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Abstract 

In Chinese calligraphy cao shu is regarded as a kind of free form art which differs from other styles greatly in 
its less constrained strokes and brush textures. In this paper we present a framework for synthesizing cao shu 
realistically. In our system, we adopt different brush texture patches (BTP) collected from hand-written artworks 
to represent the solid and hollow strokes appearing in cao shu. BTP can be extended to fit the required length by 
use of texture synthesis, smooth transitions between adjacent BTP over the stroke are achieved by a Markov 
Random Field (MRF)-based interpolation technique. With a few parameters we can reproduce typical stroke 
forms of cao shu, variations of brush texture, the ink amount as well as wetness of the stroke. Our model is also 
able to synthesize characters of cao shu with different levels of detail that are applicable to scalable font design, 
very high-quality publishing, computer-aided education and electronic practice of calligraphy.   
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1.  Introduction  

Chinese calligraphy, the Chinese art of writing, 
has a long history in China. Through thousands 
years of evolution, many styles and forms have 
been developed and established, namely the zhuan 
shu (seal character), li shu (clerical script), kai shu 
(regular script), xing shu (semi-cursive style) and 
cao shu (cursive style), as shown in Fig. 1. 

 
Fig. 1. Examples of zhuan shu, li shu, kai shu, xin shu and 

cao shu 

 
Different styles of Chinese calligraphy express 

different personalities and serve for different 
purposes at different times. Zhuan shu and li shu are 
mainly for official writings and zhuan shu is the 
precedent of li shu. Li shu adheres to some strict 
prescriptions with minimal variations in the writings. 
Kai shu evolves from these two precedents and is 
the most commonly used style today due to its 
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regular forms and legibility. With an injection of 
"motion" or flow in kai shu, the words become 
more fluid and indefinite. Such style is named xing 
shu, which is more expressive and dynamic in its 
forms, albeit less legible. Lastly, cao shu is one that 
is written with rapid strokes. Like the 
impressionistic paintings, cao shu tries to generate 
the spirit of the words while ignoring the form 
details. It is normally regarded as a kind of art 
capable of expressing thoughts and emotions.  

Chinese calligraphy depends heavily on its 
expressive brush strokes. Many brush models were 
proposed in the past two decades. Strassmann 
modeled the ink-laying process of bristle brush on 
paper [1]. Ink spreading effects were simulated by 
ink diffusion models in [2,3]. Lee proposed a model 
to describe the interaction between the ink and the 
virtual paper [4]. Creation of calligraphic artwork 
with a virtual brush based on classic artificial 
intelligence, fuzzy logic, knowledge engineering 
can be found in [5-7]. Way and Shih focused on 
Chinese landscape paintings and synthesized rock 
textures by drawing texture strokes on the model 
constructed by the user [8]. Many other papers 
proposed a similar brush approach to tackle the 
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problem of painterly rendering [9-12]. Xu et al 
adopted a complex solid model to simulate the 
behavior of the brush [13]. Several image-based 
systems produce an image for a painterly effect by 
placing a jittered grid of short brush strokes over an 
image [14-18]. Markosian et al used the image 
moments of the color difference image to place 
rectangular brush stroke [19].  

To represent the geometric shape of Chinese 
characters in Chinese calligraphy, several 
approaches have been proposed such as shape 
description with cubic Bezier curves and straight 
lines [20,21], or skeletal strokes [22]. Other 
methods focus on the brush stroke’s boundary 
[23-25] and its trajectory [26]. Shair and Rappoport 
introduced a parametric method to compactly 
represent existing outline- based oriental fonts [27]. 
Ip et al developed a fractal-based outline font 
description which is able to capture the outline 
characteristics of calligraphic writing [28]. Based 
on the shape representation of a character, the 
process of rasterization is applied to generate the 
image of the character, for the purpose such as 
desktop publishing [29]. Problems of generating 
new fonts were addressed by Coueignoux [30] and 
Pan et al [31]. Henmi and Yoshikawa described a 
virtual calligraphy system [32]. Wong and Ip used 
the cone and some ellipses to synthesis Chinese 
calligraphic writings including zhuan shu, li shu, kai 
shu and xing shu [33]. There are also hardware 
approaches to implementing brushes, such as the 
one by Greene [34].   

