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Abstract. In this paper we give mathematical proofs of two new results
relevant to evaluating algebraic functions over a box-shaped region: (i)
using interval arithmetic in centered form is always more accurate than
standard affine arithmetic, and (ii) modified affine arithmetic is always
more accurate than interval arithmetic in centered form. Test results
show that modified affine arithmetic is not only more accurate but also
much faster than standard affine arithmetic. We thus suggest that mod-
ified affine arithmetic is the method of choice for evaluating algebraic
functions, such as implicit surfaces, over a box.

1 Introduction

Affine arithmetic (AA) was first introduced by Comba and Stolfi in 1993 [3] as
an improvement to interval arithmetic (IA). When used for finding the range
of a multivariate polynomial function over a box, AA can be more resistant to
over-conservatism due to its ability to keep track of correlations between various
quantities, doing so using a linear series of “noise terms”.

AA has been successfully applied as a replacement for IA in many geometric
and computer graphics applications such as surface intersection [5], adaptive enu-
meration of implicit surfaces [6], ray tracing procedural displacement shaders [7],
sampling procedural shaders [8], ray casting implicit surfaces [4], linear interval
estimations for parametric objects [2] and in a CSG geometric modeller [1].

However, standard AA still has an over-conservatism problem because it uses
an imprecise approximation in the multiplication of two affine forms, and we have
shown how it can be further improved to give so-called modified affine arithmetic
(MAA). MAA uses a matrix form for bivariate polynomial evaluation which
keeps all noise terms without any unprecise approximation [9,11]. Of course,
this more precise MAA involves more complex formulas.

In practical applications such as curve drawing, typically recursive methods
are used to locate the curve. The extra accuracy provided by MAA means that
fewer recursive calls are likely to be needed—some regions of the plane can be
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rejected as not containing the curve when using MAA which would need further
subdivision when using ordinary AA. However, the amount of work to be done
for each recursive call is greater for MAA than AA, and so it is still not clear
whether MAA’s advantage in accuracy is worth the extra cost and complexity in
terms of overall algorithm performance. We thus give an empirical comparison
between standard AA and MAA used in a curve drawing algorithm, as well as
a theoretical proof that over a given interval, MAA is more accurate. Our test
results in Section 3 show that MAA is not only more accurate but also much
faster than standard AA in a curve drawing application.

We also demonstrate that MAA is actually the same as interval arithmetic
on the centered form (IAC) [10] together with a consideration of the properties
of even or odd powers of polynomial terms. In detail, we show in Section 2 that
IAC is always more accurate than standard AA for polynomial evaluation, and
that the MAA method is always somewhat more accurate than the IAC method.
Overall, we conclude that the MAA method is better than the IAC method, and
the IAC method is better than the standard AA method. These results hold in
one, two and three dimensions.

The subdivision quadtree based implicit curve plotting algorithm described
in [9] can be easily generalized to a subdivision octree based implicit surface
plotting algorithm. The MAA in matrix form method proposed in [11] for bi-
variate polynomial evaluation and algebraic curve plotting problem can also be
readily generalized to an MAA in tensor form method for trivariate polynomial
evaluation and algebraic surface plotting. Thus, a 3D subdivision based algebraic
surface plotting method and the 2D subdivision based algebraic curve plotting
method have many similarities. Although further experiments are needed, due to
these similarities we believe that the experimental conclusions we draw from 2D
algebraic curve plotting problem are also applicable to the 3D algebraic surface
plotting problem.

This paper is organized as follows. In Section 2 we theoretically prove two
new results: that IAC is more accurate than AA, and MAA is more accurate
than IAC, for evaluation of multivariate polynomials over a box-shaped region.
In Section 3 we use some examples to test whether the MAA method is more
efficient than the AA method when used in a practical curve drawing application.
Finally in Section 4 we give some conclusions.

2 Why MAA Is More Accurate than AA

In this Section we prove theoretically two new results: that IAC is more accurate
than AA, and MAA is more accurate than IAC. For definitions and explanations
of how to evaluate functions using IAC, AA and MAA, see [9].

Theorem 1: IAC is more accurate than AA for bounding the range of a poly-
nomial.

Proof: We only prove the theorem here the one dimensional case to avoid much
more complex formulae needed in the 2D and 3D cases. However, the same basic
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idea works in all dimensions. Suppose we wish to find bounds on the range of
f(x) over some interval x ∈ [x, x].

Let

f(x) =
n∑

i=0

aix
i.

