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Abstract

This paper extends the modified affine arithmetic in matrix form method for bivariate polynomial evaluation and
algebraic curve plotting in 2D to modified affine arithmetic in tensor form for trivariate polynomial evaluation and
algebraic surface plotting in 3D. Experimental comparison shows that modified affine arithmetic in tensor form is
not only more accurate but also much faster than standard affine arithmetic when evaluating trivariate polynomials.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Affine arithmetic (AA) was first introduced by Comba and Stolfi in 1993 [4] as an improvement to
interval arithmetic (IA). Due to its ability to keep track of correlations between variables in subexpressions,
AA is often more resistant to over-conservatism when evaluating estimates of ranges of expressions over
intervals. AA has been successfully applied as a replacement for IA in many geometric and computer
graphics applications such as surface intersection [6], adaptive enumeration of implicit surfaces [7],
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ray tracing procedural displacement shaders [9], sampling procedural shaders [10], ray casting implicit
surfaces [5], linear interval estimations for parametric objects [3] and a CSG geometric modeller [2].

However, standard AA still has an over-conservatism problem because it uses approximation when
multiplying affine forms, and thus it can be further improved to give so-called modified affine arithmetic
(MAA). This uses a matrix form for bivariate polynomial evaluation which keeps all noise terms without
any approximation; we have used it for algebraic curve plotting in 2D [11,14]. In this paper, we extend
MAA to tensor form for trivariate polynomial evaluation, and illustrate its use for algebraic surface
plotting in 3D. In a previous paper [13] we proved theoretically that MAA is more accurate than both
IA on centered form (IAC), and standard AA. Clearly, we also expect MAA in tensor form to be more
efficient than standard AA, and we validate this expectation with an efficiency comparison.

2. Implicit surface plotting algorithm

The quadtree subdivision algorithm described in [11] for plotting an implicit curve f (x, y) = 0 in a
given rectangle [x, x] × [y, y] can be easily generalized to an octree subdivision algorithm for plotting
an implicit surface f (x, y, z) = 0 in a given box [x, x] × [y, y] × [z, z]. The basic idea is to evaluate
f (x, y, z) over the desired box using a range analysis estimation method (such as IA, AA or MAA)
giving a range [F, F ] which is guaranteed to contain the exact range of f over the box. If the resulting
interval does not contain 0, the surface cannot be present. If it does contain 0, we subdivide the box into
eight sub-boxes at its mid point, and consider the pieces in turn. The process stops when a box reaches
a single voxel in size. In such a case we plot the voxel. This may result in a “thick” surface if the test is
too conservative, i.e. voxels may be plotted which do not actually contain the surface.

In a more sophisticated approach, instead of simply plotting the voxel, we may investigate further
whether the function actually crosses the voxel, and if so, produce an appropriate linear approximant to
the surface within the voxel, for example. In this paper, we concentrate on the problem of finding this set
of candidate voxels, rather than on such subsequent processing.

In detail, we use the following procedure for the simple approach:

PROCEDURE Octree(x, x, y, y, z, z):

[F, F ] = RangeEvaluation(x, x, y, y, z, z);

IF F �0�F THEN
IF x − x�VoxelSize AND y − y�VoxelSize

AND z − z�VoxelSize THEN
PlotVoxel(x, x, y, y, z, z)

ELSE Subdivide(x, x, y, y, z, z).

PROCEDURE Subdivide(x, x, y, y, z, z):

x0 = (x + x)/2; y0 = (y + y)/2; z0 = (z + z)/2;

Octree(x, x0, y, y0, z, z0); Octree(x0, x, y, y0, z, z0);

Octree(x0, x, y0, y, z, z0); Octree(x, x0, y0, y, z, z0);
Octree(x, x0, y0, y, z0, z); Octree(x, x0, y, y0, z0, z);

Octree(x0, x, y, y0, z0, z); Octree(x0, x, y0, y, z0, z).
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Here [F, F ] = RangeEvaluation(x, x, y, y, z, z) is a conservative interval containing all values of
f (x, y, z) over the box [x, x] × [y, y] × [z, z], computed using a chosen range analysis method such as
IA, AA or MAA. (x0,y0,z0) is the mid-point of the box [x, x] × [y, y] × [z, z].

3. Modified affine arithmetic in tensor form

Let f (x, y, z) be a polynomial in three variables expressed in power form and � be a box-shaped
interval of interest

f (x, y, z) =
n∑

i=0

m∑
j=0

l∑
k=0

Aijkx
iyj zk, (x, y, z) ∈ � = [x, x] × [y, y] × [z, z].

