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a b s t r a c t

The geometric interpolation algorithm is proposed byMaekawa et al. in [Maekawa T, Matsumoto Y, Namiki
K. Interpolation by geometric algorithm. Computer-Aided Design 2007;39:313–23]. Without solving a
systemof equations, the algorithmgenerates a curve (surface) sequence, ofwhich the limit curve (surface)
interpolates the given data points. However, the convergence of the algorithm is a conjecture in the
reference above, and demonstrated by lots of empirical examples. In this paper, we prove the conjecture
given in the reference in theory, that is, the geometric interpolation algorithm is convergent for a blending
curve (surface) with normalized totally positive basis, under the condition that the minimal eigenvalue
λmin(Dk) of the collocation matrix Dk of the totally positive basis in each iteration satisfies λmin(Dk) ≥
α > 0. As a consequence, the geometric interpolation algorithm is convergent for Bézier, B-spline, rational
Bézier, and NURBS curve (surface) if they satisfy the condition aforementioned, since Bernstein basis and
B-spline basis are both normalized totally positive.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The geometric interpolation algorithm is proposed in Ref. [1] by
Maekawa et al. for B-spline curve (surface) and subdivision surface
fitting (named interpolation by geometric algorithm in [1]). Without
solving a system of equations, the geometric interpolation algo-
rithmgenerates a curve (surface) sequence iteratively. Given a data
point sequence, an initial curve (surface) is first constructed by tak-
ing themas the initial control points. To produce the (k+1)th curve
(surface) from the kth curve (surface), the geometric interpola-
tion algorithm calculates the foot points on the kth curve (surface)
which is the closest to the corresponding data points, constructs
the adjusting vectors from the foot points to the data points, and
moves the control points of the kth curve (surface) along the ad-
justing vectors, generating the control points of the (k+1)th curve
(surface). By this way, a curve (surface) sequence is generated. In
Ref. [1], the convergence of the geometric interpolation algorithm
is presented as a conjecture, and verified by empirical examples,
that is, the limit curve (surface) of the curve (surface) sequence in-
terpolates the given data points.
Although the convergence of the geometric interpolation algo-

rithm is verified only by empirical examples [1], there are some
advances in proving the convergence of similar algorithm for sub-
division surface fitting recently. In fact, the progressive interpola-
tion algorithm is developed for Loop subdivision surface fitting
[2,3], Doo–Sabin subdivision fitting [4], and Catmull–Clark subdivi-
sion fitting [5]. Its convergence is proved in theory. The progressive
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interpolation algorithm is the extension of the progressive-iterative
approximation for blending surfaces [6,7]. However, it can also be
regarded as a modification of the geometric interpolation algo-
rithm. The only distinction between the two algorithms lies in the
way for calculating the foot points. In progressive interpolation al-
gorithm, the foot points in each iteration are the limit positions of
the control points, while in geometric interpolation algorithm, the
foot points in kth iteration are the points on the kth surface, which
are the closest to the corresponding data points.
In this paper, we prove in theory the convergence of the

geometric interpolation algorithm for blending curves and surfaces
with normalized totally positive basis, under the condition that the
minimal eigenvalue λmin(Dk) of the collocation matrix Dk of the
totally positive basis in each iteration satisfies λmin(Dk) ≥ α >
0. Since Bernstein and B-spline basis are both normalized totally
positive, the geometric interpolation algorithm is convergent for
Bézier, B-spline, rational Bézier, and NURBS curve and surface, if
they fulfill the condition.
This paper is organized as follows. In Section 1.1, the related

work is reviewed. Section 2 shows the convergence of the geomet-
ric interpolation algorithm for blending curves. Section 3 proves
the convergence of the algorithm for blending surfaces. Finally, this
paper is concluded in Section 4.

