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Abstract—In this paper, we study the progresswe steration approzymation property of a curve
(tensor product surface) generated by blending a given data point set and a set of basis functions
The curve (tensor product surface) has the progresswe iteration approrsmation property as long as
the basis 1s totally positive and the corresponding collocation matrix 1s nonsingular. Thus, the B-
spline and NURBS curve (surface) have the progressiwe iteration approzimation property, and Bézier
curve (surface) also has the property 1if the corresponding collocation matrix is nonsingular. © 2005
Elsevier Ltd. All rnights reserved.
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1. INTRODUCTION

Given a sequence of points {P,}", the i*" point of which is assigned a parameter value t,,
+=0,1,...,n, and a nonnegative basis {B, (t) > 0|t €R, ¢+ =0,1,...,n} with > B, (¢) =1,
the initial curve can be generated as follows, i.e, C°(t) = YI (PYB, (t), with {P? =P, }7,.
By calculating the adjusting vector for each control point A? =P, -C°%(t,), i =0,1,...,n, and
letting {P! = P? + A%}, we can get the next curve C (¢) = Y- (P1B, (t),..., and so on.
Thus, at last, we get a sequence of curves {C* () | k =0,1,...} (see Figure 1).

Qi and deBoor have shown that, if the given nonnegative basis is a uniform cubic B-spline
basis, and the parameter value t, assigned to each data point happens to be at the knot of the
knot vector on which the uniform cubic B-spline basis is defined, the curve sequence converges to
a curve interpolating the given point sequence, i.e., klin;o Ck(t,) =P +=0,1,...,n [1,2]. We
say that the initial curve has the progresswe iteration approzimation property.

Furthermore, in (3], the authors have shown that not only the nonuniform cubic B-spline
curve, but the nonuniform cubic B-spline tensor product surface also has the progressive iteration
approximation property.
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Figure 1 Progressive iteration approximation, from CF(t) to C*+1(t).

In this paper, we will show that, as long as the given basis is totally positive, and its corre-
sponding collocation matrix is nonsingular, the curve and tensor product surface generated by
the basis have the progressive iteration approrimation property. So, the B-spline, and NURBS
curve and surface all have the progressive iteration approrimation property, and Bézier curves
and surfaces also have the progressive iteration approrimation property, if the corresponding
collocation matrix is nonsingular

The layout of this paper is as follows. In Section 2, we establish the progressive iteration
approzvmation property of the curve and tensor product surface generated by a totally posi-
tive blending basis with nonsingular collocation matrix. In Section 3, we point out that the
NURBS curve and surface have the progressive iteration approzimation property. In Section 4,
some results illustrating the progressive iteration approrvmation property of the Bézier (B-spline,
NURBS) curve (surface) are given, and the fitting errors are also listed. At last, we conclude the
paper in Section 5.

2. PROGRESSIVE ITERATION APPROXIMATION
OF CURVES AND SURFACES

A nonnegative basis {B, >0|1=0,1,...,n} with Y1 B, = 1 is called a blending bass.
Based on the blending basis and a given data point set {P, € R®}7, ({P,, € R%}™, " 0) We
can generate a blending curve,

Ct)= ZP B, ( 2.1)

=0
or a tensor product blending surface,

=Y S"P,B.(w) B, (v), (2.2)
1=0 )=0

where P, and P,; are called control points.
In the following, we first present the definition of a totally positive basis.

DEFINITION 2 1. Given a basis {B;(t) > 0|2=0,1,...,n} defined on £ C R and an increasing
sequence 7o < 71 < --+ < T, in &, the collocation matriz of By,...,Bpat o< < - - < T I8
the matrix,

M (BO’ o ’TBn) = (B, (Tz))1=0, omy3=0,. " (2:3)

TQy«++»Tm
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The basis {Bo, B1,...,Bn} is called totally positive basis if its collocation matrix at any in-
creasing sequence 1s a totally positive matrix, that is, all of its minors are nonnegative [4,5].

