 18:343-51

[29] Hao L. and Zhou H. A new contor fill algorithm for

outlined character image generation. Computers &

Graphics, 1995; 19(4): 551-6.

[30] Coueignoux P. Character generation by computer.

Computer Graphics & Image Processing, 1981; 16(3):

240-269.

[31] Pan Z.G., Ma X. Zhang M., and Shi J. Chinese font

composition method based on algebraic system of

geometric shapes. Computers & Graphics,1997; 21(3):

321-8.

[32] Henmi K. and Yoshikawa T. Virtual lesson and its

application to virtual calligraphy systems. Proceed-

ings of 1998 IEEE international Conference on

Robotics & Automation, 1998, p. 1275-1280.

[33] Wong H.T.F. and Ip H.H.S. Virtual brush: a model

based synthesis of Chinese calligraphy. Computers &

Graphics, 2000; 24(3): 99-113.

[34] Greene R. The drawing prism: a versatile graphic

input device. Proceedings of SIGGRAPH’85,1985, p.

103-9.

[35] Liang L., Liu C., Xu Y.Q, Guo B.N, and Shum H.Y,

Real-time texture synthesis by patch-based sampling,

ACM Transactions on Graphics, 2001,20(3):127–15

	State Key Lab of CAD&CG, Zhejiang University, Hangzhou 31002
	Abstract
	Brush texture patch (BTP) library
	BTP composition

	4. BTP extension in length
	Acknowledgements

	References

