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Abstract—Fairing curve and surface generation is an impor-
tant topic in geometric design. However, the conventional method
for generating the fairing curve and surface, which fit the giving
data points, is hard to control the fitting precision, because it
is a minimization problem where the objective function is the
weighted sum of a fitting term and a fairness term. In this paper,
we develop the variational progressive-iterative approximation
(abbr. variational PIA) method for fitting a data point sequence.
While the variational PIA is easy to control the fitting precision,
the generated fitting curve or surface is the most fairing one in
some scope. Lots of comparisons show that the fairness results of
the variational PIA are comparable to that of the conventional
method.

Keywords: fairness, progressive-iterative approximation,
geometric design, variational method, energy minimization.

I. INTRODUCTION

Fairing curve and surface generation is an important topic
in geometric design. Given a sequence of data points {Pi, i =
0, 1, · · · , n}, a fairing curve P (t), t ∈ [t0, t1] fitting the point
sequence is often sought by solving the following minimiza-
tion problem,

min
P (t)

Ff (P (t)) + ρFs(P (t)), (1)

where, Ff (P (t)) =
∑n

i=0 ∥P (ti)− Pi∥2 is the fitting term,
Fs(P (t)) is the fairness term, and ρ is the fairness weight.

The above method for seeking the fairing curve fitting the
give point sequence has two deficiencies. On one hand, the
fitting precision can not be controlled conveniently because
it is a minimization problem; on the other hand, since the
objective function in the minimization problem (1) is a sum
of the fitting term and fairness term, the curve minimizing the
object function is not ensured to be the most fairing one.

In this paper, a new technique, the variational progressive-
iterative approximation (abbr. variational PIA), is developed
to generate the fairing curve and surface which fit the given
data points. Progressive-iterative approximation (abbr. PIA)
is an efficient iterative approach to data fitting, which can
generate a series of fitting curves or sufaces by adjusting the
control points of a blending curve or surface iteratively. In
the variational PIA, the adjusting step of every control point
in each iteration is determined by a constrained minimization
problem, guaranteeing that the resulting curve or surface is the
most fairing in some scope. Moreover, since the fitting error
after each iteration will decrease, it is easy to control the fitting
precision in variational PIA. Last but not the least, for fitting

the same given data points by the same degree of fitting curve
or surface, the number of the unknowns in the variational PIA
is one third of that in the conventional method, e.g. by solving
the minimization problem (1).

This paper is organized as follows. In Section I-A, we
briefly review the related work on progressive-iterative ap-
proximation, and fairness terms employed in the fairing curve
and surface generation. Moreover, Section II-A introduces
several energy functions as the fairness terms, Section II-B
presents the iterative format for the variational PIA, and
Section II-C addresses the method for solving the constrained
minimization problem. In Section III the proposed variational
PIA is discussed, and some results are presented. Finally,
Section IV concludes the paper.

A. Related Work

The progressive-iterative approximation (PIA) property of
the uniform cubic B-spline curve is discovered by Qi [1] and
de Boor [2], respectively, and extended to non-uniform cubic
B-spline curve and patch [3], the blending curve and patch
with normalized total positive basis [4], and the non-uniform
B-spline curve and surface [5]. Moreover, the convergence rate
of the PIA format is analyzed in [6], and accelerated in [7].

On the other hand, the fairness term in Eq. (1) is usually
taken as some energy of the fitting curve or surface, such as
the strain energy [8], [9]. However, the stain energy is high
nonlinear and the corresponding minimization problem is hard
to be solved. Therefore, lots of energy models simplifying the
strain energy are presented [9], [10], including the thin plate
model [11], membrane model [12], jerk energy [13], etc. For
more details on the fairness term, please refer to Refs. [9],
[14].

II. VARIATIONAL PROGRESSIVE-ITERATIVE
APPROXIMATION

The variational PIA method generates the fairing curve or
surface by minimizing the energy of the curve or surface,
which is introduced in Section II-A. In Section II-B, the
iterative format of the variational PIA is presented, where the
constrained minimization problem is solved by the method
addressed in Section II-C.