2.1. Progressive Iteration Approximation of Blending Curves

Given a pomt sequence {P, € R*|2=0,1,...,n}, we first parameterize the points with the
real increasing sequence,

to <ty <+ <ty (2.4)

Namely, the parameter t, is assigned to the +*? point P, (2 = 0,1, ...,n). Then, we can generate

the first curve by blending the point sequence {P? =P, |2 =0,1,.. ,n} and the totally positive
blending basis {B, >0]:=0,1,...,n}, that 15,

C°(t) =) PIB,(t). (2.5)
=0
By computing the adjusting vectors of the control points,
Al=P,-C°(t), 1=0,1,...,n, (2.6)
and letting
P! =P’ +AY 1=0,1,...,n, (2.7)

we can get the second curve,

Cl(t) =) PIB.(t). (2.8)
=0
Similarly, if we get the (k + 1) curve C* (t) after the k*! iteration, and let
AF =P, -C*(t), +=0,1,...,n, and PFLI_PFLAF ,=01,...,n (29
we can get the (k + 2)"¢ curve after the (k + 1)* 1teration,
4Ly N pktl
CH1(t) = Zmo PR, (1). (2.10)

Thus, we get a curve sequence {CF(t) | k=0,1,...}. If limy_o C*(t,) = PY%, 2 =0,1,...,m,
the initial curve (2.5) has the progresswe iteration approximation property.
Due to

AFL=P, - CF1(t) =P, - > (PF+ AF)B, (t,)
1=0
= (P, - C*(t,)) - > _AFB, (t,)
=0
. (2.11)
=-Y AFB,(t,)
1==0)

n
+(1-B,(t,))AF - > AFB,(t,), (G =0,1,....,m k=0,1,...),
=3+1

we can get the iterative format in matrix form of the adjusting vectors of the control points,

[AkFL AR ARRT ZDIAE A% L AF]T,  D=I-B; k=0,1,..., (212)
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where I is the n + 1 rank identity matrix, and B is the collocation matrix of the blending basis
{B.>0]|:=0,1,.. ,n} at {to,t1, ..,tn}, namely,

Bo (to) Bi(te) ... Bnl(to)
L Boll(tl) Bl..(tl) Brf.(tl) _ (2.13)
Bo(t,) Bi(ta) ... Bn(ta)

In Theorem 2.1, we give a sufficient condition for the iterative format (2.12) to converge to
zero, and then the curve (2.5) has progresswe steration approzmation property. In the following,
we denote by X, (M), 1 =1,2,...,m, the eigenvalues of the m x m matrix M, and by p(M), the
spectrum radius of M.

THEOREM 2.1. A piece of blending curve (2.5) has the progressive iteration approximation prop-
erty, if the basis is totally positive and its collocation matrix B at {to,%1,...,t,} is nonsingular.
Proor. Since the blending basis {B, > 0]+ =0,1,...,n} is totally positive, its collocation ma-
trix B has n + 1 nonnegative eigenvalues \,(B), i = 0,1,.. ,n [6,7]. Together with the fact that
the collocation matrix B is nonsingular, its n -1 eigenvalues are all positive. Note that the basis
{B,>0|:=0,1,...,n} is a blending basis, namely, > . B, = 1, so ||B|joc = 1. Therefore,
0<XA(B)<1,:=0,1, ..,n,50,0< A(D)=1-A\(B)<1,:=0,1,...,n This result implies
p(D) < 1, so the iterative format (2 12) converges to zero vector; hence, lim_.o, C*(t,) = P?,
=0,1,...,n

2.2. Progressive Iteration Approximation of Blending Surfaces

In this section, we study the progresswe iteration approzimation property of tensor product
blending surfaces. Given an ordered point set {P,, € R3 o y=0, we first assign the following
parameter values {(u,,v;)}/2o~¢ to the points {F;, € R3 Yo y=o0s

Uy < Uy < -0 < Uy,

(2.14)
v <V < - < Up.