Let x̂ = x0 + x1ε1 be the affine form of the interval [x, x], where ε1 is the
noise symbol whose value is unknown but is assumed to be in the range [−1, 1],
x0 = (x + x)/2, and x1 = (x − x)/2 > 0.
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where εk, k = 2, 3, · · · , n are also noise symbols whose values are assumed to be
in the range [−1, 1].

Therefore the upper bound of f(x̂) computed using AA is:

xAA =
n∑

i=0

aix
i
0 + |

n∑

i=1

iaix
i−1
0 |x1 +

n∑

k=2

|
n∑

i=k

aix
i−k
0 |x1[(|x0| + x1)k−1 − |x0|k−1]

=
n∑

i=0

aix
i
0 + |

n∑

i=1

iaix
i−1
0 |x1 +

n∑

l=2

(
n∑

k=l

Cl−1
k−1|x0|k−l|

n∑

i=k

aix
i−k
0 |)xl

1

Using IAC we may write:
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Therefore the upper bound of f(x̂) computed using IAC is:
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Since the first term and the second term of xAA and xIAC are the same,
while for the third term it always holds that
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we thus obtain that xIAC ≤ xAA.
In a similar way we can prove that the lower bounds of AA and IAC satisfy

xIAC ≥ xAA.
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Therefore we have proved that the bounds provided by IAC are more accurate
than those provided by AA when evaluating a univariate polynomial over a range.

In addition, we can clearly see from equations (1) and (2) that the expression
which must be evaluated in AA is actually more complicated and contains more
arithmetic operations than the corresponding expression in IAC. We therefore
conclude that IAC is always to be preferred to AA for polynomial evaluation.

Theorem 2: MAA is more accurate than IAC for bounding the range of a
polynomial.

Proof: We only prove the theorem here in the 2D case. The proof is similar in
the 1D and 3D cases. Let

f(x, y) =
n∑

i=0

m∑

j=0

aijx
iyj , (x, y) ∈ [x, x] × [y, y].

Let x̂ = x0 + x1εx, ŷ = y0 + y1εy be the affine forms of the intervals [x, x] and
[y, y] respectively, where εx, εy are noise symbols whose values are unknown but
are assumed to be in the range [−1, 1], x0 = (x + x)/2, x1 = (x − x)/2 > 0,
and y0 = (y + y)/2, y1 = (y − y)/2 > 0. Let

f(x̂, ŷ) =
n∑

i=0

m∑

j=0

dijε
i
xεj

y

be the centered form of the polynomial.
Using MAA, the upper bound for the range of the function over this region

is

xMAA = d00 +
m∑

j=1

{
max(0, d0j), if j is even

|d0j |, otherwise

}

+
n∑

i=1

m∑

j=0

{
max(0, dij), if i, j are both even

|dij |, otherwise

}
.

Using IAC, the upper bound for the range of the function over this region is

xIAC = d00 +
m∑

j=1

|d0j | +
n∑

i=1

m∑

j=0

|dij |.

Since it always holds that max(0, d0j) ≤ |d0j | and max(0, dij) ≤ |dij | we get
that xMAA ≤ xIAC .

in a similar way, we can prove that the lower bounds obtained using MAA
and IAC satisfy xMAA ≥ xIAC .

Therefore we have proved that MAA provides more accurate bounds on the
range of a bivariate polynomial over a rectangular region than does IAC.

The weak point of standard AA is that it uses a new noise symbol with a
conservative coefficient to replace the quadratic term generated when multiplying
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two affine forms. This error due to conservativism is accumulated and magnified
during long chains of multiplication operations, resulting in an “error explosion”
problem, well known to also arise in standard IA. Thus, while standard AA is
aimed at reducing this tendency of IA, and does so to some extent as shown in
the examples in Section 3, it is possible to better with MAA.

As proved above, the MAA method provides more accurate bounds on a
polynomial function over a range than the standard AA method. Whether the
more accurate MAA method is also faster than the standard AA in such algo-
rithms as one for recursive curve plotting over a region is not so obvious—while
less subdivision is needed as some parts of the plane can be discarded sooner
due to the higher accuracy of MAA, the amount of computation needed for each
range evaluation is greater using MAA. Whether the advantages outwiegh the
disadvantages must be determined by experiment. In the following section we
give some examples to see what happens when AA and MAA are applied to
the same bivariate polynomial evaluation and subdivision based algebraic curve
plotting problem. Also see [9] for further results of this kind.

