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Abstract

In recent years with the development of 3D data acquisition equipments the study on reverse engineering has become

more and more important. However the existing methods for parameterization can hardly ensure that the parametric domain is rectangu-

lar and the parametric curve grid is regular. In order to overcome these limitations we present a novel method for parameterization of tri-

angular meshes in this paper. The basic idea is twofold first because the isotherms in the steady temperature do not intersect with each

other and are distributed uniformly no singularity fold-over exists in the parameterization second a 3D harmonic equation is solved

by the finite element method to obtain the steady temperature field on a 2D triangular mesh surface with four boundaries. Therefore our

proposed method avoids the embarrassment that it is impossible to solve the 2D quasi-harmonic equation on the 2D triangular mesh without

the parametric values at mesh vertices. Furthermore the isotherms on the temperature field are taken as a set of iso-parametric curves on

the triangular mesh surface. The other set of iso-parametric curves can be obtained by connecting the points with the same chord-length on

the isotherms sequentially. The obtained parametric curve grid is regular and distributed uniformly and can map the triangular mesh sur-

face to the unit square domain with boundaries of mesh surface to boundaries of parametric domain which ensures that the triangular mesh

surface or point cloud can be fitted with the NURBS surface.

Keywords

With the development of 3D acquisition equip-
ments parameterization of triangular mesh or point
cloud is becoming an important problem in reverse en-
gineering of shape design because reconstructing
free-form surface from point cloud or fitting triangu-
lar mesh with four boundaries with NURBS surface
requires the parameterization of the point cloud or
that is
regular parametric curve grids with distribution as u-

mesh vertices in advance seeking a set of

niform as possible.

Currently one of the main approaches to param-
eterization is to calculate the harmonic field on a tri-
angular mesh. Eck et al. calculated the pseudo-har-
monic field on a triangular mesh surface by a linear
map approximating the harmonic map ! . Pinkall and
Polthier proposed a discrete harmonic map > . How-
ever parameterization with either of the above meth-
ods cannot promise to avoid foldovers because some
weights in the map may be negative * 4 . Therefore
they are not effective for all triangular meshes. Re-
cently based on the mean value theorem for the har-
monic function Floater presented a Mean Value Co-
ordinates method that is searching a map approxi-
mating the harmonic map in a set of convex linear

* Supported by the Major State Basic Research Development Program of China Grant No. 2004CB719400

tion of China Grant Nos. 60503057 60333010 60021201

parameterization regular parametric curve grid mesh fitting reverse engineering.

the obtained
pseudo-harmonic field did not converge to the true

combination maps * . Unfortunately
harmonic field. In fact calculating the harmonic field
on a triangular mesh surface is equivalent to solving a
boundary value problem of the 2D harmonic equation.
However without the parameterization of the trian-
gular mesh it is impossible to solve the boundary val-
ue problem with either the finite difference method or
the finite element method.

To overcome these limitations and parameterize
two key problems must be solved
first the fold-over in the parameterization and the

triangular mesh

initial parameterization of mesh vertices for solving
the 2D harmonic equation. In this paper we present
a novel method which can solve the above two key
problems thereby generating ideal parameterization

on triangular meshes.

The idea for solving the first key problem ex-
ploits the non-intersection and uniform distribution of
the isotherms in the steady temperature field. Taking
the 2D case as an example after constructing the
steady temperature field on a mesh surface with four
boundaries which is determined by a boundary prob-
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lem of the 2D harmonic equation ° with the tempera-
ture values at one pair of boundaries assigned to be 0
or 1 and the other pair from 0 to 1 the temperature
value at each mesh vertex can be taken as its paramet-
ric value. Interestingly since the temperature value
at each point of the steady temperature field is u-
nique the isotherms in it neither intersect nor self-in-
it ensures that there is no fold-
over in the parametric domain if taking the
isotherms as the iso-parametric curves on the mesh
surface.