Similar to section 2.1, we can generate an initial surface,

n

v)=Y_ > P,B,(u)B,(v), (2.15)

=0 3=0

and a surface sequence,

S* (u,v) ZZP B,(w) B, (v) | k=0,1, . » with {P?, =P, }"," . (2.16)

=0 3=0

If
lim S$*(u,,v,) = P?

k—00 7
the tensor product surface generated by blending the blending basis {B, > 0|1 =0,1,...,n} and
the control points {P,, € R3ym o3=0 has the progresswe iteration approzimation property

Suppose that S* (u, v) is the surface after the k' 1teration. The adjusting vector of the (b, 1)™
control point in the (k 4+ 1)** iteration is

Afft=Pu-3" ZFO (P* + A*)B, (un) B, (v)
m n m n k
=Pu—), }_': P B: (un) B, (v) — Zmo ZFO AF B, (u) B, (v) 217
hl - Z Z Az]B uh)B (’U[)

(h=0,1, ..,m, 1=0,1,...,n, k=0,1,...).

1=0,1,...,m, 7=0,1,...,n
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Thus, we can get the iterative format in matrix form of the adjusting vectors of the control

points,
A1 _DA* D=1-B, k=0,1,.... (2.18)

Here,
Al = [A{)O,A{n,.. AL AL, AL 3,11,...,Az,m] . y=kk+1,  (2.19)

I is the identity matrix, and matrix B is the Kronecker product of the matrices By and By [8],

that is, B = B; ® B2, where

i Bo (U,o) Bl (UQ) Bm (uo)
Bl _ BO. (ul) Bl-FUI) Bm (ul) and
L Bo (um) B (um) B (um)
(2.20)
i BQ (’Uo) B1 (’Uo) ‘e Bn (’Uo)
B2 _ Bo' .(’Ul) Bl‘ F’Ul) N Bn (’U])
L Bo ('Un) By ('Un) B, (vn)

LEMMA 2.1. Consider the matrices A € R™*™, and B € R™™". Every eigenvalue of their

Kronecker product A ® B can be expressed as the product of the eigenvalues of A and B.
Namely, if A\(A) = {1, ,An}, and A(B) = {u1, to, ..., tn},

AMA®B)={A\py, |t=12,...,m; 3=1,2, ..,n}.
Here, the eigenvalues are counted with their algebraic multiplicity [8].

THEOREM 2.2. A piece of a tensor product blending surface (2.15) has the progresswe itera-
tion approzmmation property, if the bases {B,}, and {B, };‘=0 are totally positive and their
collocation matrices at {ugp,.. ,un,} and {vo, .

PRrROOF. As to the iterative format (2 18), we can know first from the proof of Theorem 2.1 that
0<A(B)<1,:=0,1,...,m,and 0 < A,(By) <1,:=0,1,...,n; second, from Lemma 2.1,
we can get 0 < A, (B1 ® By) = A(B1) - ,(B2) £1,i=0,1,...,m, 3=0,1,...,n. So,

.,Un} are nonsingular.

0<AMD)=1—X(B;®By) <1,

1=0,1,...,mn.

That is, p(D) < 1. Therefore, the iterative format (2.18) converges to the zero vector, so,

limy o0 S* (UZ,UJ)=P,LO], 1=0,1,...,m,j=0,1,...,n. 1

3. PROGRESSIVE ITERATION APPROXIMATION
OF NURBS CURVES AND SURFACES

In this section, we will study the progresswve iteration apprommation property of Bézier, B-
spline, and NURBS curves and surfaces.

Because the Bernstein basis is totally positive [4], Bézier curves and surfaces have the property
of progresswe iteration approzamation if the corresponding collocation matrix is nonsingular.