3 Experimental Comparison of AA and MAA
for Curve Plotting

In this section we use ten carefully chosen example curves to compare the relative
speed of AA and MAA, and to confirm the theoretical results concerning relative
accuracy. Each example consists of plotting an implicit curve f(x, y) = 0 using
the algorithm given in [9] on a grid of 256 × 256 pixels. We recursively compute
whether a region can contain the curve by computing a bound on the range of
the function over the region. If the range does not contain zero, the curve cannot
be present in the region, and is discarded. If the range does contain zero, the
region is subdivided in x and y, and retested. We continue down to 1×1 regions,
which are plotted in black if they still potentially contain the curve. We used
Visual C++ 6.0 running on Windows 2000 on a Pentium IV 2.00GHz computer
with 512MB RAM for all the tests.

Overall, these examples were chosen to illustrate curves of varying polynomial
degree, with differing numbers of both open and closed components, and include
cusps, self-intersections and tangencies as special cases. Obviously, no finite set
of test cases can establish universal truths, but we have aimed to capture a
range of curve behaviour with these test cases, to at least give some hope that
any conclusions we draw are relevant to many practical cases of interest.

We not only show the generated graphical output for these examples, but
also present in tabular form an analysis of accuracy and computational load for
each example. When comparing the performance and efficiency of AA and MAA
methods, a number of quantities were measured:

– The number of pixels plotted, the fewer the better: plotted pixels may or
may not contain the curve in practice.

– The CPU time used, the less the better.
– The number of subdivisions involved, the fewer the better.
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Fig. 1. Example 1. 15
4 + 8x − 16x2 +

8y − 112xy + 128x2y − 16y2 + 128xy2 −
128x2y2 = 0, plotted using AA.

Fig. 2. Example 1. 15
4 + 8x − 16x2 +

8y − 112xy + 128x2y − 16y2 + 128xy2 −
128x2y2 = 0, plotted using MAA.

Fig. 3. Example 2. 20160x5 − 30176x4 +
14156x3−2344x2+151x+237−480y = 0,
plotted using AA.

Fig. 4. Example 2. 20160x5 − 30176x4 +
14156x3−2344x2+151x+237−480y = 0,
plotted using MAA.

The ten algebraic curve examples we used here for comparison of AA and
MAA are all chosen from [9]. The graphical outputs for all these ten curve
examples using AA and MAA methods respectively are shown in Figure 1 to
Figure 20. The tabulated results are presented in Table 1.

From Figures 1–20 and Table 1 we can see that in general the MAA method
is much more accurate and quicker than AA method. The AA method is par-
ticularly bad in Examples 5, 6, 9, and 10. In Example 5, AA completely fails
to reveal the shape of the curve while MAA successfully reveals it. In Example
6 the curve generated by AA is much thicker than the one generated by MAA.
In Example 9 AA is unable to distinguish two concentric circles of very similar
radii, while MAA can do this. In Example 10 AA has an overconservativism
problem near the tangency point of two circles which MAA does not. MAA is
slightly more accurate than IAC, and MAA takes almost the same CPU time as
IAC. Overall, the performance of MAA is slightly better than IAC.
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Fig. 5. Example 3. 0.945xy −
9.43214x2y3 + 7.4554x3y2 + y4 − x3 = 0,
plotted using AA.

Fig. 6. Example 3. 0.945xy −
9.43214x2y3 + 7.4554x3y2 + y4 − x3 = 0,
plotted using MAA.

Fig. 7. Example 4. x9 − x7y + 3x2y6 −
y3 + y5 + y4x − 4y4x3 = 0, plotted using
AA.

Fig. 8. Example 4. x9 − x7y + 3x2y6 −
y3 + y5 + y4x − 4y4x3 = 0, plotted using
MAA.

Fig. 9. Example 5. − 1801
50 + 280x −

816x2 +1056x3 −512x4 + 1601
25 y−512xy+

1536x2y−2048x3y+1024x4y = 0, plotted
using AA.

Fig. 10. Example 5. − 1801
50 + 280x −

816x2 +1056x3 −512x4 + 1601
25 y−512xy+

1536x2y−2048x3y+1024x4y = 0, plotted
using MAA.
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Fig. 11. Example 6. 601
9 − 872

3 x+544x2 −
512x3+256x4− 2728

9 y+ 2384
3 xy−768x2y+

5104
9 y2 − 2432

3 xy2 + 768x2y2 − 512y3 +
256y4 = 0, plotted using AA.

Fig. 12. Example 6. 601
9 − 872

3 x+544x2 −
512x3+256x4− 2728

9 y+ 2384
3 xy−768x2y+

5104
9 y2 − 2432

3 xy2 + 768x2y2 − 512y3 +
256y4 = 0, plotted using MAA.