tersect. Therefore

To conquer the second key problem the 3D har-
monic equation is solved by the finite element
method. Usually the harmonic field on a triangular
mesh is obtained by solving a boundary problem of the
2D harmonic equation. However as mentioned
above without the initial parametric values at mesh
vertices it is impossible to solve the 2D boundary
problem using either the finite difference method or
the finite element method. In this paper we propose
a novel method by which we get the steady tempera-
ture field quasi-harmonic field defined on the trian-
gular mesh surface. Specifically we calculate an off-
set surface of the original triangular mesh surface
firstly and then construct a lamina taking the two
surfaces as its border surfaces. After giving the
boundary condition of its four side surfaces the har-
monic field steady temperature field on the lamina
can be obtained by solving the boundary value prob-
lem of the 3D harmonic equation with the finite ele-
we also get the
steady temperature field restricting on the original tri-

ment method. At the same time

angular mesh surface which satisfies a quasi-harmon-
ic equation and is a quasi-harmonic field. Our
method has the following three advantages over the
existing methods 1 The method is effective to any
triangular mesh with four boundaries 2 the so ob-
tained steady temperature field on the triangle mesh
surface is quasi-harmonic field in which the
isotherms can be taken as a set of iso-parametric
the other
set of iso-parametric curves can be generated by con-
necting the points with the same chord length in the

curves on the triangular mesh surface 3

isotherms. The two sets of iso-parametric curves con-
struct a regular parametric curve grid and the trian-
gular mesh surface can be parameterized into the unit
square by the regular parametric curve grid. Due to
the property of the harmonic equation the parametric
curve grid is distributed uniformly and approaches the

orthogonal grid and more importantly there is no

fold-over in the so obtained parametric domain. Many
experiments in this paper demonstrate the robustness
and applicability of our approach.

1 Related work

Many researchers have addressed the problem of
computing low-distortion parameterizations for trian-
gular meshes. Bennis et al. proposed a piecewise flat-
tening method for free-form parametric surfaces © .
Floater embeds an open triangular mesh in the plane
by mapping its boundary vertices onto a 2D convex
polygon and solving a linear system to determine the
2D embedded positions of interior vertices ’ . The
linear system is constructed by representing each inte-
rior vertex as a convex combination of its neighbor
vertices. The shape preserving parameterization can
be obtained by using conformal mapping and barycen-
tric coordinates to determine the combination coeffi-

89 Lévy and Mallet extended Floater’ s ap-

cients
proach by defining a set of non-linear constraints on
the mapping that ensure local orthogonality '© . The
MIPS method "' 2 attempts to roughly preserve the
ratio of singular values over the parameterization.
Haker et al. introduced a method to compute a global
conformal mapping from a genus zero surface to a

13 A recent work by Zigelman analytically

sphere
found an embedding of an open mesh in the plane by a
multi-dimensional scaling MDS method that opti-
mally preserves the geodesic distances between mesh
vertices '* . Gu et al. computed a geometric-stretch
parameterization using the hierarchical optimization
algorithm which geometric
stretch . The above parameterization methods
strive to minimize the distortion of the triangles and
so the distortion of the texture mapped to the triangu-
lar mesh surface is little. Therefore these parameter-
ization methods are more suitable to texture map than
fitting for good fitting to the triangular mesh needs
the regular parametric curve grid with uniform distri-
bution.

minimizes  the

2 Preliminaries
2.1 Definitions

Definition 1. Given a parametric surface r =
ru v apointr uy v, is called a regular point

ifr,xXr #0 where r, and r, are the deriva-
0

ol u, v
tivesof r u v with respect to u and v respective-
ly. If all points on the surface r =r u v are regular
points the parametric curve grid on the surface is
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called a regular parametric curve grid.

Definition 2. Given a directed curve C,; from
point A to point B the chord length function
L P P&C,; is defined as the chord length from
point A to point P. And L P L B is called the
normalized chord length for a point P& C,j;.

Definition 3. Suppose that a heat conductor V'
with the interior G and the boundary B is composed
of continuous medium the temperature field of V' is
called a steady temperature field when the heat con-
duction process within V' reaches an equilibrium
state.

Based on the principle in heat transfer the

steady temperature field satisfies the following quasi-

harmonic equation °

xel or . o oT
axpxyzaeraypxyzay
o . ar
3 +azp1yzaz
=fxyz xy €G

Tlg=¢ x y =

1
is the given temperature on the
boundary B p x y 2z is the heat conductivity co-

where ¢ = y =z

efficient of the heat conductor V dependent on the
is the heat
source inside V. For a heat conductor V' composed of
a pure material p x y =z
point inside V. Moreover if there is no heat source
inside V i.e. f vy 2 =0 Eqg.
following harmonic equation

’T  &*T , °T

physical property of V' and f x y =z
is constant for every

1 becomes the

+ =0 =x € G
< ox’ 8y2 oz* Y .2
[T lp=¢ x vy 2
By the variational principle ' Eq. 2 s e-

quivalent to the following variational problem find
the function in the set M = | T €
C*V Tlg=¢ x y = that minimizes the func-
tional

T x vy =

oT ?