We rewrite f (x, y, z) in tensor representation

f (x, y, z) = X⊗x(Z⊗zA)⊗yY ,

where X = (1, x, . . . , xn), Y = (1, y, . . . , ym)T , Z = (1, z, . . . , zl) are power vectors, and Aijk is
the coefficient tensor.

Let us now convert the interval forms [x, x], [y, y] and [z, z] to affine forms

x̂ = x0 + x1�x, ŷ = y0 + y1�y, ẑ = z0 + z1�z,

where �x , �y and �z are noise symbols whose values are unknown, but each is assumed to be in the range
[−1, 1], and

x0 = (x + x)/2, y0 = (y + y)/2, z0 = (z + z)/2,

x1 = (x − x)/2, y1 = (y − y)/2, z1 = (z − z)/2.

We also define power vectors in the noise symbols

X̂ = (1, �x, . . . , �nx), Ŷ = (1, �y, . . . , �my )T, Ẑ = (1, �z, . . . , �lz).

We now define three further matrices B, C and D as follows. Firstly,

B =

⎡
⎢⎢⎢⎢⎣

1 x0 · · · xn−1
0 xn

0
0 x1 · · · (n − 1)xn−2

0 x1 nxn−1
0 x1

...
...

. . .
...

...

0 0 · · · xn−1
1 nx0x

n−1
1

0 0 · · · 0 xn
1

⎤
⎥⎥⎥⎥⎦ ;

in detail

Bij =
{

(
j
i
)x

j−i
0 xi

1, i�j,

0, i > j,
i = 0, 1, . . . , n; j = 0, 1, . . . , n.
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Secondly,

C =

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0 0
y0 y1 · · · 0 0
...

...
. . .

...
...

ym−1
0 (m − 1)ym−2

0 y1 · · · ym−1
1 0

ym
0 mym−1

0 y1 · · · my0y
m−1
1 ym

1

⎤
⎥⎥⎥⎥⎦ ;

in detail

Cij =
{

0, i < j,

(
i
j
)y

i−j
0 y

j
1 , i�j,

i = 0, 1, . . . , m; j = 0, 1, . . . , m.

Finally

D =

⎡
⎢⎢⎢⎢⎢⎣

1 z0 · · · zl−1
0 zl

0
0 z1 · · · (l − 1)zl−2

0 z1 lzl−1
0 z1

...
...

. . .
...

...

0 0 · · · zl−1
1 lz0z

l−1
1

0 0 · · · 0 zl
1

⎤
⎥⎥⎥⎥⎥⎦

;

in detail

Dij =
{

(
j
i
)z

j−i
0 zi

1, i�j,

0, i > j,
i = 0, 1, . . . , l; j = 0, 1, . . . , l.

We now have that

X = X̂B, Y = CŶ , Z = ẐD.

We compute the tensor G from matrices B, C and D, and the original coefficient tensor A as follows:

G = B⊗x(D⊗zA)⊗yC,

giving

f (x̂, ŷ, ẑ) = X̂⊗x(Ẑ⊗zG)⊗yŶ =
n∑

i=0

m∑
j=0

l∑
k=0

Gijk�
i
x�

j
y�kz .

Up to now the calculation is exact and does not involve any approximation. Furthermore, it can be
seen that this polynomial is actually the centered form of the original polynomial [12]. In the next step,
we wish to convert this result back to interval form [F, F ]. This can be done by standard IA. However,
standard IA can be seen not to be the best choice, if we take into account the following observations: if
all of i, j and k are even, then �ix�

j
y�kz ∈ [0, 1], otherwise �ix�

j
y�kz ∈ [−1, 1]. Thus a tighter interval [F, F ]
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can be obtained, compared to the result given by standard IA on this centered form, as follows:

F = G000 +
l∑

k=1

{
max(0, G00k) if k is even

|G00k| otherwise

}

+
m∑

j=1

l∑
k=0

{
max(0, G0jk) if j, k are both even

|G0jk| otherwise

}

+
n∑

i=1

m∑
j=0

l∑
k=0

{
max(0, Gijk) if i, j, k are all even

|Gijk| otherwise

}

and

F = G000 +
l∑

k=1

{
min(0, G00k) if k is even

−|G00k| otherwise

}

+
m∑

j=1

l∑
k=0

{
min(0, G0jk) if j, k are both even

−|G0jk| otherwise

}

+
n∑

i=1

m∑
j=0

l∑
k=0

{
min(0, Gijk) if i, j, k are all even

−|Gijk| otherwise

}
.

In this way, the trivariate polynomial f (x, y, z) thus takes on values guaranteed to be in the interval
[F, F ] over the box [x, x] × [y, y] × [z, z].