Fig. 13. Example 7. −13+32x−288x2 +
512x3 − 256x4 + 64y − 112y2 + 256xy2 −
256x2y2 = 0, plotted using AA.

Fig. 14. Example 7. −13+32x−288x2 +
512x3 − 256x4 + 64y − 112y2 + 256xy2 −
256x2y2 = 0, plotted using MAA.

Fig. 15. Example 8. − 169
64 + 51

8 x−11x2 +
8x3 + 9y − 8xy − 9y2 + 8xy2 = 0, plotted
using AA.

Fig. 16. Example 8. − 169
64 + 51

8 x−11x2 +
8x3 + 9y − 8xy − 9y2 + 8xy2 = 0, plotted
using MAA.

Fig. 17. Example 9. 47.6 − 220.8x +
476.8x2−512x3+256x4−220.8y+512xy−
512x2y + 476.8y2 − 512xy2 + 512x2y2 −
512y3 + 256y4 = 0, plotted using AA.

Fig. 18. Example 9. 47.6 − 220.8x +
476.8x2−512x3+256x4−220.8y+512xy−
512x2y + 476.8y2 − 512xy2 + 512x2y2 −
512y3 + 256y4 = 0, plotted using MAA.
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Fig. 19. Example 10. 55
256 −x+2x2−2x3+

x4 − 55
64y + 2xy − 2x2y + 119

64 y2 − 2xy2 +
2x2y2 − 2y3 + y4 = 0, plotted using AA.

Fig. 20. Example 10. 55
256 −x+2x2−2x3+

x4 − 55
64y + 2xy − 2x2y + 119

64 y2 − 2xy2 +
2x2y2−2y3+y4 = 0, plotted using MAA.

Table 1. Comparison of AA, MAA and IAC methods by examples.

Example Method Pixels plotted Subdivisions involved CPU time used
1 AA 604 900 1.047 sec
1 IAC 530 587 0.047 sec
1 MAA 526 563 0.047 sec
2 AA 513 815 1.219 sec
2 IAC 435 471 0.063 sec
2 MAA 433 459 0.063 sec
3 AA 625 715 1.187 sec
3 IAC 609 638 0.094 sec
3 MAA 608 634 0.094 sec
4 AA 832 934 4.969 sec
4 IAC 819 880 0.547 sec
4 MAA 816 857 0.562 sec
5 AA 15407 9027 49.468 sec
5 IAC 470 659 0.063 sec
5 MAA 464 611 0.062 sec
6 AA 1287 2877 10.266 sec
6 IAC 466 596 0.109 sec
6 MAA 460 560 0.110 sec
7 AA 933 1409 1.766 sec
7 IAC 532 675 0.078 sec
7 MAA 512 627 0.078 sec
8 AA 891 989 0.938 sec
8 IAC 838 853 0.078 sec
8 MAA 818 827 0.078 sec
9 AA 5270 4314 13.75 sec
9 IAC 1208 1373 0.250 sec
9 MAA 1144 1269 0.250 sec

10 AA 2071 2796 8.625 sec
10 IAC 812 905 0.172 sec
10 MAA 784 845 0.171 sec
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The reasons why MAA is much faster than AA are as follows. Firstly, the
most crucial reason which we can clearly see from Section 2 is that the expres-
sion used in AA is actually more complicated than that used in IAC or MAA.
Therefore AA in fact involves more arithmetic operations than IAC or MAA.
Secondly AA is less accurate than MAA, and therefore AA needs more sub-
divisions. Furthermore, many more incorrect pixels cannot be discarded, which
increases the computation load of the AA method. Thirdly, although MAA looks
more complicated, actually MAA only contains matrix manipulations which are
easy to implement using loops, while AA, although looking simple, requires dy-
namic lists to represent affine forms with varying numbers of noise symbols. AA
operations (+, −, ∗) must be performed through insertion and deletion of ele-
ments of the lists, which are not as efficient the simper arithmetic operations in
MAA.

4 Conclusions

From the above theoretical proofs and the experimental test results we conclude
that the MAA method for estimating bounds on a polynomial over a range is
not only more accurate but also much faster than the standard AA method.
We also have demonstrated that the MAA method is very similar to the IAC
method but also takes into consideration the special properties of even and odd
powers of polynomial terms. Therefore the MAA method is always at least as
or slightly more accurate than the IAC method. We have also shown that the
IAC method is more accurate than the standard AA method. In conclusion we
strongly recommend that the MAA method is used instead of standard AA
method in geometric computations on implicit curves and surfaces.
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