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Fig. 1. Using as few as 16 ∼ 32 lighting patterns (a) learned from a large amount of reflectance data, we efficiently capture photographs (c) of a planar physical
sample in a mini, near-field lightstage (b), and faithfully reconstruct its SVBRDF that can be rendered under novel lighting and view conditions (d).

Wepropose a novel framework that automatically learns the lighting patterns
for efficient reflectance acquisition, as well as how to faithfully reconstruct
spatially varying anisotropic BRDFs and local frames from measurements
under such patterns. The core of our framework is an asymmetric deep
autoencoder, consisting of a nonnegative, linear encoder which directly cor-
responds to the lighting patterns used in physical acquisition, and a stacked,
nonlinear decoder which computationally recovers the BRDF information
from captured photographs. The autoencoder is trained with a large amount
of synthetic reflectance data, and can adapt to various factors, including the
geometry of the setup and the properties of appearance. We demonstrate the
effectiveness of our framework on a wide range of physical materials, using
as few as 16 ∼ 32 lighting patterns, which correspond to 12 ∼ 25 seconds of
acquisition time. We also validate our results with the ground truth data and
captured photographs. Our framework is useful for increasing the efficiency
in both novel and existing acquisition setups.
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1 INTRODUCTION
Digitally acquiring high-quality material appearance from the real-
world is a crucial and challenging problem, with applications in
visual effects, e-commerce, product design and entertainment. One
fundamental difficulty here is the sheer complexity of the material
appearance. It can be modeled as a Spatially Varying Bidirectional
Reflectance Distribution Function (SVBRDF), a 6D function that
varies with location, lighting and view directions. Directly cap-
turing the unknown, general SVBRDF of a planar sample with a
conventional gonioreflectometer [Dana et al. 1999; Lawrence et al.
2006] requires taking thousands or even millions of photographs
from all possible combinations of lighting and view directions, in
order to sufficiently sample high-frequency features such as sharp
highlights. This makes the approach prohibitively expensive both
in time and storage.
Significant research efforts have been made to improve the effi-

ciency of reflectance acquisition over the past years. One popular
class of methods for high-quality SVBRDF acquisition are based on
complex lighting patterns. Instead of using a single light source at a
time, such a system illuminates a planar physical sample with many
intensity-programmable light sources simultaneously, effectively
forming different lighting patterns. It then takes corresponding pho-
tographs with a camera, and reconstructs the reflectance from these
measurements. Representative work includes the lightstage [Ghosh
et al. 2009; Tunwattanapong et al. 2013], the linear light source
reflectometry [Chen et al. 2014; Gardner et al. 2003], and the LCD-
based setup [Aittala et al. 2013]. However, hundreds of photographs
are still needed in the general setting [Chen et al. 2014], limiting the
practicality in real-world applications like e-commerce, where the
physical acquisition efficiency is critical in digitizing the appearance
of a large number of products.

In this paper, we observe two fundamental problems in lighting-
pattern-based reflectance acquisition:
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(1) What are the optimal lighting patterns to use, given a highly
limited number of them?

(2) How to faithfully recover the reflectance properties from
photographs captured under such patterns?

To answer the above questions, existing work conducts sophis-
ticated, hand-crafted derivations, for each type of illumination-
multiplexing setup; the number of lighting patterns depends on
the theories used in the derivations and cannot be arbitrarily spec-
ified; the optimality of the derived patterns and the reflectance
reconstruction algorithm is not verified over a large number of test
samples with considerable variations. In comparison, we propose a
novel framework that automatically learns the lighting patterns as
well as the reflectance reconstruction algorithm, for any given num-
ber of patterns, using the state-of-the-art deep learning techniques
in a data-driven fashion.
Our key insight is that illumination-multiplexing reflectance ac-

quisition can be viewed as an autoencoder: for each point on the
sample, its BRDF is physically multiplied with different lighting
patterns and encoded in the corresponding photographs; then the
BRDF information is computationally decoded. This motivates our
design of an asymmetric deep autoencoder: it has a nonnegative,
linear encoder that directly corresponds to lighting patterns used
in the acquisition hardware, and a stacked, nonlinear decoder to
harness the powerful learning ability of modern deep neural net-
works to map the measurements to the BRDF information. After
training with a large number of synthetic reflectance data, our deep
autoencoder can faithfully recover a wide variety of BRDFs, ranging
from sharp isotropic or narrow anisotropic specular lobes to broad
diffuse ones. Furthermore, our approach is highly flexible as the
training is performed in a data-driven fashion that can adapt to var-
ious factors, including the geometry of the setup and the properties
of appearance.