Cao shu is distinctive from other styles of 
Chinese calligraphic writings, not only for its 
indefinite forms, but also for the variation of 
textures (hollow stroke) inside its strokes due to the 
speed of writing. No wonder synthesizing those 
characteristics of cao shu is much challenging and 
interesting. In this paper, we propose an 
image-based methodology for synthesizing cao shu 
of Chinese calligraphy. We target the kinds of cao 
shu images written by calligraphers and reproduce 
the visual effects we observe in those images. We 
started from the masterpiece by a famous Chinese 

calligrapher, Mr. Zhengming Wen (1470-1559), 
partially because his work is difficult to model 
realistically using existing techniques.  

We have developed a system to synthesize cao 
shu that mimics the styles of selected samples. At 
the high level, our system implements the following 
five steps as shown in Fig. 2. 
 

 
 

 
 
 
 
 

Fig. 2. Overview of our approach 
 

During off-line preprocessing, we collect a few 
typical brush texture patches (BTP) from the 
samples of hand written artworks to build up a 
brush texture library. During subsequent on-line 
steps, stroke skeleton or trajectory is generated by 
interpolating some key points specified or 
predefined by the user, variations of brush texture 
over the stroke are determined by composing 
different BTP along the stroke which is segmented 
with the threshold of curvature of the stroke 
skeleton. If the BTP’s length is shorter than the 
desired segment of the stroke skeleton, the BTP is 
extended to fit the required length by use of a 
texture synthesis technique. Smooth transitions 
between different BTP are achieved by a 
MRF-based interpolation technique. Our main 
contributions are the system architecture, the 
method of BTP blending using MRF-based 
interpolation and the controlling mechanism of BTP 
over the stroke based on the curvature value of the 
stroke skeleton. 

The remainder of the papers is organized as 
follows. Section 2 describes the brush texture 
library. Sections 3-7 address the main issues in 
composition of BTP over the stroke, extension of 
BTP in length, blending BTP using MRF-based 
interpolation, stroke form, ink and wetness control. 
Section 8 illustrates results of synthesized 
characters while section 9 draws a brief conclusion. 
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2. Brush texture patch (BTP) library  

During the writing process of cao shu, following 
the rapid movement of the brush, different brush 
textures are produced over different parts of the 
strokes. From the aesthetic point of view, the 
underlying beauty of cao shu lies in its expressive 
form which reveals the thoughts and feelings of the 
calligrapher and inspires the spontaneous response 
from the viewer's mind. From the physical point of 
view, variations in forms as well as inside textures 
of the strokes are caused by the decrease of ink 
amount due to the absorption of the paper as well as 
the complex movements of the brush such as 
moving, pressing and turning. Consequently, 
strokes appear wet in the first few characters and 
dry after them. The wet strokes usually have 
smooth boundary with less or no texture variations, 
while dry strokes have rough boundary with more 
texture variations, as illustrated by Mr. Wen’s 
calligraphic work in Fig. 3. 

 

Fig. 3. Characters digitized from Mr. Zhengming Wen’s 

calligraphic work 

The first step of our approach is to collect 
suitable BTPs from hand written samples to build 
up the brush texture library. After careful study of 
Mr. Wen’s artwork with 180 characters, we copy 
manually some typical BTPs with different amount 
of ink and wetness, namely BTPm (m=1,…NBTP, 
where NBTP is the number of the texture patches 
collected and in our implementation NBTP is set to 
9), those BTPs are of the same size LBTP × WBTP 
where LBTP and WBTP are the length and width of the 

BTP respectively, and WBTP corresponds to the 
normal width of strokes in hand written samples. 
All BTPs are placed in the decreasing order of ink 
amount in the brush texture, as shown in the left 
column in Fig. 4.  

 
Fig. 4. BTPs collected from samples (left column) and 

BTPs extended in length (right column) 

 
3. BTP composition  

From Fig. 3 we can see that hollow strokes 
appear most likely in the segments between stroke 
turning points at which the stroke changes its 
curvature. Hollow strokes are connected with solid 
strokes or other hollow strokes with different 
textures at turning points of the stroke. In this 
section we describe how to detect turning points 
along the stroke in our model.  

 

Fig.5. Stroke skeleton with turning points detected using

δc= 0.001 (left) andδc=0.02 (right). 