Lin et al. have shown that nonuniform cubic B-spline curves and surfaces have the property of
progresswe wteration approrvmation [3]. Speafically, given a sequence of points {P, € R?’}’]:O, we
first define a knot vector,

T=X0,...,0,tp11,..
p+1

p+1 p+1

-atp+n——latp+m-- -7tp+n s (3-1)
L. —



580 H-W LIN et al.

where
0=ty <tps1 <+ <tpin,

and assign the parameter value ¢,,, to the +*" point P,, 2 = 0,1,...,n. Similar to section 2.1,
we can get a sequence of curves

p+n-—1
{cl(t): 3" PINP(2) [t € [ty tprn), z=o,1,...},

1=0

where {N”(t)}?7'~" are the p*h-degree nonuniform B-splme basis functions defined on the above
knot vector (3.1),

{pl :P’1:...=P’[p~ﬂ_1=P0|l=0,1,...},
{P;+n—1 =Piina= =P =Pall=0,1,. -}, and (3.2)

{P?p_lHL - PL[i:O,l,,..,n}.

Due to the fact that the nonuniform B-spline basis, {N”(t)}?27 ™", is totally positive [9,10] and
its collocation matrix at the knot vector {t;,tp41,...,tp4n} is obviously nonsingular from the
local support property of the B-spline basis, the curve sequence converges to the B-spline curve
interpolating the given points, that Is, the initial curve has the progressive iteration approzimation
property.

For surfaces, given an ordered point set

m n
1=0 3=0"

{P, e R®}

we first define two krot vectors along the w-direction and the v-direction, i.e.,

O=uo =" =Up <Upp1 <+ < Uppm = Uppmt+1 = *** = Upi2m, (3.3)

0‘—:’1)0 = = Uy <Uq+1 < .- <vq+nzvq+n+1 = .- = VU2q4n- (34)

Then, we assign the parameter vector (up+,, Vgt,) to the (i,j)th point P, (i = 0,1,...,m,
7=0,1,...,n). Similar to Section 2.2, a sequence of surfaces can be generated as follows,

m+p—1 ntqg—1

Sl (uvv) = Z Z P’lL]Nf(u)Ngq (v)|u€ [up’up+m]’ vE [Uq,vfﬂ-n]a l=0,1,... ) (35)
=0 1=0

where
m+p—1
{Np (u)}z=0p

2

and

{Ng )}t

are the p*"-degree and the ¢th-degree nonuniform B-spline basis functions defined on the above
two knot vectors (3.3) and (3.4), and

! [p—17 Tq—1]
{P” :P[p_l],[q—l]}z=0 =0
ptm—1 [g—1]
{Pl, = Prporjimio-n }z=rp~11+m, o (3.6)

[p—1] g+n—1

|-
{Pu = Prp—n,(q—mn}z:m —faetlan’
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p+m—1 g+n—1

{Pia = pr—le,fq—lHn}

{Pi,[q—ﬂ.{_] = POJ}fP-—ﬂ n

)
=0, 3=0

. p+m—1 [g—1]
{P'L,] = PrLO} 3
v=[p+11+m, =0 (3.6)(cont.)

{Pl p }p+m—1 n
wla=l+2 = ™I f o 14m, 9=0"

{Plfp—11+z =Pz,n}m v )
7 1=0, 3=[g—1]4n

m n

v=[p—11+m, 1=[q—1]+n

{P?p+11+z,rq+11+y - Pz]}l:w:o-

Here, [p] denotes the least integer not less than the integer p, and |p] the biggest integer not
greater than p. Again, the initial surface S°(u,v) has the progresswe iteration approzwmation
property.

On the other hand, since the NURBS basis is also totally positive, and its collocation matrix
at a knot vector is obviously nonsingular from the local support of the NURBS basis, similar to
the B-spline case, the first curve of the curve sequence,

PEST Plw N2 (1)

C'(t)= 7
=L w N ()

t€ [totn], L=0,1,... ¢, (3.7)

where
p+n—1
w, NP (t)
> wyN, ]p (t)
1=0 =0

is the p*®-degree NURBS basis defined on the knot vector (3.1), and

@y

1=0

is defined as (3.2), has the progressive wteration apprommation property. Furthermore, the first
surface of the surface sequence,

m+p—1 niqg—1 D w Nq v
St (u,v) = Z Z P! wo VY () Ny )wkN,g (V)| u € [up, Uptm],
=0 =0