The effectiveness of our framework is demonstrated with a mini,
near-field lightstage to physically acquire a wide range of material
appearance, using a very small number of lighting patterns (16 ∼ 32),
which correspond to a short acquisition time (12 ∼ 25 seconds). We
achieve the lowest number of lighting patterns in a general setting
(near-field lighting, anisotropic results), compared with 240 patterns
used in [Chen et al. 2014] (near-field lighting, anisotropic results),
128 patterns used in [Aittala et al. 2013] (near-field lighting, isotropic
results) and 44 patterns used in [Tunwattanapong et al. 2013] (distant
lighting, anisotropic results), which are the three techniques most
similar to ours. We also compare our results with the ground truth
data, obtained by densely sampling 2, 560 lights.

2 RELATED WORK

2.1 Optimal BRDF Sampling
The canonical way to model an unknown, general BRDF requires
a dense sampling over its 4D domain. To improve the efficiency,
Matusik et al. [2003b] use 800 samples to model a BRDF, assuming
that it lies in the subspace of pre-captured, isotropic ones [Matusik
et al. 2003a]. With a similar assumption, Nielsen et al. [2015] reduce
the number of samples to about 20, via an improved algorithm that
optimizes lighting and view sampling directions. Xu et al. [2016]
further reduce the number to 2, by exploiting the view direction

variations in a near-field camera. They also propose a simple ex-
tension to isotropic SVBRDFs, assuming no normal variations, and
only a small number of basis materials, each of which has a good
coverage over the field of view.

2.2 Measurement-Based Reflectance Acquisition
Extensive work has been published on reflectance acquisition using
images captured under controlled / uncontrolled lighting. Please
refer to [Weyrich et al. 2009] and [Weinmann and Klein 2015] for
excellent surveys on recent acquisition techniques. Below we review
some of the previous work that is most relevant to our approach.

2.2.1 Direct Sampling. Methods in this category probe the mate-
rial appearance in its 6D domain. The most straightforward, general
approach is to exhaustively sample a large number of lighting and
view directions by mechanically positioning a camera and/or a light
source, and capturing photographs for every possible combination
of the two factors [Dana et al. 1999; Lawrence et al. 2006]. These
approaches are typically time-consuming.
To reduce the acquisition cost, various approaches have been

proposed to reconstruct the reflectance from a lower number of im-
ages, by assuming priors over the reflectance data. The reflectance
of a homogeneous convex object can be recovered with a single
view direction, by exploiting the normal variations to sufficiently
sample the angular domain [Marschner et al. 1999]. Spatially vary-
ing reflectance on a known shape can be reconstructed from a
sparse number of photographs, assuming that the appearance is a
linear combination of basis materials [Lensch et al. 2003]. Zickler
et al. [2005] share the reflectance information over a 6D domain
and reconstruct the reflectance via the scattered-data interpolation.
Wang et al. [2008] exploit the spatial similarity of reflectance and
the spatial variation of local frames, to complete the microfacet
distributions of BRDFs from single-view measurements. An efficient
two-phase reflectance acquisition method is proposed in [Dong
et al. 2010], assuming that the reflectance lies on a low-dimensional
manifold. Recently, Aittala et al. [2015] use only two photographs
to model the appearance of stochastic-texture-like materials.

In comparison, none of the above priors is explicitly assumed in
our framework. In particular, we reconstruct the reflectance at each
point independently, despite the low number ofmeasurements. On
the other hand, additional material properties can be easily exploited
without involved manual derivations, by training our autoencoder
with specific samples (Sec. 8.2).

2.2.2 Complex Lighting Patterns. Our work is most similar to
this class of methods, which record the responses of a material
sample under different lighting patterns, and recover the reflectance
properties from the measurements.