4. Comparison of AA and MAA in tensor form by examples

To demonstrate and validate the results in the previous section, and to compare the relative performance
of AA and MAA in tensor form, we now consider some examples. We plot 10 carefully chosen example
algebraic surfaces to compare the accuracy and speed of these two methods. Each example surface is
represented by a trivariate polynomial equation f (x, y, z) = 0; it is plotted using the algorithm given in
Section 2 on a grid of 128 × 128 × 128 voxels. We used Visual C++ 6.0 and Windows 2000 on a personal
computer with an Intel Xeon 2.8 GHz CPU and 2 GB RAM for all the tests.

We not only show the graphical output generated for these examples, but also present a tabular com-
parison of accuracy and computation times in each case; we also show the results obtained by IAC for
comparison. To compare the performance and efficiency of AA, IAC and MAA in tensor form methods,
a number of quantities were measured:

• The number of voxels plotted: The fewer the better, as plotted voxels may or may not contain the surface
in practice.

• The CPU time used: The lower the better.
• The number of subdivisions involved: The lower the better, due to additional time used for stack

overheads.
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The examples we used in this paper are as follows:

Example 1. 0.06(x2 − x + 4y − xy + 2yz + 3) = 0 on [−10, 10] × [−10, 10] × [−10, 10]. This is a
degree 2 polynomial equation representing a hyperboloid of two sheets, taken from [2].

Example 2. (2x2 +y2 +z2 −1)3−0.1x2z3−y2z3=0 on [−1.25, 1.25]×[−1.25, 1.25]×[−1.25, 1.25].
This is a degree 6 polynomial equation representing a heart-shaped surface, taken from [15].

Example 3. (x2 +y2 +z2 −r2)2 −2(x2 +r2)(f 2 +a2)−2(y2 −z2)(a2 −f 2)+8af rx+(a2 −f 2)2 =0,
where a =15, r =3, f =5 on [−20, 20]×[−20, 20]×[−20, 20]. This is a degree 4 polynomial equation
representing a Dupin cyclide, taken from [1].

Example 4. x2n + y2n + z2n − xnyn − xnzn − ynzn = 0 where n = 4 on [−1.5, 1.5] × [−1.5, 1.5] ×
[−1.5, 1.5]. This is a degree 8 polynomial equation representing a spiky surface, chosen from [1].

Example 5. x2y2 + y2z2 + x2z2 + xyz = 0 on [−0.5, 0.5] × [−0.5, 0.5] × [−0.5, 0.5].This is a de-
gree 4 polynomial equation representing Steiner’s Roman surface, which has self-intersections, taken
from [1].

Example 6. (x2 + y2 − 4)(x2 + z2 − 4)(y2 + z2 − 4)− 4.0078 = 0 on [−6, 6]× [−6, 6]× [−6, 6]. This
is a degree 6 polynomial equation representing an implicit blending surface, chosen
from [1].

Example 7. (x4 + y4 + z4 + 1) − (x2 + y2 + z2 + y2z2 + z2x2 + x2y2) = 0 on [−2, 2] × [−2, 2] ×
[−2, 2]. This is a degree 4 polynomial equation representing the quadruple Kummer’s surface, taken
from [8].

Fig. 1. Example 1: Hyperboloid of two sheets plotted using AA.
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Fig. 2. Example 1: Hyperboloid of two sheets plotted using MAA in tensor form.

Fig. 3. Example 2: Heart surface plotted using AA.

Example 8. z3 + xz + y = 0 on [−5, 5] × [−5, 5] × [−5, 5]. This is a degree 3 polynomial equation
representing a cubic cusp catastrophe, taken from [8].

Example 9. −1801
50 + 280x − 816x2 + 1056x3 − 512x4 + 1601

25 y − 512xy + 1536x2y − 2048x3y +
1024x4y =0 on [0, 1]×[0, 1]×[0, 1]. This is a degree 5 polynomial equation representing a curve swept
along the z-direction, taken from [11]. In the latter, the same polynomial equation represents a curve in
2D, but here represents a swept surface in 3D.
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Fig. 4. Example 2: Heart surface plotted using MAA in tensor form.

Fig. 5. Example 3: Dupin cyclide plotted using AA.

Example 10. 55
256 − x + 2x2 − 2x3 + x4 − 55

64y + 2xy − 2x2y + 119
64 y2 − 2xy2 + 2x2y2 − 2y3 + y4 = 0

on [0, 1]× [0, 1]× [0, 1]. This is a degree 4 polynomial equation representing a pair of tangent cylinders,
chosen from [11]. Again, in the latter, the same polynomial equation represents a curve in 2D, but here
represents a swept surface in 3D.