T or *, or * .
I T = m o0 oy oo, dxdydz.

v

3

3 Parameterization based on steady tempera-
ture field

Given an open oriented triangular mesh surface
S with four pieces of boundaries we want to calcu-

late a set of regular parametric curve grids with distri-
bution as uniform as possible on the surface and map
the vertices of the triangular mesh to the unit square
parameter field.

As the triangular mesh S is a 2D manifold in
essence the steady temperature field quasi-harmonic
field on S satisfies the 2D quasi-harmonic equation

9 oaTr | o or _
w PTG Tt uY g, =0
1 uv €G
Tlg=9¢ u v

4
However the two independent variables « v in
the 2D equation are the parameters which we want to
calculate for the mesh S.

In fact without the 2D parameters of the mesh
it is impossible to solve the 2D quasi-harmonic equa-
tion 4 on the triangular mesh surface by either the
finite difference method or the finite element method.
First discretizing the 2D quasi-harmonic equation
with the finite difference method needs the 2D pa-
rameters. For example it was based on an initial pa-
rameterization that the method in Ref. 17 solved
the 2D harmonic equation using the finite difference
scheme. However their initial parameterization
method is not suitable to the vertices of the triangular
mesh in 3D. Second if the boundary value problem
of the 2D quasi-harmonic equation 4 is solved using
the finite element method the variational problem
must be converted to finding the function in the set
M= T u v |[TECPV Tlg=¢ u v that
minimizes the functional

' aT *
I T = H p u v u

\%4
2

+]JuvafT dudwv. 5

v
Accordingly step 2 of the finite element method in
the following Section 3.3 is converted to constructing
a linear interpolation function
T" u v =X uvo T+ uv T
+ A, u v T, 6

in each triangle. However without the 2D parame-
ters of the mesh vertices we cannot get the barycen-
tric coordinates A, « v A; u v and A, u v of
the points in the triangle which are represented with
the 2D parameters u« v . Therefore the following
steps of the finite element method described in Sec-
tion 3.3 cannot proceed.
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In this work we present a novel method for di-
rectly calculating the steady temperature field quasi-
on an arbitrarily given triangular
mesh surface S. We first calculate the offset surface
U of the triangular mesh S. The surface U is creat-
ed by displacing each vertex of S and is also a trian-

harmonic field

gular mesh with the same vertex connectivity as S. A
lamina V' composed of triangular prisms is then gen-
erated by connecting the corresponding vertices of S
and U Fig. 1 . The lamina V becomes a simplicial
complex composed of tetrahedra by dividing each tri-
angular prism into 3 tetrahedra. By solving the 3D
harmonic equation 2 on the simplicial complex V
we can get the steady temperature field on V' and
accordingly the steady temperature field on its bottom
surface S. Thus the isotherms can be taken as a set
of iso-parametric curves on the surface S. Based on
Ref. 5
surface S satisfies a 2D quasi-harmonic equation and
is a quasi-harmonic field. However different dis-
tances between the surface S and its offset surface U
lead to different steady temperature fields on the sur-
face S which satisfies different quasi-harmonic equa-
tions. The shorter the distance is the closer the
shape of the surface U is to the shape of S and
then the smoother the isotherms in the steady tem-
perature field on S are and the more uniform their
distribution is.

the steady temperature field on the mesh

Fig. 1. A triangular prism generated by connecting the corre-
sponding vertices of the surface S and its offset surface U.

In the following sections we will elaborate the
above method.

3.1 Three-dimensional simplicial complex construc-
tion

As S is a triangular mesh its offset surface U
with offset distance d can be easily calculated by dis-
placing the vertices along their normal directions of
S 8 | The offset surface U is also a triangular mesh
with the same connectivity as S. In order to avoid

self-intersection of U  the offset distance d is usually
chosen to be significantly smaller than the minimum
of the absolute value of the reciprocal of the two prin-
cipal curvatures at the vertices of the surface S ¥ .
The two principle curvatures at vertex v of surface S
are computed by the methods presented in Refs. 20

21 thatis k,,=H+*v H*~ K with

2n - Dla, T2 el

K — : i=1 o i:11 .
34 34

Here #n is the number of the triangles adjacent to the

a; is the radian of the angle of the 7-th tri-

angle adjacent to the vertex v which takes the point

v as its vertex and A is the sum of the area of all

triangles adjacent to the vertex v. e; is the i-th edge

7

vertex v

adjacent to the vertex v | ;|| denotes the length of
the edge and . is the dihedral angle corresponding

to the edge.