The lightstage systems [Ghosh et al. 2009; Tunwattanapong et al.
2013] capture photographs of a material sample under spherical
harmonics (SH) lighting patterns, and recover the reflectance from
a manually derived inverse lookup table, which maps the observed
radiance to anisotropic BRDF parameters. Recently, Nam et al. [2016]
propose a similar system that reconstructs micro-scale reflectance
via an alternating optimization, with the assumption of a small
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Fig. 2. Our acquisition pipeline is composed of three stages. First, we illuminate the physical sample with the learned lighting patterns in our setup, and
capture a small number of corresponding photographs, essentially performing physical linear encoding of the lumitexels. Next, for a point on the sample, the
encoding result is fed to the nonlinear decoder in our DAE to recover the lumitexel as if captured by looping over each individual light source. Finally, we fit a
4D BRDF along with a local frame to the reconstructed lumitexel as the result.

number of basismaterials. All these systems assume that the incident
lighting is distant with respect to the size of the sample.
The setup in [Gardner et al. 2003; Ren et al. 2011] scans a linear

light source over a planar, isotropic material sample. The system
is extended to handle anisotropic reflectance in [Chen et al. 2014],
by modulating the intensity along the linear light source, assuming
a low rank appearance subspace. Aittala et al. [2013] propose a
system with a single camera and a tilted, near-field LCD panel as a
programmable planar light source, to acquire isotropic reflectance
based on a hand-derived frequency domain analysis.

Our framework uses as few as 16 ∼ 32 near-field lighting patterns,
to efficiently and faithfully acquire spatially varying anisotropic
BRDFs and the local frames. While related work heavily relies on
manual derivations, our framework automatically determines both
the lighting patterns and the method to reconstruct reflectance from
measurements, using machine learning techniques.

2.3 Deep-Learning-Assisted Reflectance Modeling
Despite their success in many fields in computer vision and graphics,
deep learning techniques so far are only applied to the single-image-
based problem in reflectance modeling. Aittala et al. [2016] model
the isotropic SVBRDF and surface normals, by synthesizing from a
single flash image of a stationary textured material. The challenging,
precise point-to-point correspondences are avoided by adopting a
texture descriptor based on a convolutional neural network (CNN).
Recently, Li et al. [2017] present a CNN-based solution for modeling
SVBRDF from a single photograph of a planar sample with unknown
natural illumination, using a self-augmentation training process.

We refer the readers to [Hinton and Salakhutdinov 2006] for more
details on deep autoencoders, and [Goodfellow et al. 2016] for an
introduction to general deep learning techniques.

3 PRELIMINARIES
We formulate our SVBRDF acquisition problem before introducing
our framework. Without loss of generality, we assume a single-
camera acquisition setup with effectively independently controlled,
near-field or distant light sources. No polarization filter is used. In
addition, we assume a planar sample of interest, whose appearance
can be modeled as an anisotropic SVBRDF. No spatial coherence is

exploited; the reflectance at each point is reconstructed indepen-
dently.

Measurement Equation. The reflected radiance B observed by the
camera can be modeled as follows:

B(I , p) =
∫ 1

| |xl − xp | |2
I (l)Ψ(xl,−ωi)fr (ωi

′;ωo
′, p)

(ωi · np)(−ωi · nl)dxl. (1)

We model each light as a locally planar source. xp/np are the po-
sition / normal of a point p on the physical sample, and xl/nl are
the position / normal of a point on a light source l. ωi/ωo are the
lighting / view directions in the world space, whileωi

′/ωo
′ are their

counterparts expressed in the local frame of p. ωi can be computed
as ωi =

xl−xp
| |xl−xp | |

. I (l) is the programmable intensity for the light l
over its maximum intensity, in the range of [0, 1]. The array {I (l)}l
corresponds to a lighting pattern. Ψ(xl, ·) describes the angular dis-
tribution of the light intensity when fully on. fr (·;ωo

′, p) is a 2D
BRDF slice, which is a function of the lighting direction only. The
above integral is computed over all light sources.
BRDF Representation. Our framework is not tied to any spe-

cific BRDF model. In this paper, we use the anisotropic GGX BRDF
model [Walter et al. 2007] to efficiently represent fr :

fr (ωi;ωo, p)

=
ρd
π
+ ρs

DGGX(ωh;αx ,αy )F (ωi,ωh)GGGX(ωi,ωo;αx,αy)
4(ωi · n)(ωo · n)

, (2)

where ρd/ρs are the diffuse / specular albedo, αx /αy are the rough-
nesses parameters, and ωh is the half vector. DGGX is the microfacet
distribution function, F is the Fresnel term and GGGX accounts for
shadowing / masking effects, all of which are detailed in the sup-
plemental material for brevity. We choose the GGX model for three
reasons: first, it is a compact parametric model that can represent a
wide range of materials; second, it is the de-facto industry standard
for physically-based BRDFs [McAuley et al. 2012]; finally, it allows
efficient real-time rendering.
Lumitexel. Due to the linearity with respect to I in Eq. 1, B can

be expressed as the dot product between I and a lumitexelm:

