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Abstract—Progressive-iterative approximation presents an in-
tuitive way to generate a sequence of curves or patches, whose
limit interpolates the given data points. It has been shown
that the blending curves and tensor product blending patches
with normalized totally positive basis have the progressive-
iterative approximation property. In this paper, we prove that, the
quadratic, cubic, and quartic non-uniform triangular Bernstein-
Bézier patches also have the progressive-iterative approximation
property. Since the most often empolyed in geometric design are
the low degree curves or patches, especially the cubic curves and
patches, the result shown in this paper has practical significance
for geometric design.
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I. INTRODUCTION

The progressive-iterative approximation (abbr. PIA) prop-
erty of the uniform cubic B-spline curve, first discovered by Qi
et. al. [1] and de Boor [2], respectively, generates a sequence
of curves by adjusting the control points iteratively, and the
limit curve interpolates the control points of the initial curve.
In Ref. [3], the authors show that the non-uniform cubic B-
spline curves and surfaces also hold the property. Furthermore,
the result is extended to the blending curve and surface with
normalized totally positive basis [4]. That is, any blending
curve or surface with normalized totally positive basis has
the progressive-iterative approximation property. In Ref. [5],
the convergence rates of different bases are compared, and the
basis with the fastest convergence rate is found. Moreover, it is
proved that the rational B-spline curve and surface (NURBS)
have the property, too [6]. Recently, Martin et al. [7] devise an
iterative format for fitting, which is actually the progressive-
iterative approximation (PIA) format for the uniform periodic
cubic B-spline. Lu [8] devises a weighted PIA format to speed
up the convergence of the PIA.

Moreover, the local progressive-iterative approximation
property for the blending curve and surface with normalized
totally positive basis is proved in Ref. [9]. By the local PIA
property, we can adjust only a subset of the control points
progressively, and the corresponding points on the limit curve
still interpolate the corresponding subset of the initial data
points. The local progressive-iterative approximation format
brings more flexibility to data fitting.

Till now, it has been shown that the PIA property is held by
the blending curve and tensor product blending surface with
normalized totally positive basis, by Loop, Doo-Sabin, and

Catmull-Clark subdivision surfaces, respectively. Moreover,
besides these types of patches, triangular Bernstein-Bézier
patch (abbr. B-B patch) is also widely employed in geometric
design, especially in computer graphics [10], [11]. In this
paper, we show that the PIA format for the quadratic, cubic,
and quartic non-uniform triangular Bernstein-Bézier patch
is convergent. Since the most often employed in geometric
design are the low degree curve and patches, this result has
practical significance for geometric design.

This paper is organized as follows. In Section II, we
develop the progressive-iterative approximation (PIA) format
for a non-uniform triangular Bernstein-Bézier patch, and show
its convergence for quadratic, cubic non-uniform B-B patch.
Its convergence for the quartic non-uniform B-B patch is
presented in Section III. In Section IV, the local PIA format is
developed, and its convergence is proven. Finally, Section V
concludes the paper.

II. THE PIA FORMAT FOR THE NON-UNIFORM B-B PATCH
AND ITS CONVERGENCE

Suppose we are given a data point set {Tijk, i + j + k =
n, i, j, k ∈ Z̄}, where Z̄ is the nonnegative integer set.
Taking them as the initial control points, an initial triangu-
lar Bernstein-Bézier patch (abbr. B-B patch) T 0(u, v, w) of
degree n is generated, that is,

T 0(u, v, w) =
∑

i+j+k=n

Bn
ijk(u, v, w)T

0
ijk,

u, v, w ≥ 0, u+ v + w = 1,

(1)

where,

Bn
ijk(u, v, w) =

n!

i!j!k!
uivjwk, i+ j + k = n,

u, v, w ≥ 0, u+ v + w = 1,

(2)

are the generalized Bernstein polynomials of degree n [12],
and T 0

ijk = Tijk, i+j+k = n are the initial control points. By
assigning the parameter (ui, vj , wk) to each data point Tijk,
a series of difference vectors can be produced as,

∆0
ijk = Tijk − T 0(ui, vj , wk), i+ j + k = n. (3)

Next, by adding the difference vectors (3) to the correspond-
ing control points of the initial patch T 0(u, v, w) (1), we get
the new control points, that is,

T 1
ijk = T 0

ijk +∆0
ijk, i+ j + k = n. (4)
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Taking them as the new control points generates the new B-B
patch T 1(u, v, w),

T 1(u, v, w) =
∑

i+j+k=n

Bn
ijk(u, v, w)T

1
ijk,

u, v, w ≥ 0, u+ v + w = 1.