1.1. Related work

Similar to the geometric interpolation algorithm, the progre-
ssive-iterative approximation [6,7] is also an iterative method,
which generates a curve (surface) sequence. The limit curve (sur-
face) of the sequence interpolates the given data points. Compared
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to the geometric interpolation algorithm, where the parameters
of foot points in each iteration are changed, the parameters of
foot points in each iteration of the progress-iterative approxima-
tion are fixed. More clearly, the progressive-iterative approxima-
tion depends on the parametric distance (algebraic distance),while
the geometric interpolation algorithm depends on the geometric
distance.
The progressive-iterative approximation property of the uni-

form cubic B-spline curve is discovered by Qi [8] and de Boor [9],
respectively. In Ref. [6], the authors show that the non-uniform
cubic B-spline curve and surface also hold the property. Further-
more, the result is extended to the blending curve and surfacewith
normalized totally positive basis [7]. That is, any blending curve or
surface with normalized totally positive basis has the progressive-
iterative approximation property. In Ref. [10], the convergence
rates of different bases are compared, and the basis with the fastest
convergence rate is found. Moreover, it is proved that the rational
B-spline curve and surface (NURBS) have the property, too [11].
Recently, Martin et al. [12] devise an iterative format for fitting,
which is actually the progressive-iterative approximation format
for the uniform periodic cubic B-spline.
Moreover, the progressive-iterative approximation has been

extended to subdivision surface fitting [2–5]. And, Lin develops the
local progressive-iterative approximation that can fit different data
points with different precision requirements [13].

2. Convergence of the curve interpolation algorithm

In Ref. [1], Maekawa et al. develop the geometric interpolation
algorithm. It is an iterative method, and generates a sequence of
curves (surfaces). In Ref. [1], the convergence of the geometric in-
terpolation algorithm is presented as a conjecture, and demon-
strated by lots of empirical examples. In this section, we will
prove the convergence of the geometric interpolation algorithm
to a blending curve with normalized totally positive basis. That is,
the limit curve of the curve sequence generated by the geometric
interpolation algorithm interpolates the given data points. Since
Bernstein basis and B-spline basis are both normalized totally pos-
itive basis, the geometric interpolation algorithm is convergent to
Bézier, B-spline, rational Bézier, and NURBS curve.
In the following, we first formulate the geometric interpolation

algorithm for a blending curvewith control points and the normal-
ized totally positive basis {B0(t), B1(t), . . . , Bn(t)}.
Given a data point sequence {P0, P1, . . . , Pn}, an initial blending

curve can be constructed as,

P0(t) =
n∑
i=0

P0i Bi(t), where P0i = Pi, i = 0, 1, . . . , n. (1)

Next, we compute the foot point P0(t0i ) on the curve P0(t),
which is the closest to the data point Pi, i = 0, 1, . . . , n, and
construct the adjusting vector 10i from the foot point to the
corresponding data point, that is,

10i = Pi − P0(t0i ), i = 0, 1, . . . , n. (2)
By adjusting the initial control points P0i along the adjusting

vectors 10i , we get the control points P
1
i , i = 0, 1, . . . , n of the

next curve,

P1(t) =
n∑
i=0

P1i Bi(t), where P1i = P0i +10i , i = 0, 1, . . . , n. (3)

Generally, to generate the (k+ 1)th curve Pk+1(t) from the kth
curve Pk(t), we need to compute the foot point Pk(tki ) on the kth
curve Pk(t), which is the closest to the data point Pi, the adjusting
vector1ki = Pi−Pk(tki ), and the new control pointP

k+1
i = Pki +1ki ,

i = 0, 1, . . . , n. Thus, the (k+ 1)th curve Pk+1(t) is formed as,

Pk+1(t) =
n∑
i=0

Pk+1i Bi(t). (4)

As a result, we get a curve sequence,

{Pk(t)|k = 0, 1, . . .}. (5)

The convergence of the geometric interpolation algorithm means
that, the limit curve interpolates the given data points Pi, i =
0, 1, . . . , n. That is,

lim
k→∞

Pk(tki ) = Pi, i = 0, 1, . . . , n.

To show the convergence of the geometric interpolation
algorithm, we introduce a difference vector 1̄

k
i from the data point

Pi to the point Pk(tk−1i ) on the kth curve Pk(t), whose parameter
tk−1i is the one of the foot point in the (k − 1)th iteration, i =
0, 1, . . . , n. That is,

1̄
k
i = Pi − Pk(tk−1i ) = Pi −

n∑
j=0

Pkj Bj(t
k−1
i )

= Pi −
n∑
j=0

(Pk−1j +1k−1j )Bj(tk−1i )

= Pi −
n∑
j=0

Pk−1j Bj(tk−1i )−

n∑
j=0

1k−1j Bj(tk−1i )

= 1k−1i −

n∑
j=0

1k−1j Bj(tk−1i ), i = 0, 1, . . . , n. (6)

Then, denote 1̄k = [1̄0, 1̄1, . . . , 1̄n]T, and ∆k = [10,11, . . . ,
1n]