B(I , p) =
∑
l

I (l)m(l ; p). (3)
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Similar to [Lensch et al. 2003],m is a function of the light source j,
defined on each point p of the physical sample:

m(j; p) = B({I (l = j) = 1, I (l , j) = 0}, p). (4)
Each element ofm is the reflected radiance B with only one light
source turned on and set to the maximum intensity, and the remain-
ing lights off. The lumitexel will be used as a key data structure in
our framework.
Problem Formulation. From Eq. 1 & 2, for a point p on the phys-

ical sample, reflectance acquisition is essentially to solve for the
unknown BRDF fr and its local frame, parameterized as {ρd , ρs ,
αx ,αy , n, t}, from the photographs {B(I , p)}I captured with pre-
determined lighting patterns {{I (l)}l }. All other variables involved
in Eq. 1 can be pre-calibrated.

4 OUR FRAMEWORK
From the aforementioned insight into our problem, we propose a
deep autoencoder for lumitexels (L-DAE) that automatically learns
to encode and decode the lumitexelm (Eq. 4) for each point p on
the physical sample, for a given number of lighting patterns (Sec. 5).
We then fit a 4D BRDF along with the local frame to the lumitexel
(Sec. 7). The procedure is performed for every point on the sample,
which yields texture maps that describe the 6D SVBRDF as the final
results. An illustration of our pipeline is shown in Fig. 2. Below we
briefly discuss the major considerations that lead to the design of
our framework.

4.1 Design Considerations
At first glance, one natural way of applying machine learning to
our problem is to construct a linear encoder that corresponds to the
lighting patterns, followed by a regression network that directly
outputs BRDF parameters. Although this end-to-end approach is
straightforward, a major issue is that there are one-to-many re-
lationships from certain BRDFs to their BRDF parameters, which
are difficult to learn by regression. For example, a pure Lambertian
BRDF can map to various sets of parameters as long as they share
the same ρd and n, and ρs = 0, regardless of other parameters.

To avoid this issue, we propose an autoencoder-based framework
instead. An autoencoder maps the input to itself in a one-to-one
fashion, which is more amenable for deep learning techniques. Now
the question becomes what our autoencoder should learn. One
intuitive answer is to learn the 2D BRDF slice fr (·;ωo, p), from
the camera view. However, this choice undesirably complicates the
decoder, which is required to take away the complex near-field
lighting effects baked in the input physical measurements (Eq. 1),
in order to produce a BRDF slice as output.

Therefore, we choose to learn the lumitexel (Eq. 4), because it as-
similates all near-field-lighting-related terms such as the cosine and
the inverse squared distance one (Eq. 1) and it is parameterized over
light sources. These two properties result in a spatially invariant
linear relationship among the lighting pattern I , the lumitexelm and
the measurements B (Eq. 3); such a simple relationship is amenable
for modeling and training. In addition, sufficient training lumitexels
can be easily generated, by virtually rendering synthetic BRDFs with
a variety of parameters (Sec. 7). A large number of varied training
samples are critical for applying deep learning techniques.
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Fig. 3. The structure of our asymmetric DAE. We use a linear encoder which
is implemented as a convolutional layer that represents all lighting patterns,
followed by a nonlinear encoder consisting of 11 fully connected layers,
which recovers the lumitexel from the encoding result. Here # indicates the
number of lighting patterns.

Finally, to bridge the gap between the decoded lumitexel from our
autoencoder and the final 4D BRDF result, we perform a separate
BRDF fitting step. There are two reasons for applying this decoupled
fitting. First, it can easily handle near-field lighting in a nonlinear
optimization, without adding undesired complexity to the autoen-
coder, which in the current design is not aware of p. Second, it
makes our autoencoder independent of the underlying BRDF model;
no re-training or tuning is needed, when switching to a different
BRDF model.