 
We generate the skeleton of a stroke by 

interpolating a set of key points (bigger dots in Fig. 
5) specified or predefined by the user. Suppose the 
skeleton of stroke Pi has N points (i=1,..N), among 
them there are M turning points TurnPj (j=1,...M 
and M<N). We determine these turning points by 
calculating the curvature of the curve at each 
sample point and comparing it with a prescribed 
thresholdδc, if the curvature value is greater thanδ

c, the current sample point is regarded as a turning 
point, otherwise not. Obviously, smallδ c would 



result more turning points detected, as shown by 
lines across the stroke in Fig. 5. Our interface 
displays positions of the turning points over the 
stroke, the user can varyδc to get the result desired. 
With turning points detected the stroke is divided 
into M-1 segments, each segment is associated with 
an appropriate BTP according to some aesthetic 
rules as well as the physical movement and state of 
the brush at the time. Detailed mechanism to select 
BTP for each segment is described in section 7. 

Since a stroke may be composed of segment with 
different BTPs, the visual continuity between these 
BTPs must be guaranteed. To this end, we lay the 
solid stroke or strokes with heavy ink across turning 
points, transitions between those strokes and other 
hollow strokes actually take place near the turning 
points in each segment. Let TranP1 and TranP2 
denote points at which transitions take place in the 
segment and TurnPj and TurnPj+1 be the end points 
of the segment, the position of TranP1 and TranP2 

can be determined with a local coordinate l∈[0,1] 
(where l=0 corresponds to TurnPj and l=1 
corresponds to TurnPj+1 ). To avoid stiff appearance 
of the resultant stroke, we let parameters l1 and l2 

vary randomly in the range [0.1,0.35] and [0.65,0.9], 
respectively to pick up the transition points. With 
TranP1 and TranP2, the segment defined by TurnPj 
and TurnPj+1 can be divided further into three parts, 
the appearance of the segment is then determined by 
inserting the appropriate BTPs in the middle part 
and other strokes in the two ending parts, as detailed 
in section 5. 

 
4. BTP extension in length 

Although strokes in cao shu may vary in both 
width and length, variations in length are usually 
more dynamic. Thus, the BTP collected may not be 
long enough to fit the length of the synthesized 
stroke, it is therefore necessary to extend the BTP to 
fit the required length.  

Problem of extending BTP to the required length 
actually falls in the area of texture synthesis, we 
adopt the idea proposed in [35] to synthesize the 
brush texture in real-time with a simplified Markov 

Random Field (MRF) based approach.  
First, we calculate the length of the segment 

defined by TurnPj and TurnPj+1, namely SgLj, and 
compare it with LBTP, the length of BTPm to determine 
if the extension of BTP in length is necessary. In the 
case of extension is needed, we assume the Markov 
property of the brush texture BTPm, and estimate the 
local conditional MRF density p(BTPm|BZ), where BZ 
is the boundary zone of the texture BTPm as a band of 
width wb to the right border of BTPm, we search BTPm 
for all texture patches with a moving window of size 
LTP × WBTP, where LTP is equal to half of LBTP and wb 
is set four pixels wide, as suggested in [35]. The 
results of the search form an empirical histogramψ, 
we just pick up an element fromψand connect it to 
the right border of BTPm as its extension. For 
implementation detail and how the final synthesized 
texture would be changed when δ takes on different 
values, please refer to [35]. 
  If the extended brush texture is still not long 
enough to cover the required length, we repeat the 
above procedure in a recursive manner until the 
required length is reached. Results of brush texture 
extension in length are shown in the right column in 
Fig. 4. 
 
5. Blending brush texture using MRF-based 
interpolation  

With the extended brush textures and the three 
parts of a stroke segment described in section 3, we 
can compose a temporary brush texture patch of 
size SgLj × WBTP for the jth segment of the stroke 
with three sub-patches of same width but different 
length , and .  1

jSgL 2
jSgL 3

jSgL

Fig. 6. Results of RGB-based interpolation (left) and 
MRF-based interpolation (right) 

 
Obviously, the sudden change in texture between 

sub-patches is not acceptable, a texture blending 
process is then applied to compose a segment of the 
stroke with continuous stroke texture appearance. 
Nevertheless, conventional interpolation of RGB 



values between corresponding pixels of different 
brush textures would not produce desired result, as 
shown in the left column in Fig. 6, this is because 
the texture transition in cao shu is not caused by 
simply overlapping different brush textures.  