T, we have,

1̄k = Ck−1∆k−1 = (I − Dk−1)∆k−1, (7)

where, Ck−1 = I − Dk−1, I is the identity matrix of rank (n+ 1)×
(n+ 1), and,

Dk−1 =


B0(tk−10 ) B1(tk−10 ) · · · Bn(tk−10 )

B0(tk−11 ) B1(tk−11 ) · · · Bn(tk−11 )
· · · · · · · · · · · ·

B0(tk−1n ) B1(tk−1n ) · · · Bn(tk−1n )

 . (8)

It is the collocation matrix of the basis {Bi(t), i = 0, 1, . . . , n}.
Noticeably, since Pk(tki ) is the point on the kth curve Pk(t)

closest to the data point Pi, i = 0, 1, . . . , n, it is evident that,∥∥1ki ∥∥E = ∥∥Pi − Pk(tki )
∥∥
E ≤

∥∥Pi − Pk(tk−1i )
∥∥
E =

∥∥∥1̄ki ∥∥∥E ,
i = 0, 1, . . . , n,

where, ‖·‖E denotes the Euclidean norm for the vector. Moreover,
define∥∥∆k∥∥M = maxi {∥∥1ki ∥∥E} = max {∥∥1k0∥∥E , ∥∥1k1∥∥E , . . . , ∥∥1kn∥∥E} ,
we have∥∥∆k∥∥M ≤ ∥∥1̄k∥∥M , k = 0, 1, . . . . (9)

Now, we can present the theorem for the convergence of the
geometric interpolation algorithm.

Theorem 1. If the basis {Bi(t), i = 0, 1, . . . , n} is normalized totally
positive, tk0 < t

k
1 < · · · < t

k
n , in each iteration k = 0, 1, . . ., and the

minimal eigenvalue λmin(Dk) of thematrix Dk (8) satisfies λmin(Dk) ≥
α > 0, the geometric interpolation algorithm is convergent for the
blending curve (1), that is, limk→∞ Pk(tki ) = Pi.

Proof. Since the basis {Bi(t), i = 0, 1, . . . , n} are normalized
totally positive basis, and tk0 < t

k
1 < · · · < t

k
n, k = 0, 1, . . ., in

each iteration, thematrix Dk (8), which is the collocationmatrix of
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the basis {Bi(t), i = 0, 1, . . . , n}, is stochastic, and totally positive
matrix, whose eigenvalues are all nonnegative real numbers in the
interval [0, 1]. Together with λmin(Dk) ≥ α > 0, and Ck = I − Dk,
the spectral radius of Ck satisfies ρ(Ck) = ρ(I − Dk) ≤ β < 1, k =
0, 1, . . ..
On the other hand, since Dk is a totally positive matrix, it can

be diagonalized [14,15]. So is Ck = I − Dk. That is, there exists
an invertible matrix X , such that, Ck = X−1diag(λ0, λ1, . . . , λn)X ,
where, diag(λ0, . . . , λn) represents the diagonal matrix, and
λi, i = 0, 1, . . . , n are the eigenvalues of matrix Ck. Thus,

‖Ck‖∞ =
∥∥X−1diag(λ0, . . . , λn)X∥∥∞

≤
∥∥X−1∥∥

∞
‖diag(λ0, . . . , λn)‖∞ ‖X‖∞

= ‖diag(λ0, . . . , λn)‖∞ ≤ ρ(Ck) ≤ β < 1, k = 0, 1, . . . ,

where, ‖·‖∞ is the∞-norm for the matrix.
In addition, suppose Ck = [cij](n+1)×(n+1), we have,∥∥Ck∆k∥∥M = maxi

{∥∥∥∥∥∑
j

cij1kj

∥∥∥∥∥
E

}

,

∥∥∥∥∥∑
j

cmj1kj

∥∥∥∥∥
E

≤

∑
j

|cmj|
∥∥1kj ∥∥E

≤

(∑
j

|cmj|

)
max
j
{
∥∥1kj ∥∥E} ≤ ‖Ck‖∞ ∥∥∆k∥∥M .