7 m+p—1 n+q—1
2 welNp(w) X
k=0 k=0

VE [Ug,Vgtn], 1 =0,1,... 5,

where
m4p—1
w,N (u)
m+p—1

> wlNy (u)

=0 =0
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Figure 2 Fitting a Piriform curve with a Bézier curve Left the iteration level 1s 0,
the error is 7.6564e — 001, middle. the iteration level 1s 20, the error is 1.2117e — 001,
right* the 1teration level is 60, the error 1s 1 1491e — 001

I\
/
/

Figure 3 Fittmg a Priform curve with a 3"d-degree B-spline curve. Left: the
iteration level 15 0, the error 18 2.6908e — 001; middle: the iteration level is 20, the
error 18 8.3898e — 005; right* the iteration level is 60, the error is 1.1618e — 011

Figure 4. Fitting a Piriform curve with a 3™-degree NURBS curve. Left the
iteration level is 0, the error 1s 1.7006e — 001; middle: the iteration level 1s 20, the
error 1s 1 8778e — 005, right* the iteration level is 60, the error 1s 8 1035e — 013

and
n+q—1
Wy Njk (U)
n+g—1
> wilNf (v)
=0 j=0

are NURBS bases defined on the knot vectors (3.3} and (3.4), respectively, and

{Pl m+p—1 n+q—1
1)) =0, 2=0

is defined as (3.6), also has the progresswe iteration approzimation property.
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Figure 5 Fatting a helix with a Bézier curve. Left: the iteration level 1s 0, the error
is 7.8931e — 001, muddle the iteration level is 20, the error is 2.8426e — 002; right:
the iteration level is 40, the error 1s 7 9672e — 003

Figure 6. Fitting a helix with a 374-degree B-spline curve. Left: the iteration level 1s
0, the error 1s 1 0245e¢—001, middle the 1teration level 1s 20, the error is 1.5577e¢—006;
right the 1teration level 1s 40, the error 1s 2 5245e — 010.

Figure 7 Fitting a helix with a 3"9-degree NURBS curve. Left the teration level 1s
0, the error 1 8 5859e—002, middle. the iteration level is 20, the error is 2 4585e—007;
right the iteration level is 40, the error 1s 3 1921e — 011

4. RESULTS

In this section, we will illustrate the progresswve iteration approximation property of Bézier,
B-spline, and NURBS curves and surfaces, namely, the convergence of the corresponding curve
and surface sequences. Specifically, in Figures 2—-4, are curve sequences fitting the Piriform curve,
ie.,

z=a(l+cosb),
y=asinf(1+ cosb),

generated by progresswe iteration approzvmation of a Bézier curve, a 3'¢-degree B-spline curve,
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Figure 8. Fitting a Peaks function in MATLAB with a Bézier surface Left: the
tteration level 1s 0, the error 1s 4 8653e + 000, middle’ the iteration level 1s 20, the
error is 1 6600e + 000, right’ the iteration level is 40, the error is 8.2323e — 001.

Figure 9. Fitting a Peaks function in MATLAB with a 3"¢-degree B-spline surface.
Left. the iteration level 1s 0, the error is 1.7822e — 001, middle the iteration level is
20, the error is 5 2065e—003, right the 1teration level 1s 40, the error is 3.1430e—004

.
b= —F ~- > /A -
pas { = 7‘ N s
=\ = - N =
S A > ~ e e e .--\ :'-4'"
- N 7]

Figure 10 Fiiting a Peaks function in MATLAB with a 3"d-degree NURBS surface.
Left' the iteration level 1s 0, the error is 1.8328e + 000, muiddle: the iteration level is
20, the error 1s 5.1819e—003, right: the 1teration level 1s 40, the error 1s 3.2116e—004.