(5)

In this way, a B-B patch sequence {T l(u, v, w), l =
0, 1, 2, · · · } is constructed, namely,

T l(u, v, w) =
∑

i+j+k=n

Bn
ijk(u, v, w)T

l
ijk, u, v, w ≥ 0,

u+ v + w = 1, l = 0, 1, · · ·
(6)

where, T l
ijk = T l−1

ijk +∆l−1
ijk , and

∆l−1
ijk = Tijk − T l−1(ui, vj , wk), (7)

are the difference vectors.

The progressive-iterative approximation (abbr. PIA) prop-
erty of the B-B patch means that the limit of the B-B patch
sequence {T l(u, v, w), l = 0, 1, 2, · · · } interpolates the given
data points Tijk, i+ j + k = n, namely,

lim
l→∞

T l(ui, vj , wk) = Tijk, i+ j + k = n. (8)

Fig. 1. The order of the control points of the B-B patch.

To show the convergence of the sequence T l(u, v, w), l =
0, 1, · · · (8), the difference vectors in each iteration should be
arranged into a one-dimensional sequence ∆l, l = 0, 1, · · · ,
in the order illustrated in Fig. II. In this order, the difference
vectors whose subscripts are on the left boundary are first put
in to the sequence ∆l, followed by the bottom boundary, and
finally the right boundary; this order is repeated in the inner
rings. More clearly, in the one dimensional sequence ∆l, ∆l

n00

is the first element, · · · , ∆l
0n0 is the (n+ 1)th element, · · · ,

∆l
00n is the (2n + 1)th element, · · · , and ∆l

n−1,0,1 is the
3nth element; next, in the nearest inner ring, ∆l

n−2,1,1 is the
(3n+ 1)th element, · · · , ∆l

1,n−2,1 is the (4n− 2)th element,
· · · and ∆l

1,1,n−2 is the (5n−6)th element; · · · , and so on. In
conclusion, the one-dimensional sequence ∆l can be written
as,

∆l =[∆l
n00,∆

l
n−1,1,0, · · · ,∆l

0n0, · · · ,∆l
00n, · · · ,

∆l
n−1,0,1, · · · ,∆l

IJK ]T ,
(9)

where, l = 0, 1, · · · . There are (n+1)(n+2)
2 elements in ∆l, and

the subscript of the last difference vector ∆l
IJK is determined

by the degree of the B-B patch.

Therefore, the iterative format of the PIA for the degree n
triangular patch is,

∆l+1 = D∆l = (I − C)∆l, l = 0, 1, · · · , (10)

where, I is the identity matrix, and C can be written in block,
namely,

C =



1 0 0 0 0 0 0
C21 C22 C23 0 0 0 0
0 0 1 0 0 0 0
0 0 C43 C44 C45 0 0
0 0 0 0 1 0 0

C61 0 0 0 C65 C66 0
C71 C72 C73 C74 C75 C76 C77


. (11)

In the above matrix C (11), C22, C44, C66 are matrices of rank
(n−1)×(n−1), and C77 are the matrix of rank (n−1)(n−2)

2 ×
(n−1)(n−2)

2 . Then, we can present a sufficient and necessary
condition for the convergence of the iterative format (10).

Theorem 1: Suppose u1 < u2 < · · · < un−1, v1 <
v2 < · · · < vn−1, and w1 < w2 < · · · < wn−1. The
iterative format (10) of PIA is convergent for a degree n B-B
patch, if and only if the matrices C22, C44, and C66 (11) are
nonsingular, and the spectral radius of I −C77 is less than 1,
namely, ρ(I − C77) < 1.

Proof: Based on Eq. (11), the characteristic polynomial of
the matrix C is,

det(λI − C) =(λ− 1)3 det(λI − C22) det(λI − C44)

× det(λI − C66) det(λI − C77),
(12)

so, the eigenvalues of the matrix C includes triple 1s, and
others are determined by the matrices C22, C44, C66, and C77.
Accordingly, the eigenvalues of the iterative matrix D = I−C
(Eq. (10)) have triple 0s, and others are determined by the
matrices I − C22, I − C44, and I − C77.

Necessity: The necessity is evident. If the iterative for-
mat (10) is convergent, the spectral radius of the iterative
matrix D = I −C should satisfy ρ(D) = ρ(I −C) < 1. This
means the matrices C22, C44, and C66 should be nonsingular,
and ρ(I − C77) < 1.