Our solution to this problem is MRF-based 
interpolation between two brush textures. Suppose 
textures in the two adjacent sub-patches are BTPm 
and BTPn respectively, we first define a transitive 
patch Zts in-between the two sub-patches and set wts 

the length of Zts, a random value from 0.15SgLj to 
0.2SgLj. Next, we find the two boundary sections Zm 

and Zn of BTPm and BTPn located at their right and 
left end respectively, the width of both Zm and Zn are 
set to wb, and then interpolate values (grayscale) of 
corresponding pixels and in Zk

mP k
nP m and Zn to get 

the reference values of the pixels in a section of Zts 
with the same wb. Since wb is normally less than wts, 

we subdivide Zts into a number of sections, namely 
Zti, (i=1,…Mb= wts/ wb) and  

k
n

k
m

k
ti uPPuP +−= )1(  (u∈ [0,1] and k=1,…Nb)  (1) 

where represents the reference value of the kth 
pixel in Z

k
tiP

ti, u is the interpolation variant and Nb is 
the number of pixels in the section. As u increases, 
Zti is filled with different reference values, in the 
case of wt<wb, we let wts=wb.  

Note that Zm, Zn and Zti are of the same size. We 
define a local window moving from top to bottom 
within each section and calculate the distance 
between the local texture within each window, that 
is, d( , ) and d( , ) (k=1,…Nk

tiP k
mP k

tiP k
nP a), where Na 

is the number of pixels located in the local window. 
We put the matched patches from BTPm and BTPn if 
d( , )<δk

tiP k
mP w and d( , )<δk

tiP k
nP w into ψm and ψn, 

where δw is a prescribed constant. From 
experiments we have found that the size 4 × 3 is big 
enough for the local window to capture the texture 
features in BTPm and BTPn. Finally we fill Zti by 
taking the value of u as the probability to select ψm 
or ψn and then picking up an element at random in 
the selected ψm or ψn.  

Results of our MRF-based interpolation are 
shown in the right column in Fig.6. Comparing with 
results of RGB-based interpolation in the left 
column in the same figure, we can see that 
MRF-based interpolation is able to produce natural 
transitions between different textures.  

In addition to dealing with transitions between 
different brush textures, we can also apply our 

interpolation scheme to generate new brush textures 
varying between BTPm and BTPm+1 (m=2,…NBTP-1), 
as shown in Fig. 7. The resultant brush textures can 
be used as new BTPs in our system. This unique 
feature allows us to mimic the texture variations 
beyond the limited samples of BTP in the brush 
texture library. Whether to adopt the BTP in the 
brush texture library or the interpolated one is 
controlled with equal probability by the system.  

 
Fig. 7. New textures interpolated using 5th and 6th texture 

patch (left), 6th and 7th texture patch (right) taken from the 

brush texture library.  

 
6. Stroke form control 

Since variations of stroke forms in cao shu are 
more dynamic than other styles in Chinese 
calligraphy, stroke form control in cao shu is more 
difficult. Nevertheless, based on the observation 
from hand written samples shown in Fig.3, it is still 
possible for us to use a few control parameters to 
define typical strokes. In our system we classify 
stroke forms into four types, namely LEAF1, 
LEAF2, CONST and TIPPING, and their 
relationships with corresponding stroke forms can 
be found in Fig. 8: 

Type Brush width Variants in the sinusoidal 

functions 

LEAF1 Bw=WBTP•sin(v) v = (FaS + us (FaE - FaS)) π 

LEAF2 Bw= WBTP •sin2(v) v = (FaS + us (FaE - FaS)) π 

CONST Bw= WBTP  

TIPPING Bw= WBTP •cos(v) v=0;          (us≤T) 

v=0.5π( us-T)/(1-T); (us>T) 

Fig. 8.  Stroke form types 

 
where Bw is the instantaneous brush width of a 
stroke during writing process, it is calculated by 
scaling WBTP with sin(v) or cos(v); the variant v is 
derived by some other parameters, such as FaS and 
FaE (FaS<FaE) which control the initial and 
ending phase of the sinusoidal functions; us∈ [0,1] 
is the parameter of the stroke skeleton with us=0 
and us=1 corresponding to the first and last point of 



the stroke skeleton, respectively. In the type of 
TIPPING, T ∈ [0.8,0.9] varies randomly in the 
defined range and controls where tipping takes 
places on the stroke. It is not difficult to figure out 
the corresponding stroke forms from their 
definitions and the user can generate the required 
stroke forms by specifying relevant parameters. 