The graphical results for these examples using AA and MAA in tensor form methods, respectively,
are shown in Figs. 1–20, and the related quantities are recorded in Table 1. From Figs. 1–20 and
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Fig. 6. Example 3: Dupin cyclide plotted using MAA in tensor form.

Fig. 7. Example 4: Spiky surface plotted using AA.

Table 1, we can see that in general the MAA in tensor form method is not only more accurate but also
much quicker than the AA method. The AA method is particularly bad on Examples 2, 4, 9, and 10. In
Example 9, AA totally fails to reveal the form of the surface while MAA in tensor form successfully
reveals it. In Examples 2 and 4, the surfaces generated by AA are much thicker than these generated by
MAA in tensor form. In Example 10,AA does badly near the tangency line of contact of the two cylinders,
while MAA in tensor form does not have this problem. In terms of performance, AA is always clearly
worst in terms of number of subdivisions and computational effort. MAA in tensor form is slightly more
accurate than IAC, but MAA in tensor form may or may not take slightly less CPU time than IAC—the
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Fig. 8. Example 4: Spiky surface plotted using MAA in tensor form.

Fig. 9. Example 5: Steiner’s Roman surface plotted using AA.

times are usually quite similar. Overall, it seems that the performance of MAA in tensor form is slightly
better than IAC.

The reasons why MAA in tensor form is much faster than AA can be explained as follows.
Firstly, the expressions evaluated by AA involve more arithmetic operations than those needed
for IAC or MAA in tensor form. Secondly, AA is more conservative than MAA in tensor form,
and therefore needs more subdivisions. Thirdly, MAA in tensor form contains only tensor manip-
ulations, which are essentially loops and are easy to implement. On the other hand, AA requires
a complicated data structure involving a dynamic list to represent an affine form and the
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Fig. 10. Example 5: Steiner’s Roman surface plotted using MAA in tensor form.

Fig. 11. Example 6: Implicit blending surface plotted using AA.

associated error terms; arithmetic operations on affine forms are performed using insertion
and deletion of elements of lists, which are not as efficient as the simple loops needed by MAA in
tensor form.
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Fig. 12. Example 6: Implicit blending surface plotted using MAA in tensor form.

Fig. 13. Example 7: Quadruple Kummer’s surface plotted using AA.
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Fig. 14. Example 7: Quadruple Kummer’s surface plotted using MAA in tensor form.

Fig. 15. Example 8: Cubic cusp catastrophe plotted using AA.

5. Conclusions

MAA in tensor form is not only more accurate but also much faster than standard AA. We have also
demonstrated that MAA in tensor form is similar to IAC, but enhanced by a proper consideration of the
signs of even or odd powers of polynomial terms. As a result, using MAA in tensor form is always slightly
more accurate than IAC, while IAC is always more accurate than AA. In conclusion we recommend that
the MAA in tensor form be used instead of AA or IAC in trivariate polynomial geometric computations.
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Fig. 16. Example 8: Cubic cusp catastrophe plotted using MAA in tensor form.

Fig. 17. Example 9: Translational surface plotted using AA.

Fig. 18. Example 9: Translational surface plotted using MAA in tensor form.
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Fig. 19. Example 10: Two tangent cylinders plotted using AA.

Fig. 20. Example 10: Two tangent cylinders plotted using MAA in tensor form.
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Table 1
Comparison of AA, IAC and MAA in tensor form for each example

Examples Methods Voxels plotted Subdivisions involved CPU time used (s)

1 AA 39 305 13 440 167
1 IAC 39 305 13 440 51
1 MAA 39 214 13 343 52
2 AA 143 104 61 901 2734
2 IAC 63 168 31 669 147
2 MAA 59 104 28 333 136
3 AA 16 716 7049 41
3 IAC 16 420 6881 10
3 MAA 15 956 6357 10
4 AA 17 480 17 953 73
4 IAC 11 792 14 665 15
4 MAA 10 256 10 681 12
5 AA 89 396 34 009 920
5 IAC 86 864 31 897 255
5 MAA 85 448 31 033 262
6 AA 61 512 35 873 530
6 IAC 53 576 26 017 101
6 MAA 52 544 24 337 104
7 AA 114 320 42 129 1608
7 IAC 111 536 40 289 423
7 MAA 109 712 39 209 428
8 AA 33 982 12 063 174
8 IAC 33 982 12 063 39
8 MAA 33 666 11 683 40
9 AA 748 032 163 881 61 876
9 IAC 32 000 13 673 35
9 MAA 31 744 12 521 36

10 AA 163 072 69 281 3250
10 IAC 53 248 20 361 97
10 MAA 50 176 18 601 89
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