Sufficiency: Note that, the matrices C22, C44, and C66 are
actually the collocation matrices of the univariate Bernstein
polynomials, that is,

C22 =

(
Bn

1 (v) Bn
2 (v) · · · Bn

n−1(v)
v1 v2 · · · vn−1

)
,

C44 =

(
Bn

1 (w) Bn
2 (w) · · · Bn

n−1(w)
w1 w2 · · · wn−1

)
,

C66 =

(
Bn

1 (u) Bn
2 (u) · · · Bn

n−1(u)
u1 u2 · · · un−1

)
,

(13)

where, Bn
i (t) =

(
n
i

)
ti(1− t)n−i, t = u, v, w, i = 1, · · · , n− 1

are the univariate Bernstein polynomials, and(
Bn

1 (t) Bn
2 (t) · · · Bn

n−1(t)
t1 t2 · · · tn−1

)

=


Bn

1 (t1) Bn
2 (t1) · · · Bn

n−1(t1)
Bn

1 (t2) Bn
2 (t2) · · · Bn

n−1(t2)
· · · · · · · · · · · ·

Bn
1 (tn−1) Bn

2 (tn−1) · · · Bn
n−1(tn−1)

 .
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Thus, if u1 < u2 < · · · < un−1, v1 < v2 < · · · < vn−1, and
w1 < w2 < · · · < wn−1, the matrices C22, C44 and C66 (13)
are all totally positive. Therefore, together with the ∞-norms
of them are all less than 1, the eigenvalues of the three matrices
are all real numbers and in the interval (0, 1), since they are
nonsingular. Consequently, the eigenvalues of I−C22, I−C44

and I − C66 are all real and in (0, 1), too.
Moreover, together with the spectral radius of the matrix

C77 satisfies ρ(I−C77) < 1, the spectral radius of the iterative
matrix D = I −C (10) fulfills ρ(D) = ρ(I −C) < 1. So, the
PIA format (10) is convergent. That is,

lim
l→∞

∆l
ijk = 0,

equivalently,

lim
l→∞

T l(ui, vj , wk) = Tijk, i+ j + k = n.2

The next theorem shows the convergence of the iterative
format (10) for the quadratic and cubic B-B patches.

Theorem 2: Suppose u1 < u2 < · · · < un−1, v1 < v2 <
· · · < vn−1, and w1 < w2 < · · · < wn−1. The iterative
format (10) is convergent for the quadratic and cubic B-
B patch, if the matrices C22, C44, and C66 (Eq. (11)) are
nonsingular.

Proof: For the quadratic B-B patch, the bottom row and
the right-most column are lost from the matrix C (11), so
the matrix C has triple 1s as its eigenvalues and the others
are determined by C22, C44 and C66 (see Eq. (12)), which
are all real and in (0, 1). Therefore, the eigenvalues of the
iterative matrix D in Eq. (10) are all real and in (0, 1). It
means that the iterative format (10) is convergent to 0, namely,
liml→∞ T l(ui, vj , wk) = Tijk, i+ j + k = 2.

On the other hand, for the cubic B-B patch, the sub-
matrix C77 of the matrix C (11) is an single element matrix
C77 = [B3

111(u1, v1, w1)]. Since 0 < B3
111(u1, v1, w1) < 1,

the eigenvalues of the matrix C (11) are all real and in (0, 1).
Thus, the eigenvalues of the iterative matrix D in the iterative
format (10) are all real and in (0, 1). And then, the iterative
format (10) is convergent, namely, liml→∞ T l(ui, vj , wk) =
Tijk, i+ j + k = 3. 2

III. THE CONVERGENCE OF THE PIA FORMAT FOR THE
QUARTIC NON-UNIFORM B-B PATCH

Comparing to the cases of quadratic and cubic non-uniform
B-B patches, the proof to the convergence of the PIA format
for the quartic B-B patch is a bit complicated. In fact, there
are three inner control points in the control net of the quartic
B-B patch (See Fig. II), that is, T211,T121, and T112. To show
the convergence of the PIA format for the quartic B-B patch,
we need to check the eigenvalues of C77 (11), that is,

C77 =

B4
211(u2, v1, w1) B4

121(u2, v1, w1) B4
112(u2, v1, w1)

B4
211(u1, v2, w1) B4

121(u1, v2, w1) B4
112(u1, v2, w1)