A. Energy Function

In geometric design, the energy function is usually em-
ployed to measure the fairness of a piece of curve or surface.
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And the fairing curve and surface are generated by minimizing
an energy function. Specifically, a commonly used energy
function for generating a piece of fairing curve P (t), t ∈ I is
the approximate strain energy [9],

Ec(P (t)) =

∫
I

∥Ptt(t)∥2 dt. (2)

Moreover, for generating the fairing surface P (u, v), (u, v) ∈
D, we adopt the thin plate energy [9], that is,

Es(P (u, v)) =

∫∫
D

(∥Puu∥2 + 2 ∥Puv∥2 + ∥Pvv∥2)dudv.
(3)

B. The Iterative Format of the Variational PIA

In this section, we will present the iterative format of
the variational PIA for the parametric curve and surface,
respectively.

Given a data point sequence {Pi, i = 0, 1, · · · , n} with non-
decreasing parameters ti, i = 0, 1, · · · , n, the initial blending
curve can be constructed as,

P 0(t) =
n∑

i=0

P 0
i Bi(t), t ∈ I (4)

where, P 0
i = Pi, and Bi(t), i = 0, 1, · · · , n are the blending

basis.
Suppose the kth curve P k(t) has been generated. To

produce the (k + 1)th curve P k+1(t), we need to calculate
the difference vectors,

∆k
i = Pi − P k(ti), i = 0, 1, · · · , n. (5)

Then, the variational PIA makes up the control points
P k+1

i , i = 0, 1, · · · , n of the (k + 1)th curve by,

P k+1
i = P k

i + λk
i∆

k
i , i = 0, 1, · · · , n, (6)

where, the weights λk
i , i = 0, 1, · · · , n are determined by

solving the following constrained minimization problem,

min
λk
i

Ec(P
k+1(t))

s.t. 0 < λk
i < 2, i = 0, 1, · · · , n.

(7)

In the case of surface fitting by the variational PIA, the
initial surface P 0(u, v), (u, v) ∈ D is constructed firstly,
by taking the given data points Pij , i = 0, 1, · · · ,m,
j = 0, 1, · · · , n as the control points, with the corresponding
parameters (ui, vj), such that,

u0 ≤ u1 ≤ · · · ≤ um, v0 ≤ v1 ≤ · · · ≤ vn.

Supposing the kth surface P k(u, v) has been obtained, we
calculate the difference vectors,

∆k
ij = Pij − P k(ui, vj), i = 0, 1, · · · ,m, j = 0, 1, · · · , n,

(8)
and the new control points P k+1

ij for the (k + 1)th surface
P k+1(u, v), that is,

P k+1
ij = P k

ij + λk
ij∆

k
ij , i = 0, 1, · · · ,m, j = 0, 1, · · · , n.

(9)

Similarly, the weights λk
ij in (9) are determined by the follow-

ing constrained minimization problem,

min
λk
ij

Es(P
k+1(u, v))

s.t. 0 < λk
ij < 2, i = 0, 1, · · · ,m, j = 0, 1, · · · , n,

(10)

where, P k+1(u, v) =
∑m

i=0

∑n
j=0 P

k+1
ij Bi(u)Bj(v), (u, v) ∈

D, and Bi(u), Bj(v) are basis functions.

Based on the convergence analysis in Ref. [7], the curve
sequence {P k(t), k = 0, 1, · · · } converges to the curve
interpolating the given data points {Pi, i = 0, 1, · · · , n},
when 0 < λk

i < 2, i = 0, 1, · · · , n (7), and the surface
sequence {P k(u, v), k = 0, 1, · · · , } converges to the data
points {Pij , i = 0, 1, · · · ,m, j = 0, 1, · · · , n} when
0 < λk

ij < 2, i = 0, 1, · · · ,m, j = 0, 1, · · · , n (10).

C. Solving the Constrained Minimization Problem

The constrained minimization problems (7) and (10) are
actually the box constrained quadratic programming problem,

min
X

1

2
XTHX + FTX (11)

s.t. 0 < X < 2, (12)

where, X is a column vector, and 0 < X < 2 means that each
element of X lies in (0, 2). The matrices H and F will be
deduced in the following sections.

1) The matrices H and F for Eq. (7): In the case of
parametric curve, the (k + 1)th curve is,

P k+1(t) = (xk+1(t), yk+1(t), zk+1(t))

=

n∑
i=0

(P k
i + λk

i∆
k
i )Bi(t), t ∈ I,

where, P k
i = (xk

i , y
k
i , z

k
i ), and ∆k

i = (∆xk
i ,∆yki ,∆zki ) (5).