Note that the shorter the offset distance is the
closer the shape of U is to the shape of S. It makes
the distribution of the isotherms of the steady temper-
ature field on the surface S more uniform.

It should be pointed out that when the distance
between the two surfaces S and U tends to zero the
steady temperature field on the bottom surface S of
the lamina V' converges to the harmonic field i. e.
the solution to the 2D harmonic equation. In fact
the lamina V' changes with the distance between the
two surfaces S and U. Therefore the domain of the
leading to different
as well as different

3D harmonic equation varies
steady temperature fields in it
isotherm surfaces and different isotherm curves on
although the distance be-

tween the two surfaces S and U is smaller and small-

the surface S. However

er a steady temperature field in the lamina V  as
well as that on the bottom surface S can always be
calculated by solving the 3D harmonic equation 2 .
That is to say when the lamina V' tends to its bot-
tom surface S what is restricted on the bottom sur-
face S is always a steady temperature field which is
determined by the steady temperature field in the

varying lamina V. In particular as the limitation
ymng p

the field
on the surface S is still a steady temperature field
which is governed by the 2D quasi-harmonic equation
4 . Note that it has been supposed that the heat
conductivity coefficient p = y =
the 2 D quasi - harmonic equation 4 is just the 2 D

when the lamina V' becomes the surface S

1S a constant so
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harmonic equation. Therefore the field on the sur-
face S is just the harmonic field.

The shape difference between S and U can be
measured by the maximum of the differences of the
Gauss curvatures between the corresponding vertices

defined by
d‘:male?*KiUllz':12 m 8

S
where K denotes the Gauss curvature of the i-th
vertex of the surface S and KZ.U denotes the Gauss
curvature of the 7-th vertex of the surface U. Here
we calculate the Gauss curvature at each vertex by the
20 21 . In order to cal-
culate the offset surface whose shape is sufficiently

method presented in Refs.

close to that of the original mesh surface the follow-
ing Algorithm 1 is presented for constructing the off-
set surface. In the algorithm k_. denotes the mini-
mum of the absolute values of the reciprocal of the
two principal curvatures at the vertices of the surface
S e is the given threshold of the shape difference be-
tween S and U d, the offset distance and d, the
shape difference between them.

Algorithm 1. Constructing the offset surface U
of the surface S

d,=k
do
d,=d, 2
Construct the offset surface U for the surface
S with distance d,,
calculate the shape difference d between the
surfaces S and U

while d ., >¢

min

For each triangle of S there is a corresponding
triangle on its offset surface U. Connecting the three
pairs of the corresponding vertices between a pair of
corresponding triangles
prism. All the triangular prisms form a volume V.
Whereafter
three tetrahedra a simplicial complex composed of te-

trahedra can be obtained ? Fig. 1

we can get a triangular

by dividing each triangular prism to

3.2 Regular parametric curve grid generation

In Section 3.1
posed of tetrahedral is constructed which takes the
Fig. 1
The four pieces of boundaries of the surface S are de-
noted by C,; Cpc Cpe and C,,. The opposite
boundary to C,p is Cpyp

a 3D simplicial complex V' com-

surfaces S and U as its border surfaces

and the opposite boundary

to Cpe is Cyp. The offset surface U also has four
corresponding boundaries C,p  Cyr Cupy and
Cypy- Inorder to solve the harmonic equation 2 on

the volume V' the boundary condition at the four
side faces of volume V' should be specified at first.
Let the temperature values at the vertices on the
boundaries C,p and C, be 0 and the temperature
values at the vertices on the boundaries Cj,- and Cpy
be 1 the temperature values at the vertices on the
boundaries Cp. and Cp be their normalized chord
lengths and the temperature values at the vertices on
the boundaries C,}, and C,y be also their normalized

chord lengths.