B4
211(u1, v1, w2) B4

121(u1, v1, w2) B4
112(u1, v1, w2)


= 12

u2
2v1w1 u2v

2
1w1 u2v1w

2
1

u2
1v2w1 u1v

2
2w1 u1v2w

2
1

u2
1v1w2 u1v

2
1w2 u1v1w

2
2

 =

αu2 αv1 αw1

βu1 βv2 βw1

γu1 γv1 γw2

 ,

(14)

where, α = 12u2v1w1, β = 12u1v2w1, and γ = 12u1v1w2.
It should be pointed out that, the parameters ui, vi, wi, i =

1, 2 satisfy u2 > u1, v2 > v1, w2 > w1. Moreover, since
u2 + v1 +w1 = u1 + v2 +w1 = u1 + v1 +w2 = 1, we have,

u2 − u1 = v2 − v1 = w2 − w1 , h. (15)

Evidently, the characteristic polynomial of the matrix
C77 (14) is,

det(λI − C77) = λ3 + aλ2 + bλ+ c = 0, (16)

where,

a = −(αu2 + βv2 + γv2),

b = αβ(u2v2 − u1v1) + αγ(u2w2 − u1w1) + βγ(v2w2 − v1w1),

c = −αβγh2.
(17)

To determine the roots of the characteristic polynomial (16),
we need a lemma.

Lemma 1: If the roots of a polynomial with real coefficients
are all real, the number of the positive roots (multiple roots
count as its multiplicity) is equal to the sign changing number
of its coefficient sequence [13].

Specifically, to compute the sign changing number of a
sequence {a1, a2, · · · , an}, zero elements should be deleted
from the sequence, denoted as {b1, b2, · · · , bm}, and the sign
changing number is defined as the number of negatives in the
set {bibi+1|1 ≤ i ≤ m− 1}.

Therefore, since a < 0, b > 0, c < 0 (17), the sign
changing number of the coefficients sequence {1, a, b, c} of
the polynomial (16) is 3. Thus, we have,

Corollary 1: If the three roots of the cubic polynomial (16)
are all real, they are all positive.

Clearly, to prove the convergence of the PIA for the quartic
B-B patch, we need to show that the spectral radius of the
matrix I−C77 (14) satisfies ρ(I−C77) < 1. To this purpose,
we require the lemmas as follows.

Lemma 2: Let A = [aij ] ∈ Rn×n be a nonnegative
matrix, that is, aij ≥ 0, (1 ≤ i, j ≤ n). Its spectral radius
ρ(A) is one of its eigenvalues [14].

Lemma 3: Let A = [aij ] ∈ Rn×n is a nonnegative matrix.
Then,

min
1≤i≤n

n∑
j=1

aij ≤ ρ(A) ≤ max
1≤i≤n

n∑
j=1

aij , (18)

where, ρ(A) denotes the spectral radius of the matrix A [14].
Now, we can show the key theorem on the spectral radius

of the matrix I − C77 (14).
Theorem 3: The spectral radius of the matrix I −C77 (14)

is less than 1, that is, ρ(I − C77) < 1.
Proof. Suppose the eigenvalues of the matrix C77 (14)

are λ1, λ2, and λ3, respectively, which are the roots of
the polynomial (16). Then, the eigenvalues of I − C77 are,
1 − λi, i = 1, 2, 3, respectively. According to Lemma 2, one
of them, suppose λ1, is the spectral radius of C77, namely,
λ1 = ρ(C77) < ∥C77∥∞ < 1.

If the three eigenvalues λi, i = 1, 2, 3 are all real, according
to Corollary 1, they are all positive. Moreover, they satisfy 0 <
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λi < 1, i = 1, 2, 3. Equivalently, 0 < 1 − λi < 1, i = 1, 2, 3,
and then, ρ(I − C77) < 1.

On the other hand, if the characteristic polynomial (16) of
the matrix C77 (14) has complex roots λ2 and λ3, then, they
must be conjugate complex numbers, as well as 1 − λ2 and
1− λ3. Thus,

|1−λ2|2 = |1−λ3|2 = (1−λ2)(1−λ3) = 1−(λ2+λ3)+λ2λ3.

According to Lemma 3, we have λ1 = ρ(C77) >
min{α, β, γ} (Eq. (14)). Without loss of generality, let γ =
min{α, β, γ}.

Moreover, denoting h = u2−u1 = v2−v1 = w2−w1 (15),
we have,

αβ(u2v2 − u1v1) = αβ((u1 + h)(v1 + h)− u1v1)

= αβ((u1 + v1)h+ h2) > αβh2.