and a 3"-degree NURBS curve. In Figures 5-7, are curve sequences fitting a helix generated
by progresswe iteration apprommation of a Bézier curve, a 3"4-degree B-spline curve, and a 3rd.
degree NURBS curve. Finally, in Figures 8-10, are surface sequences fitting the Peaks function
in MATLAB generated by progresswe iteration approzvmation of a Bézier surface, a 3rd_degree
B-spline surface, and a 3"¢-degree NURBS surface. The weights {w,}]-, of the NURBS curves
in Figure 4 and Figure 7 are taken as {1,2,...,(n+1)/2,(n+1)/2,...,2,1} if n + 1 is even, or

{1,2, . ,(n+2)/2,.. ,2,1}if n+1is odd. Similarly, the weights, {w,;}}2¢ ") ~o, of the NURBS
surface in Figure 10 are taken as

1 1
{wZOawzla--‘vw'L'n}: {1727"'7?1; ’n; 1""211}7
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if n+1 18 even, or

n+2
{wtoawzla---awm}:{1323'-', 9 a"-72’1},

if n+11is odd, where » = 0,1,...,m. Al of illustrations are programmed with MATLAB, and
run on a PC with 2.8 GHz CPU and 512 MB Memory. In Table 1, we list the fitting errors of the
curve (surface) sequences after specific iteration levels. The fitting error is taken as the maximum
norm of the adjusting vectors defined in (2.11) and (2.17), that is,

max{||A,l |+=0,1,...,m; 3=0,1,...,n}

and
max {||A,|| |+ =0,1,.. ,n}.

Table 1 Fitting errors of the curve (surface) sequences in Figures 2-10

Figures

0th Level

10tk Level

20t Level

30t Level

Figure 2

7 6564e — 001

2 1043e — 001

1.2117e — 001

1.2002e — 001

Figure 3

2.6908e — 001

4.2569e — 003

8.3898¢ — 005

1 6284e — 006

Figure 4

1.7006e — 001

1.3073e — 003

1.8778e — 005

2 7050e — 007

Figure 5

7 8931e — 001

8 9408e — 002

2 8426e — 002

1 3637e — 002

Figure 6

1 0245e —- 001

1 6375e — 004

1 5577e — 006

1.8920e — 008

Figure 7

8.585% — 002

3.3348e — 005

2.4585e — 007

2.6284e — 009

Figure 8

4 8653e — 000

2 5202e — 000

1 6600e — 000

1 1453e — 000

Figure 9

1.7822e¢ — 001

4 1888e — 002

5.2065e — 003

1.2696e — 003

1.8328e — 000

3 5677e — 002

51819e — 003

1 2834e — 003

Figure 10

Figures

40t Level

50th Level

602 Level

Figure 2

11943e — 001

1 1844e — 001

1.1491e — 001

Figure 3

3.1410e — 008

6 0438e — 010

1.1618e — 011

Figure 4

3 8990e — 009

5 6206e — 011

8 1035e — 013

Figure 5

7 9672 — 003

5 2059e — 003

3 6700e — 003

Figure 6

2 5245e - 010

3 5481e — 012

52134e — 014

Figure 7

3.1921e — 011

4.1400e — 013

5 5511le — 015

Figure 8

8.2323e — 001

7.2588e — 001

7 1093e — 001

Figure 9

3 1430e — 004

8.2850e — 005

2 3009e — 005

Figure 10

3.2116e — 004

8.4641e — 005

2 3278e — 005

5. CONCLUSION

Given a blending basis and a set of ordered data points, a curve (tensor product surface)
generated by blending the data points and the basis functions has the progresswe iteration ap-
prozimation property, as long as the given basis is totally positive and its collocation matrix
at the corresponding parameter set is nonsingular That is, the curve (tensor product surface)
sequence generated by adjusting the control points iteratively converges to the curve (tensor
product surface) interpolating the given data pownts. Specifically, Bézier, B-spline, and NURBS
curves (surfaces) have the progresswve steration approrimation property. However, because differ-
ent bases have different convergence rates, it needs to be studied in the future which bases have
the fastest convergence rates
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