Therefore, note that ‖∆k‖M ≤
∥∥1̄k∥∥M , k = 0, 1, . . .. From (9),

we have,∥∥∆k∥∥M ≤ ∥∥1̄k∥∥M = ∥∥Ck−1∆k−1∥∥M
≤ ‖Ck−1‖∞

∥∥∆k−1∥∥M ≤ ‖Ck−1‖∞ ∥∥1̄k−1∥∥M
= ‖Ck−1‖∞

∥∥Ck−2∆k−2∥∥M ≤ ‖Ck−1‖∞ ‖Ck−2‖∞ ∥∥∆k−2∥∥M
≤ ‖Ck−1‖∞ ‖Ck−2‖∞

∥∥1̄k−2∥∥M = · · · ≤ k−1∏
i=1

‖Ci‖∞
∥∥1̄1∥∥M

=

k−1∏
i=1

‖Ci‖∞
∥∥C0∆0∥∥M ≤ k−1∏

i=0

‖Ci‖∞
∥∥∆0∥∥M ≤ βk ∥∥∆0∥∥M . (10)

Thus, limk→∞
∥∥∆k∥∥M = 0, meaning that limk→∞ Pk(tki ) = Pi, i =

0, 1, · · · , n. �

Now,weare at the position to study the conditions of Theorem1
in detail. First of all, the condition tk0 < tk1 < · · · < tkn, k =
0, 1, . . . is a reasonable requirement. If it cannot be satisfied, the
fitting curve is possible to be self-intersected. Moreover, the fitting
precision in the kth iteration will be improved, as long as the
minimal eigenvalue of Dk satisfies λmin(Dk) ≥ α > 0.
As a corollary, since Bernstein basis and B-spline basis are both

normalized totally positive bases, if tk0 < t
k
1 < · · · < t

k
n , in each

iteration k = 0, 1, . . ., the geometric interpolation algorithm for
Bézier curve and B-spline curve are both convergent, under the
conditionλmin(Dk) ≥ α > 0. Further, the algorithm for the rational
Bézier curve and NURBS curve are also convergent, similar to the
progressive-iterative approximation algorithm [11,13].

3. Convergence of the surface interpolation algorithm

In this section, we will show the convergence of the geometric
interpolation algorithm for a blending surface with control points
and normalized totally positive bases {B0(u), B1(u), . . . , Bm(u)}
and {B0(v), B1(v), . . . , Bn(v)}.
Suppose we are given a data point array {Pij}mi=0

n
j=0. Taking

them as the initial control points, the initial surface S0(u, v) is

constructed as:

S0(u, v) =
m∑
i=0

n∑
j=0

P0ijBi(u)Bj(v), where , P0ij = Pij. (11)

Similar to the curve case in Section 2, after the kth surface
Sk(u, v) =

∑m
i=0
∑n
j=0 P

k
ijBi(u)Bj(v) is generated, we calculate the

foot point Pk(uki , v
k
j ) which is the closest to the data point Pij, on

the surface Sk(u, v), and the adjusting vector,

1kij = Pij − Sk(uki , v
k
j ), i = 0, 1, . . .m, j = 0, 1, . . . n. (12)

By moving the control point Pkij along the vector 1kij, we get the
control point Pk+1ij = Pkij + 1kij, i = 0, 1, . . . ,m, j = 0, 1, . . . , n,
for the (k+ 1)th surface, Sk+1(u, v) =

∑m
i=0
∑n
j=0 P

k+1
ij Bi(u)Bj(v).

Thus, a surface sequence is generated, that is,

{Sk(u, v), k = 0, 1, . . . , }. (13)

To show the convergence of the geometric interpolation
algorithm, namely, limk→∞ Sk(uki , v

k
j ) = Pij, we need to introduce

the difference vector 1̄khl, from the point S
k(uk−1h , vk−1l ) to the data

point Phl, whose parameter is the one of the foot point in the
(k− 1)th iteration, h = 0, 1, . . . ,m, l = 0, 1, . . . , n. That is,

1̄
k
hl = Phl −

m∑
i=0

n∑
j=0

PkijBi(u
k−1
h )Bj(vk−1l )

= Phl −
m∑
i=0

n∑
j=0

(Pk−1ij +1k−1ij )Bi(uk−1h )Bj(vk−1l )

= 1k−1hl +

m∑
i=0

n∑
j=0

1k−1ij Bi(u
k−1
h )Bj(vk−1l ). (14)

Denote,

∆k = [1k00,1
k
01, · · · ,1

k
0n,1

k
10, . . . ,1

k
1n, . . . ,1

k
m0, . . . ,1

k
mn]