By transforming the objective function Ec(P
k+1(t)) in (7)

into the form of (11), we have,

X = {λk
0 , λ

k
1 , · · · , λk

n}T ,

H = DxBDx +DyBDy +DzBDz, (13)

and,

FT = LxBDx + LyBDy + LzBDz, (14)

where,

Lw = [wk
0 , w

k
1 , · · · , wk

n], Dw = diag(∆wk
0 ,∆wk

1 , · · · ,∆wk
n),

w = x, y, z,

and the matrix B is,

B =

[∫
I

B′′
i (t)B

′′
j (t)dt

]
(n+1)×(n+1)

, i, j = 0, 1, · · · , n.

Here, diag(·) denotes the diagonal matrix.
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2) The matrices H and F for Eq. (10): Moreover, in the
case of parametric surface, the (k + 1)th surface is

P k+1(u, v) = (xk+1(u, v), yk+1(u, v), zk+1(u, v))

=
m∑
i=0

n∑
j=0

(P k
ij + λk

ij∆
k
ij)Bi(u)Bj(v),

(15)

where, (u, v) ∈ D = [Du, Dv], P k
ij = (xk

ij , y
k
ij , z

k
ij), and

∆k
ij = (∆xk

ij ,∆ykij ,∆zkij).
To present the matrices H and F in (11), we arrange the

control points and difference vectors in a one-dimensional
sequence, where their subscripts are in the order below,

{00, 01, · · · , 0n, 10, 11, · · · , 1n, · · · ,m0,m1, · · · ,mn}.

According to the order above, we re-denotes the subscripts of
the control points and difference vectors as, {0, 1, · · · , (m +
1)(n+ 1)}. Then,

X = {λk
0 , λ

k
1 , · · · , λk

(m+1)(n+1)}
T .

Furthermore, substituting (15) into Es(P
k+1(u, v)) (10),

the matrices H and F can also be represented as Eqs. (13)
and (14). Here, B = Buu + 2Buv +Bvv ,

Buu = B0
v ⊗B2

u, Buv = B1
v ⊗B1

u, Bvv = B2
v ⊗B0

u.

where, ⊗ denotes the Kronecker product, and,

Bl
u =

[∫
Du

dlBi(u)

dul

dlBj(u)

dul
du

]
(m+1)×(m+1)

,

l = 0, 1, 2, i, j = 0, 1, · · · ,m,

Bl
v =

[∫
Dv

dlBi(v)

dvl
dlBj(v)

dvl
dv

]
(n+1)×(n+1)

,

l = 0, 1, 2, i, j = 0, 1, · · · , n.

The box constrained quadratic programming problem (11)
can be solved by the reflective Newton method [15].

III. IMPLEMENTATION AND RESULTS

Although the PIA iterative format converges for all of
the blending curves and surfaces with normalized totally
positive basis, we choose the cubic B-spline to demonstrate
the variational PIA in this paper, since it is the most commonly
used in practice.

As stated above, given a data point sequence {P 0
i = Pi, i =

0, 1, · · · , n}, with parameters t0 < t1 < · · · , tn, the knot of
the cubic B-spline curve is constructed as,

k = {t0, t0, t0, t1, t2, · · · , tn−1, tn, tn, tn}.

Then, the initial cubic B-spline curve P 0(t) can be gener-
ated as,

P 0(t) =
n∑

i=0

P 0
i Bi(t), (16)

where, Bi(t), i = 0, 1, · · · , n are the cubic B-spline basis.
The curve (16) is defined in the interval [t1, tn−1], so in the
kth iteration, the point P k(ti) corresponds to the data point
Pi, i = 1, 2, · · · , n − 1. The difference vectors are ∆k

i =
Pi − P k(ti), i = 1, 2, · · · , n− 1, and we let ∆k

0 = ∆k
n = 0.

(a) (b)

(c) (d)

Fig. 1. Comparison of the fairness between the fitting curves generated by the
variational PIA and the conventional method (1). (a.) Fitting curve generated
by 64 variational PIA iterations with precision 2.1199 × 10−4. (b.) Fitting
curve by the conventional method (1) with precision 2.2273 × 10−4. (c.)
Curvature plot of Fig. 1(a). (d.) Curvature plot of Fig. 1(b).