After giving the boundary condition the steady
temperature field on the simplicial complex V' can be
solved using the finite element method which will be
described in detail in Section 3. 3. Meanwhile the
steady temperature field on the bottom surface S is
also obtained. In the steady temperature field of V'
there are a series of isothermal surfaces. On the other
hand the bottom surface S can be regarded as the
section of the set of isothermal surfaces and their in-
tersection curves are a series of isotherms on the
steady temperature field on the surface S which can
be taken as a series of iso-parametric curves on the
surface S.

On the other hand by assigning the temperature
values at the vertices on the boundaries C,, and C,
to 0 the temperature values at the vertices on the
boundaries Cp~ and Cp to 1 and the temperature
values at the vertices on the boundaries C,; C,p
Cpe and Cpy to their normalized chord lengths an-

other set of isotherms on the surface S can be calcu-
lated as another iso-parametric curve on the surface.
However the parametric curve grid so obtained does
not guarantee the regularity.

In order to obtain the regular parametric curve
grid after getting a set of iso-parametric curves on
the surface S
point in each iso-parametric curve is calculated as an-
other parameter value of the point. Specifically be-

the normalized chord length at each

cause the surface S is a piece of triangular mesh sur-
face we first calculate the iso-parametric curve
through each vertex of the surface and then calcu-
late the normalized chord length at the vertex in the
iso-parametric curve as its another parameter value.
Thus another set of iso-parametric curves on the sur-

face S are constructed. Obviously the parametric
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curve grid composed of the two sets of iso-parametric
curves is regular because an arbitrary u iso-paramet-
ric curve intersects every v iso-parametric curve and
then
point between the two sets of iso-parametric curves.

there is no tangent point i. e. non-regular

By the regular parametric curve grid the mesh sur-
face S can be mapped to the unit square parameter
field 01 X 01
aries of the surface S are mapped to the four bound-
aries of the unit square field.

while the four pieces of bound-

3.3 Finite element method for solving variational
problem

The solution to Eq. 2
solving the variational problem 3 using the finite el-

is generally obtained by

ement method in engineering * . In what follows
we elaborate the method for solving the variational

problem 3 step by step.

1 Tetrahedral triangulation. Suppose the heat

culated by tetrahedral triangulation of the sampled
points.

2 Piecewise linear function construction. The
temperature value is supposed to be linear within each
tetrahedron. That is for the h-th tetrahedron V,
with four vertices P; x; vy, = P; x; y;
with tempera-

P, x, vz ad P, z, v z

ture values T, =T x; v, z;

1

=T z; 5

T,=T z, y» = and T,=T x;, y, 2, respec-
tively the temperature value at any point P = y z
in 'V, is
T" xyz =Aayzx T+ xy=zT
+A, xyz2 T, +4 2y =z T
9

where A, A, A, and A, are the barycentric coordi-

J
nates of P x y z with respect to V.

3 Element stiffness matrix for each tetrahe-

3 led b . i N dron. For the h-th tetrahedron V, from
CO{ldUCtOI Vs samp ed y ntm points  where n oT N, a, n, N,
points are sampled in the interior G numbered from =T, + T, + T, = +T, %
) ot Lot ) ot © ot ot
1to n and m points sampled on the boundary B B
o e =x vy z 10
numbered from n +1 to n + m. A simplicial complex we have
composed of r tetrahedra V, h=1 2 r s cal-
B T h 2 oT h 2 oT h 2
1" = Jﬂ o + o + e dxdydz
Vi
r 2 7
ot oA ook ko,
ot ot ot ot ot ot ot
oon ey’ onon awan | L
ot ot o ot o or T;
=T T T, T,50v,| > ot ) 4 1
ot ot ot ot ot ot ot T,
Lot ot ot ot ot ot or
where ||V, || denotes the volume of the tetrahedron matrix with row and column specified by e’ s suffix.
‘ - ‘ . . N, A,
V,. The matr.lx in the bréckets of Eq. 11 is called For example the element || V, | 2 Ry e
the element stiffness matrix of the tetrahedron V). ot or

4  Global stiffness matrix construction. From

Eq. 11

I T =>1" = TKT 12
h=1
Where T/ = Tl Tn Tn +1 Tn +m
The matrix K, ,, « ,+,, inEq. 12 is called the

global stiffness matrix. It is combined by the element
stiffness matrices of all tetrahedra according to the
suffix of their elements. That is the element e in

some element stiffness matrix is added to the global

t=x y 2z
is added to the
i-th row and j-th column of the global matrix. Eq.
12 is a multivariable quadratic function with vari-

element stiffness matrix in Eq. 11

ables T, T, T,,, - Therefore we can get a
linear system

KT =0 13
whose solution T, T, T,,, are extremum of

I T .