5 L-DAE
We introduce the single-channel L-DAE with details in this section.
In acquisition, it is applied to each of the RGB channels to obtain
an RGB lumitexel as the result. On a high level, the DAE consists of
two parts: a nonnegative, linear encoder, and a stacked, nonlinear
decoder (Fig. 2). The encoding is conducted physically by projecting
the lighting patterns to the physical sample in the acquisition setup,
and then taking measurements of the reflected radiances, essentially
performing dot products between the lumitexel and the lighting
patterns, according to Eq. 3. The lighting patterns {{I (l)}l } directly
correspond to weights in our encoder. For decoding, measurements
under the lighting patterns are fed to a stacked, width-increasing
network, which produces a lumitexel as output.

More specifically, the encoder network is implemented as a convo-
lutional (conv) layer with no padding. We treat all lighting patterns
as a single convolution kernel of c × 1 × #, where c is the dimension
of a lumitexel and # is the number of lighting patterns. The decoder
network has 11 fully connected (fc) layers. We use fc layers over
conv ones in the decoder, to avoid making assumptions on the spa-
tial relationships between different elements in the lumitexel. Each
fc layer is preceded by a batch normalization (bn) layer, and followed
by a leaky ReLU activation layer. One exception is that the first fc
layer has no preceding bn layer and is directly connected with the
conv layer in the encoder. Please refer to Fig. 3 for an illustration of
the network structure.
Our asymmetric L-DAE is different from conventional autoen-

coders in a couple of ways. First, its encoder needs to be directly
mapped to the physical acquisition process on the hardware. This
excludes various complex operations, and leaves only nonnegative
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multiplication and addition between the lumitexel and the lighting
patterns (Eq. 3) as viable options. Second, even though our encoder
is physically limited to the nonnegative linear form, the decoder
runs on a computer and is not subject to such limitation. So we
use a stacked nonlinear neural network as the decoder, to harness
the powerful learning ability of modern deep neural networks to
faithfully map the encoded result to the original lumitexel.

5.1 Loss Function
The loss function L for training our L-DAE consists of two terms:

L = Lauto(m) + λ
∑

w ∈enc.
Lbarrier(w). (5)

Here the first termmeasures the error of the reconstructed lumitexel
m with respect to its ground truthmgt:

Lauto(m) =
∑
j
[log(1 +m(j)) − log(1 +mgt(j))]

2. (6)

Note that we apply the log transform to alleviate the problem of
possible large values in the specular lobe dominating this term,
similar to [Nielsen et al. 2015]. The second term is a barrier function
to ensure physical plausibility of the computed lighting patterns. It
penalizes any weightw in the encoder that is beyond the range of
[0, 1], asw corresponds to the ratio of the lighting intensity over its
maximum intensity for each source (Sec. 3):

Lbarrier(w) = tanh(w − (1 − ϵ)

ϵ
) + tanh(−w + ϵ

ϵ
) + 2. (7)

We find that λ = 0.03, ϵ = 0.005 works well in our experiments.

5.2 Training Data
To train the L-DAE to faithfully reconstruct a wide range of possible
lumitexels in the real-world, we synthesize the training data by
evaluating Eq. 1, using a large number of randomly generated fr ,
the local frame and the location on the physical sample. All three
factors have an impact over the lumitexelm (Eq. 4).
Specifically, for the local frame, we randomly sample n in the

upper hemisphere of the sample plane, and then t as a random unit
vector that is orthogonal to n. Similarly, for the location on the
physical sample, we randomly choose a point from the valid region
of the sample plane. For the BRDF fr , we use the anisotropic GGX
model and randomly sample ρd/ρs uniformly in the range of [0, 1],
and αx /αy uniformly on the log scale in the range of [0.006, 0.5].
The calibration data of the acquisition setup (Sec. 6) are used when
evaluating Eq. 4 for training lumitexel generation.

Despite that the anisotropic GGX model works well for training
data generation in all our experiments, we would like to emphasize
that our framework at this step is again not tied to any specific
BRDF model. Moreover, we do not require that the sampled BRDF
in training data generation here and the final fitting results in Sec. 4
share the same model. In fact, any BRDF model that well covers the
material variation in the physical samples of interest can be used
for generating the training data.

6 ACQUISITION SETUP
Our automatic acquisition setup can be viewed as a mini, near-field
lightstage. The size of the setup is approximately 420mm × 360mm
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Fig. 4. Our LED layout and our acquisition device. The LED layout is shown
on the left, with all 5 LED boards unfolded to the same 2D plane. The number
of LEDs on each board are marked as ( #columns × #rows). A side view of
our device is illustrated on the right.