In the limit, the curve interpolates the data points Pi, i =
1, 2, · · · , n− 1.

On the other hand, given a data array {P 0
ij = Pij , i =

0, 1, · · · ,m, j = 0, 1, · · · , n} with parameters (ui, vj), where,
u0 < u1 < · · · < um, v0 < v1 < · · · < vn, the knots of the
bi-cubic B-spline patch fitting the data array are constructed
as,

ku ={u0, u0, u0, u1, u2, · · · , um−1, um, um, um},
kv ={v0, v0, v0, v1, v2, · · · , vn−1, vn, vn, vn}.

Then, the initial bi-cubic B-spline patch is,

P 0(u, v) =

m∑
i=0

n∑
j=0

P 0
ijBi(u)Bj(v), (17)

defined on [u1, um−1] × [v1, vn−1], where, Bi(u) and Bj(v)
are the cubic B-spline basis.

In the kth iteration, the point P k(ui, vj) corresponds to
the data point Pij , i = 1, 2, · · · ,m − 1, j = 1, 2, · · · , n −
1. The difference vectors are, ∆k

ij = Pij − P k(ui, vj), i =
1, 2, · · · ,m−1, j = 1, 2, · · · , n−1, and the difference vectors
corresponding to the boundary data points are set as 0 in each
iteration. In the limit, the bi-cubic B-spline patch interpolates
the data points Pij , i = 1, 2, · · · ,m− 1, j = 1, 2, · · · , n− 1.

In our implementation, the fitting precision ε in the kth

iteration is taken as,

ε = max{
∥∥∆k

i

∥∥ , i = 0, 1, · · · , n},

in the cases of cubic B-spline curve, and,

ε = max{
∥∥∆k

ij

∥∥ , i = 0, 1, · · · ,m, j = 0, 1, · · · , n},

in the case of cubic B-spline surface.
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As stated above, in the conventional methods (1) for gen-
erating the fairing curve or surface fitting the given data
points, the objective function is the mixture of the fitting
term and the fairness term. Integrating the two terms into one
objective function makes the control of the fitting precision is
inconvenient. To get the fitting curve or surface with desired
fitting precision, we need to adjust the weight ρ in Eq. (1)
by a trial and error procedure. In addition, since the fairness
term is just one component of the objective function (1), the
minimization of Eq. (1) does not mean the minimization of
the fairness term.

On the contrary, the variational PIA presented in this paper
is very easy in controlling the fitting precision, since the iter-
ative format is convergent, and then the fitting precision will
decrease after each iteration. Moreover, from the Eqs. (7) and
(10), we can see that, the objective function in the variational
PIA is just the energy function, so, the minimization of the
objective function leads to the most fairing curve or surface
in some scope.

Fig. 1 and Fig. 2 illustrate the comparison between the
variational PIA and the conventional method (1). Fig. 1 are
the cubic B-spline fitting curves and their curvature plots.
Fig.2 is the bi-cubic B-spline fitting patches and the zebra on
them. These experimental results show that, the fairness of the
fitting curve and surface generated by the variational PIA is
comparable to that generated by the conventional method (1).

(a) (b)

(c) (d)

Fig. 2. The zebra strips on the surfaces fitting the data points sampled from a
face model using the variational PIA and conventional method, respectively.
(a.) Fitting surface by 1 variational PIA iteration with precision 4.0626 ×
10−3. (b.) Fitting surface by the conventional method with precision 3.6541×
10−3. (c.) Fitting surface by 39 variational PIA iterations with precision
1.2265×10−4. (d.) Fitting surface by the conventional method with precision
1.2596× 10−4.

IV. CONCLUSION

In this paper, we develop the variational progressive-
iterative approximation method, where each iteration step

is determined by solving an energy minimization problem.
Furthermore, we present the iterative format of variational PIA
for the parametric curve and surface. The variational PIA is
easy to control the fitting precision, while the generated fitting
curve or surface is the most fairing one in some scope. Lots
of examples illustrated that, the fairness of the fitting curve or
surface generated by the variational PIA is comparable to the
conventional method.
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