5 Boundary conditions. In Eq. 2  the tem-

perature value on the boundary has been given as T'| 5
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=¢ x y = sowe need to delete the last m equa-

tions in the system of equations Eq. 13 i.e. the
equations from the n +1 -thto n+ m -th. The
terms containing T, | T, ,, T, ., are regarded

as constant and are moved to the right of the remain-
ing equations. Thus we get the following linear system

Dk =G, i=12 . 14
j=1

Because the matrix & is a positive definite ma-

nXn

trix the system of equations Eq. 14  has a u-
nique solution.

4 Experiments and results

In this section the parametric curve grids on
some triangular mesh surfaces are shown in Figs. 2—
6 where the u-curves red curves are the isotherms
in the steady temperature field on the surface and v-
curves green curves are obtained by calculating the
normalized chord length of the points at the u-
curves. Fig.2 shows the parameter curve grid on the
smooth triangular mesh surface head-mask cut from
the model mannequin . Fig. 3 illustrates the mesh of
the model ear and different views of the parameter
grid on the mesh surface. In Fig.4 there is the mesh
surface cut from the model fan-disk which has a sharp
edge and the parameter curve grid on it. There are
different views of the parameter grid on the mesh sur-
face Stanford bunny in Fig. 5. Finally Fig. 6 shows
different views of the parameter grid on the coarse
mesh surface cut from the model skull. Illustrated by
the above results whatever the mesh surface is coarse
or smooth the distribution of the iso-parameter
curves of the parameter grid generated by the parame-
terization method based on steady temperature field is
uniform. Furthermore the parameter grid is nearly
orthogonal which is ideal for fitting the mesh surface
with NURBS surface. In addition experimental re-
sults for parameterization algorithm based on steady
temperature field are listed in Table 1. All the exam-
ples run on the PC with 1.8 GHz CPU and 512 MB

memory.

Table 1.  Experimental results for parameterization algorithm
based on steady temperature

Name Vertices Faces Run time s
Head-mask 954 1852 1.0115
Ear-cut 1199 2352 1.3720
Fan-disk 1676 3175 1.8430
Bunny 9581 19029 78.1070

Skull 18409 36534 335.5275

Fig. 2. Parametric curve grid on a triangular mesh surface head-
mask. Left one side view middle front view right the other
side view.

Fig. 3. Mesh surface ear-cut and parametric curve grid on the
mesh surface ear-cut. Top left triangular mesh top right front
view of the parametric grid bottom top view of the parametric grid.

Neseu g

NRANS SR e
““‘\\\“‘\““

SSIT Rt
SS0TSS
‘\“t\‘x‘

N
CSIS
=

Fig. 4. Mesh surface fan-disk and parametric curve grid on the
mesh surface. Left triangular mesh fan-disk right front view of
the parametric grid.

Fig. 5. Parametric curve grid on the mesh surface bunny. Top
left one side view of the parametric grid top right the other side
view bottom left front view bottom right top view.
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Fig. 6.  Parametric curve grid on the mesh surface skull. Top
left front view of the parametric grid top right back view bot-
tom left one side view bottom right the other side view.

5 Conclusions

In reverse engineering the triangular mesh sur-
face needs to be fitted with NURBS surface. It firstly
needs to find a regular parametric curve grid with uni-
form distribution on the triangular mesh surface. In
this paper we have presented a novel method for pa-
rameterizing an arbitrary triangular mesh with four
boundaries. Specifically the steady temperature field
on the mesh surface is firstly calculated and then
the isotherms of the steady temperature field are tak-
en as a set of iso-parametric curves finally the other
set of iso-parametric curves is obtained by calculating
the normalized chord length at the points of the
isotherms. The two sets of iso-parametric curves con-
struct the parametric curve grid on the mesh surface
and parameterize the mesh vertices into the unit
square. Illustrations show that the distribution of the
iso-parametric curves is uniform and the parametric
curve grid is nearly orthogonal which is important
for fitting the mesh surface with NURBS surface.
Future work will study the influence of the heat con-
ductivity coefficient on the distribution of the para-
metric curve grid on the triangular mesh surface.
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