× 210mm. A single machine vision camera, PointGrey Grasshopper
3, is installed to capture photographs of the physical sample at
approximate 45 degrees from the sample plane, with a resolution of
2, 736 × 2, 192. Please refer to Fig. 4 for an illustration. The camera
has a narrow field of view and is focused on the sample.

To acquire reflectance properties, we illuminate a planar physical
sample with 10,240 white LEDs (c = 10, 240), each of which emits
light from a rectangular region of about 1.4mm × 1.4mm. The LEDs
are grouped as boards and mounted to the left, right, front, back
and top sides of our setup, while the sample is placed on the bottom.
The maximum size of the sample is 120mm × 120mm. Please refer
to Fig. 4 for a visualization of the LED layout. The intensity of each
LED can be independently controlled via Pulse Width Modulation
(PWM) by an Altera Cyclone IV FPGA. We use 8 bits to quantize
the LED intensity in our experiments. Note that since the size of
our setup and that of the sample is on the same order of magnitude,
we can no longer assume distant lighting as in traditional light-
stages (e.g., [Ghosh et al. 2009]) and must take near-field effects into
consideration in reflectance reconstruction.

The intrinsic and extrinsic parameters of the camera, as well as the
positions, orientations and angular intensity distribution of LEDs,
are all calibrated before acquisition experiments. Color correction is
performed based on photographs of an X-Rite ColorChecker under
different lighting patterns. The scale ambiguity of diffuse / specular
albedo is resolved with the help of a planar diffuse patch of a uniform
albedo, similar to [Gardner et al. 2003].

7 IMPLEMENTATION DETAILS
Training. Our DAE is implemented with the TensorFlow framework.
For back propagation, we use RMSProp [Tieleman and Hinton 2012]
with mini-batches of 50 and a momentum of 0.9. For the linear en-
coder, the initial weights are drawn i.i.d. from a normal distribution
(µ = 0, σ = 0.01) and processed as follows: we flip the sign for a
negative sampled weight; the weight is also clamped to 1 if needed,
though this rarely happens due to the small σ . For all weights in
the decoder, Xavier initialization is applied. For training, we run
250K iterations with a learning rate of 1 × 10−4, followed by 50K
iterations with a learning rate of 1 × 10−6. We generate 1 million
synthetic lumitexels using the method described in Sec. 5.2, from
which 80% are used for training, and 20% for validation.
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Fig. 5. Visualization of different lighting patterns. From the top row to the bottom: photographs of a physical sample lit with corresponding lighting patterns in
the second row, our lighting patterns computed from anisotropic training samples (# = 32), our lighting patterns from isotropic samples (# = 24), and lighting
patterns computed with PCA on anisotropic samples (# = 32). Only a subset of all lighting patterns are shown here due to the limited space.

Mean Subtraction. For training, we perform mean subtraction for
each input lumitexel passing to our DAE, and add the mean back to
the final output, as common in deep neural networks [Goodfellow
et al. 2016]. In physical acquisition, we perform an equivalent op-
eration by feeding the mean lumitexel to the linear encoder only,
and subtracting the result from the measurements for each point
on the physical sample. The mean lumitexel is also added back to
the output of L-DAE.

BRDF Fitting. We fit an anisotropic GGX model and a local frame
to the output lumitexel from our L-DAE as final results. First, box-
constrained, nonlinear least squares fitting is performed using the
Levenberg-Marquardt algorithm [Lafortune et al. 1997], by mini-
mizing the squared differences between the lumitexel computed
with current estimates of parameters and the output from L-DAE,
in a single, gray-scale channel. We then fix the normal, tangent and
roughnesses parameters, and fit the chromatic diffuse and specular
albedos with nonnegative, linear least squares.

8 RESULTS AND DISCUSSIONS
We conduct our experiments on a PCwith an Intel Core i7-7700 CPU,
32GB memory, and a GeForce GTX 1080 Ti video card. It takes ap-
proximately 5 hours to train our DAE from scratch. In experiments,
we merge 2 low-dynamic-range (LDR) photographs of the physical
sample with different exposures into HDR ones using bracketing.
The typical acquisition time using 32 learned lighting patterns is
25 seconds. This time scales linearly with respect to the number
of lighting patterns. The size for all captured HDR photographs is
about 1.8GB. The decoding time of L-DAE from measurements is
4 minutes for processing 1 million lumtexels. For the ground truth