Inspired by the idea of using the ellipse for stroke 
form control [33], we integrate the ellipse with the 
stroke form type for further control of stroke form. 
Unlike the Wong and Ip’s stroke control model 
presented in [33], where the ellipse need to be both 
rotated and scaled according to the different parts of 
the stroke, our model adopts a single parameter θ 
which controls only the ellipse’s orientation and 
remains unchanged over the stroke. The 
instantaneous width of the stroke is determined by 
scaling the reference stroke width BrefW with a 
factor fat calculated with the following equation: 
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where RFa<1 is a scaling factor and the minor 
radius of the ellipse is determined by multiplying 
the major radius of the ellipse by RFa; angt is the 
tangent of the stroke skeleton. Equation (2) actually 
represents the intersection between a circle with the 
radius fat in the direction of the stroke skeleton’s 
norm and the ellipse rotated with degree θ. 

 
Fig. 9. Comparison of the ellipse controlling mechanism 

between Wong and Ip’s (middle) and our system (right) 

 
Fig. 9 shows the difference between Wong and 

Ip’s model and ours in using the ellipse to control 
stroke forms. Although stroke turning shapes in kai 
shu can be recreated very well by both rotating and 

scaling the ellipse as did in [33], for generating 
stroke form shown in Fig. 9, our ellipse controlling 
mechanism is easier than Wong and Ip’s model 
because we avoid the complex setting of rotating 
and scaling parameters over the different parts of 
the stroke.  

 
7. Ink and wetness control 

Ink and wetness control is achieved by choosing 
appropriate BTP in the brush texture library. In our 
system, all BTP samples in the brush texture library 
are indexed according to their appearance of ink 
and wetness. We provide two parameters Base and 
RndM for determining the index of the desired 
stroke, that is, InkIndex=Base+RndM (1<InkIndex 
≤NBTP). Clearly, a smaller Base would result wet 
brush stroke and inversely bigger Base would result 
dry brush stroke. The use of RndM makes brush 
texture vary more naturally in the resultant strokes 
and we found from our experiments that RndM∈
[0,4] would produce satisfactory results.  

 
8. Results  

In this section we give some examples to 
demonstrate the flexibility of our model on 
controlling stroke forms and textures inside strokes. 
In Fig. 10 and 11, the left of each figure is the 
digitized image of the real art work, the middle 
illustrates strokes with turning points indicated, and 
the right demonstrates the synthesized image (All 
the synthesized images shown in this paper are 
superimposed on an image of Xuan paper texture to 
improve visual effect).  

In Fig. 12 we show variations of a Chinese 
character under different parameters. The digitized 
image of the real art work is given in Fig. 12 (a). 
Synthesized examples with varying degree of 
wetness are shown in Fig. 12 (b), (c) and (d). In 
addition to ink and wetness control, our model 
allows interesting variations such as brush radius 
reduced or increased by modifying some of the 
brush parameters, corresponding examples are 
given in Fig. 12 (e) and (f). It should be pointed out 



that, since the parameter WBTP corresponds to the 
normal width of strokes BTP in Fig. 3, the width of 
synthesized stroke should be close to WBTP. If the 
width of synthesized stroke is set to a large value, 
say two times WBTP, the resultant texture in the 

synthesized stroke would have zooming effect. One 
solution to this problem is to build BTP library with 
multiple widths, and the system picks up the 
corresponding BTP according to the brush 
parameter specified by the user. 

 

 

Fig.10. Digitized image of a real art work (left), strokes with turning points indicated (middle) and synthesized image 

(right) 

 
Fig. 11. Digitized image of a real art work (left), strokes with turning points indicated (middle) and synthesized image 

(right) 

 
9. Conclusions 

This paper presents the results of our recent 
research on the synthesis of cao shu in Chinese 
calligraphy. We have proposed, implemented, and 
demonstrated a modeling framework that enables 
the creation of calligraphic work of cao shu with a 
few parameters controlled by the user. The 
convincing simulation results validate our model, 
which captures the essential features of hand 

written characters of cao shu – stroke trajectory, 
stroke form and brush textures. The use of BTP 
collected from hand-made work makes the 
synthesized characters almost indistinguishable 
from those written by hand. Actually cao shu can 
be regarded as a kind of work in-between 
calligraphy and painting because of its indefinite 
variations in stroke form, length and texture, this 



modeling theme is therefore applicable to 
brush-painting artworks as well. Other applications 
of our work are scalable font design, high quality 

publishing, computer-aided education and 
electronic practice of calligraphy.  

 

(a)                     (b)                      (c) 

 
(d)                       (e)                        (f) 

Fig. 12. (a) Digitized image of a real art work (b) Image synthesized without hollow strokes (c) Image synthesized with wet 

strokes (d) Image synthesized with dry strokes (e) Image synthesized with brush radius reduced (f) Image synthesized with 

brush radius increased 
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