Similarly, αγ(u2w2−u1w1) > αγh2 and βγ(v2w2−v1w1) >
βγh2.

Therefore, together with the relation between the roots
and the coefficients of the polynomial (16), and the fact
0 < α, β, γ < 1, we have (refer to (17)),

λ1λ2λ3 + λ2λ3 = |c|+ |c|
ρ(C77)

≤ |c|+ |c|
γ

= αβγh2 + αβh2

< αβh2 + αγh2 + βγh2

< αβ(u2v2 − u1v1) + αγ(u2w2 − u1w1) + βγ(v2w2 − v1w1)

= b = λ1λ2 + λ1λ3 + λ2λ3.

Thus, λ2λ3 < λ2 +λ3, and |1−λ2| = |1−λ3| < 1. Together
with |1−λ1| = |1−ρ(C77)| < 1, we have ρ(I−C77) < 1. 2

Based on Theorems 1 and 3, follows,
Theorem 4: Suppose u1 < u2 < u3, v1 < v2 < v3,

and w1 < w2 < w3. The iterative format (10) of PIA
is convergent for the quartic non-uniform B-B patch, if the
matrices C22, C44, and C66 (11) are nonsingular.

Till now, we have shown that the PIA format (10) for
the quadratic, cubic, and quartic non-uniform B-B patches
is convergent. However, the convergence of the PIA format
for higher degree B-B patch is not clear, because the eigen-
structure of the matrix C77 (11) with higher rank is hard to
analyze.

IV. LOCAL PIA FORMAT FOR THE NON-UNIFORM
TRIANGULAR B-B PATCHES

The PIA format for a triangular B-B patch aforementioned
is global, that is, all control points of the B-B patch are
adjusted. Whereas, the local PIA format adjusts only a subset
of the control points of a B-B patch, while other control points
remain unchanged in the iterations.

Arranging the adjusted control points and the corresponding
difference vectors in the order illustrated in Fig. II, we get the
local iterative format,

∆̄l+1 = D̄∆̄l = (I − C̄)∆̄l, l = 0, 1, · · · . (19)

Note that the matrix C̄ in (19) is a principal sub-matrix of
C (11), containing the principal sub-matrices of C22, C44, C66

and C77, denoted as C̄22, C̄44, C̄66, and C̄77, respectively.

Similar to the matrix C (11), the eigenvalues of its principal
sub-matrix C̄ are determined by the matrices C̄22, C̄44, C̄66,
and C̄77. Because C̄22, C̄44, and C̄66 are sub-matrices of the
stochastic and totally positive matrices, if they are nonsingular,
their eigenvalues are all real numbers and in the interval (0, 1).
And then, the eigenvalues of the matrices I − C̄22, I − C̄44,
and I − C̄66 are also real and in the interval (0, 1). So,
the convergence of the local PIA format depends on the
eigenvalues of the matrix C̄77, which is the sub-matrix of the
matrix C77 (11).

If the B-B patch is quadratic or cubic, the matrix C77 is
either an empty matrix or a single-element matrix. Evidently,
the spectral radius of the principal sub-matrix ρ(I− C̄77) < 1.

On the other hand, if the B-B patch is quartic, the matrix
C77 is 3 × 3. First, since all of the elements of the matrix
C77 (11) are greater than 0, and less than 1, the eigenvalues of
its 1× 1 rank principal sub-matrices satisfy 0 < λ(C̄77) < 1;
second, it is easy to show that, the eigenvalues of its 2 ×
2 rank principal sub-matrices are all real and in the interval
(0, 1); finally, as shown in Theorem 3, ρ(I − C77) < 1. It
means that, for all principal sub-matrices C̄77 of the matrix
C77, ρ(I − C̄77) < 1.

In conclusion, the local PIA format for the quadratic, cubic,
and quartic non-uniform B-B patches is convergent, if the
matrices C̄22, C̄44, and C̄66 are nonsingular.

V. CONCLUSION

In this paper, we show that the quadratic, cubic, and
quartic non-uniform triangular Bernstein-Bézier patches have
the progressive-iterative approximation property. That is, by
adjusting the control points of a B-B patch progressively, a
sequence of B-B patches is generated, and the limit patch
interpolates the initial control points. since the most often
employed in geometric design are the low degree curves and
patches, especially the cubic curves and patches, this result
has practical significance for geometric design.
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