data, we uniformly subsample a quarter of all independently con-
trolled LEDs (c/4 = 2, 560) and image the physical sample with
one LED fully on at a time, essentially capturing a subsampled ver-
sion of the lumitexelm. The reason for subsampling is that we find
2, 560 LEDs are sufficient to capture the most specular materials
among our datasets. So we do not sample over all lights to save
the acquisition time. Due to the relatively lower power of a single
LED, we have to increase the exposure time to get reliable measure-
ments. Consequently, the acquisition time for the ground truth data
is around 14, 000 seconds. The total size of all photographs is about
145GB. The subsampled lumitexels are then fitted to the GGX BRDF
models, which is the same as the final step of our pipeline. Using
our unoptimized code, it takes 1.6 hours to conduct BRDF fitting
on 1 million lumitexels, for decoded ones from our framework and
the ground truth ones. The performance is comparable to previous
work with a similar setup [Aittala et al. 2013].

Fig. 5 visualizes the lighting patterns learned by our L-DAE. We
show a subset of all lighting patterns obtained by training with
anisotropic samples (# = 32) and isotropic samples (# = 24). In the
same figure, we also show captured photographs of a physical sam-
ple lit with the lighting patterns (anisotropic samples, # = 32): rich
material variations in the angular domain are revealed under our
computed lighting patterns. As a comparison, we visualize the light-
ing patterns obtained by performing Principal Component Analysis
(PCA) over the same set of anisotropic training samples. The results
look similar to SH patterns used in previous work with a distant
lighting assumption.
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Input Our Enc. + PCA Enc. + Our Enc. + PCA Enc. +
Lumitexel Nonlin. Dec. Nonlin. Dec. Lin. Dec. Lin. Dec.

Fig. 6. Reconstruction results using different encoding / decoding strategies.
For encoding, we use the lighting patterns computed using either our frame-
work (anisotropic training samples, # = 32) or PCA (# = 32). For decoding,
we use either the nonlinear structure illustrated in Fig. 3, or the pseudo
inverse of the matrix corresponding to all lighting patterns.
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Fig. 7. The impact of the number of lighting patterns over lumitexel recon-
struction quality. Top chart: Lauto as a function of the number of lighting
patterns. Bottom three rows: the output of DAEs that differs in the number
of lighting patterns for different input lumitexels in the rightmost column.

8.1 Modeling Results and Comparisons
Fig. 12 shows the ability of our L-DAE (anisotropic samples, # = 32)
to faithfully reconstruct a wide range of randomly generated lumi-
texels, which vary in albedos, normals, sample locations, anisotropy
axes and roughnesses. For fairness, the input lumitexels are not used
in the training of the DAE.
We demonstrate the effectiveness and generality of our frame-

work over 6 physically captured SVBRDF datasets, which cover a
wide range of material appearance. In Fig. 11, the rendering results
of SVBRDFs reconstructed with our L-DAE using only 32 light-
ing patterns closely match the ground truth computed using 2, 560

Reconstruction Results Fitting Results

κ = 0% κ = 2% κ = 5% κ = 0% κ = 2% κ = 5%

Fig. 8. The impact of perturbation over the encoding results using our DAE
(anisotropic samples, # = 32). For each component η of the encoding, we
add a Gaussian noise with a zero mean and a standard deviation that equals
κ |η |. The reconstruction results using our DAE are shown in the left three
columns, while the corresponding fitting results in the right three columns.

lights, as well as photographs taken by our setup. The rendering
results with a novel medium-sized disk light source and novel view
conditions, are also shown in the figure. Moreover, in Fig. 11, we
report quantitative errors of our reconstruction with respect to the
ground truth, which are comparable to one state-of-the-art tech-
nique [Nam et al. 2016]. Please refer to the accompanying video
for animated results. In Fig. 13, we show the texture maps of BRDF
parameters, after fitting the GGX model to the output lumitexels by
L-DAE (anisotropic samples, # = 32).