T,

and,

1̄k = [1̄
k
00, 1̄

k
01, · · · , 1̄

k
0n, 1̄

k
10, . . . , 1̄

k
1n, . . . , 1̄

k
m0, . . . , 1̄

k
mn]

T,

we have,

1̄k = Fk−1∆k−1 = (I − Gk−1)∆k−1, (15)

where, I is the identity matrix, Gk−1 = D1k−1 ⊗ D
2
k−1, with

D1k−1 =


B0(uk−10 ) B1(uk−10 ) · · · Bm(uk−10 )

B0(uk−11 ) B1(uk−11 ) · · · Bm(uk−11 )
· · · · · · · · · · · ·

B0(uk−1m ) B1(uk−1m ) · · · Bm(uk−1m )

 ,

D2k−1 =


B0(vk−10 ) B1(vk−10 ) · · · Bn(vk−10 )

B0(vk−11 ) B1(vk−11 ) · · · Bn(vk−11 )
· · · · · · · · · · · ·

B0(vk−1n ) B1(vk−1n ) · · · Bn(vk−1n )

 ,
(16)

and⊗ denotes the Kronecker product.
Obviously and importantly, since Sk(ukh, v

k
l ) is the closest to the

data point Phl on the kth surface Sk(u, v), we have,∥∥1khl∥∥E ≤ ∥∥∥1̄khl∥∥∥E , h = 0, 1, . . . ,m, l = 0, 1, . . . , n, and ,∥∥∆k∥∥M ≤ ∥∥1̄k∥∥M , k = 0, 1, . . . .
(17)

Similarly, we have the theorem for the convergence of the
geometric interpolation algorithm for a blending surface.

Theorem 2. If the bases {Bi(u), i = 0, 1, . . . ,m}, and {Bj(u), j =
0, 1, . . . , n} are normalized totally positive, uk0 < u

k
1 < · · · < u

k
m,
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and vk0 < vk1 < · · · < vkn hold in each iteration k = 0, 1, . . .,
and the minimal eigenvalues of the matrices D1k and D

2
k (16) satisfy

λmin(D1k) ≥ α1 > 0, and λmin(D2k) ≥ α2 > 0, respectively,
the geometric interpolation algorithm is convergent for the blending
surface (11), that is, limk→∞ Sk(uki , v

k
j ) = Pij.

Proof. The proof of the theorem is similar to that of Theorem 1,
and we only give a brief sketch.
First, since 0 < α1 ≤ λmin(D1k) < 1, 0 < α2 ≤ λmin(D2k) <

1, and the eigenvalue of Gk = D1k ⊗ D
2
k is the product of the

eigenvalues of D1k and D
2
k [14–16], the minimal eigenvalue of Gk =

D1k ⊗ D
2
k fulfills 0 < α ≤ λmin(Gk) < 1. Then, the spectral radius

ρ(Fk) = ρ(I − Gk) ≤ β < 1.
Second, based on Eqs. (15) and (17), and similar to Eq. (10), we

get,∥∥∆k∥∥M ≤ k−1∏
i=0

‖Fi‖∞
∥∥∆0∥∥M ≤ βk ∥∥∆0∥∥M .

It leads to limk→∞
∥∥∆k∥∥M = 0, equivalent to limk→∞ Sk(uki , v

k
j ) =

Pij, i = 0, 1, . . . ,m, j = 0, 1, . . . , n. �

Specifically, as Bernstein basis and B-spline basis are both
normalized totally positive bases, the geometric interpolation
algorithm is convergent for Bézier surface, B-spline surface under
the condition 0 < αi ≤ λmin(Dik) < 1, i = 1, 2, if u

k
0 < u

k
1 < · · · <

ukm, and v
k
0 < vk1 < · · · < vkn hold in each iteration. Moreover, it is

also convergent for the rational Bézier surface, and NURBS surface,
similar to the progressive-iterative approximation [11,13].

4. Conclusion

In this paper, we prove the convergence of the geometric in-
terpolation algorithm for a blending curve (surface) with normal-
ized totally positive basis strictly in theory under the condition
λmin(Dk) ≥ α > 0, which is validated just by empirical examples
in Ref. [1]. Specifically, since Bernstein basis and B-spline basis are
both normalized totally positive bases, the geometric interpolation
algorithm for Bézier, B-spline, rational Bézier, and NURBS curve
(surface) is convergent, if they fulfill the condition λmin(Dk) ≥
α > 0.
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