8.2 Evaluations
In Fig. 6, we evaluate the impact of different encoding / decoding
strategies over lumitexel reconstruction. First, we fix and set the
linear encoder in our DAE structure to the SH-like lighting patterns
computed with PCA over anisotropic training samples, and only
allow the weights in the decoder to be optimized in the training
process. The resulting DAE produces lumitexels of lower quality,
compared with our DAE with both the encoder and decoder trained
in an end-to-end fashion. Next, we investigate the theoretically
optimal linear decoder: the pseudo-inverse of the matrix that cor-
responds to the linear encoder. We conduct experiments using the
L-DAE encoder and the PCA encoder. Except for the case where the
diffuse lobe is dominant, the reconstruction results are of consider-
ably lower quality, due to inability of small-sized linear decoder to
accurately recover high frequency features in the lumitexels (e.g.,
tiny or highly narrow specular lobes).
Next, we evaluate in Fig. 7 the impact of the number of lighting

patterns over the reconstruction quality of lumitexels. We plot Lauto
as a function of the light pattern number. As more light patterns
are used, the reconstruction error Lauto decreases, since more infor-
mation about the input is passed down to the decoder, which makes
it possible to produce a more accurate output.

We also perform sensitivity tests in Fig. 8 over our DAE by adding
a Gaussian noise to each component of the encoding result, with a
standard deviation proportional to the magnitude of the component,
to simulate possible noise / factors not modeled in the acquisition
process. Both reconstructed lumitexels and fitting results are shown
in the figure.
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Ground Truth
(# = 2, 560) Aniso. (# = 32) Iso. (# = 24) Prior Dist.

(# = 16)

Fig. 9. The impact of the distribution of training samples. From the left
column to the right: SVBRDF reconstruction results from the ground truth
data (#=2,560), and from DAEs trained with anisotropic BRDF samples
(#=32), isotropic BRDF samples (#=24), and BRDF samples drawn i.i.d. from
the precaptured SVBRDF of the same physical subject (#=16). A distribution
of BRDF training samples which is closer to that of the physical subject
permits fewer lighting patterns to be used in the acquisition, for comparable
reconstruction quality.

Input Our Result Input Our Result

Fig. 10. Failure cases. For each pair of images, the left one is the input
lumitexel and the right one is the reconstruction using the DAE trained
with anisotropic GGX samples (# = 32). As our framework is based on DAE,
we cannot reconstruct BRDFs that substantially differ from the training
samples.

Finally, we study the impact of training data distribution over
the lighting pattern number needed for reconstructing SVBRDFs of
decent quality in Fig. 9. We test L-DAEs trained with anisotropic
samples, isotropic samples, and samples with all parameters drawn
i.i.d. from the ground truth data, except that the sample locations are
randomly determined. As more knowledge about the SVBRDF of in-
terest is exploited in the training of DAE, the amount of information
that needs to be determined from the measurements reduces, result-
ing in a decrease in the number of light patterns for reconstructions
of similar quality, as listed in the figure.

9 LIMITATIONS AND FUTURE WORK
Our work is subject to a number of limitations. First, as a data-driven
approach, our L-DAE cannot recover lumitexels that substantially
deviate from training samples, as shown in Fig. 10. Second, our
framework is limited to handle mostly planar samples, whose geo-
metric variations can be well modeled by normal maps. Also, for
certain materials, our setupmay not observe key reflectance features
from only one fixed view direction.
In the future, it will be interesting to apply our framework to

existing setups, such as the linear light source reflectometry and
the distant lightstage, to automatically learn what efficient lighting

patterns are and how to recover SVBRDFs from the measurements
lit with these patterns. It will also be intriguing to extend our frame-
work to learn optimal view sampling as well, similar to [Nielsen
et al. 2015]. Finally, to apply our framework to image-based relight-
ing (e.g., [Peers et al. 2009]), a topic closely related to reflectance
acquisition, is a promising future direction.
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Fig. 11. Main acquisition results. For images from the top row to the bottom in each column: a photograph of the physical sample, the rendering of ground-truth
SVBRDF (# = 2, 560), the rendering of SVBRDF reconstructed using our lighting patterns (anisotropic training samples, # = 32), the rendering of our result
with novel lighting and view conditions, and the color-coded difference image between our result and the photograph. The last row reports quantitative errors
(PSNR & SSIM) of our results with respect to the ground truth, with PSNR measured in decibel. Please refer to the accompanying video for animated results.
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Fig. 12. Reconstruction results of various lumitexels of different materials, local frames and sample locations, using our L-DAE. The top row: randomly sampled
input lumitexels (not used in training); the bottom row: the output of L-DAE, before the fitting step.
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Fig. 13. GGX model fitting results. Each normal is added with (1, 1, 1) and then divided by 2 to fit to the range of [0, 1]3 for visualization. The tangents are
visualized in the same manner. For roughnesses, αx /αy are visualized in the red / green channel.
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