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Just by adjusting the control points iteratively, progressive-iterative approximation presents
an intuitive and straightforward way to fit data points. It generates a curve or patch se-
quence with finer and finer precision, and the limit of the sequence interpolates the data
points. The progressive-iterative approximation brings more flexibility for shape controlling
in data fitting. In this paper, we design a local progressive-iterative approximation format,
and show that the local format is convergent for the blending curve with normalized to-
tally positive basis, and the bi-cubic B-spline patch, which is the most commonly used
patch in geometric design. Moreover, a special adjustment manner is designed to make the
local progressive-iterative approximation format is convergent for a generic blending patch
with normalized totally positive basis. The local progressive-iterative approximation format
adjusts only a part of the control points of a blending curve or patch, and the limit curve
or patch interpolates the corresponding data points. Based on the local format, data points
can be fit adaptively.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

By adjusting the control points of a blending curve or patch iteratively, a sequence of curves or patches can be gener-
ated. If the limit of the sequence interpolates the initial control points, we say that the blending curve or patch has the
progressive-iterative approximation (abbr. PIA) property. The PIA property presents an intuitive and straightforward way to
generate a sequence of curves or patches with finer and finer precision for data point fitting.

The progressive-iterative approximation (PIA) property of the uniform cubic B-spline curve is discovered by Qi et al.
(1975) and de Boor (1979), respectively. In Lin et al. (2004), the authors show that the non-uniform cubic B-spline curve
and patch also hold the property. Furthermore, the result is extended to the blending curve and patch with normalized
totally positive basis (Lin et al., 2005). That is, any blending curve or patch with normalized totally positive basis has the
progressive-iterative approximation (PIA) property. In Delgado and Peña (2007), the convergence rates of different bases are
compared, and the basis with the fastest convergence rate is found. Moreover, it is proved that the rational B-spline curve
and surface (NURBS) have the property, too (Shi and Wang, 2006). Recently, Martin et al. (2009) devise an iterative format
for fitting, which is actually the progressive-iterative approximation (PIA) format for the uniform periodic cubic B-spline.

Furthermore, the PIA format has been extended to subdivision surface fitting. Cheng et al. design the PIA format of
subdivision fitting for loop subdivision surface (Cheng et al., 2008, 2009), and prove its convergence. Fan et al. develop the
PIA format of Doo–Sabin subdivision surface fitting (Fan et al., 2008). The PIA format for Catmull–Clark subdivision surface
fitting is proposed in Chen et al. (2008).
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Recently, Maekawa et al. invent an iterative fitting format, called interpolation by geometric algorithm (Maekawa et al.,
2007; Gofuku et al., 2009), which is similar to PIA format. The main difference between PIA and interpolation by geometric
algorithm is that the former depends on parametric (or algebraic) distance, while the latter relies on geometric distance. The
convergence of the interpolation by geometric algorithm is validated by experiments, without theoretical assurance.

Noticeably, the PIA format mentioned above is global, which needs to adjust all of the control points of a curve or
patch. In this paper, we first design a local progressive-iterative approximation (PIA) format for a blending curve with
normalized totally positive basis, and prove its convergence. By the local format, we can adjust only a subset of the control
points progressively, and the corresponding points on the limit curve still interpolate the corresponding subset of the initial
data points. The local progressive-iterative approximation format brings more flexibility to data fitting: (1) A data point
sequence can be fit by one by one point adjustment. (2) The fitting precision for each point can be controlled separately.
In other words, some points can be fit with high precision, while other points are fit with low precision. Moreover, though
it is difficult to show the convergence of the local PIA format for a generic blending patch, we show that, for a most
commonly used case, that is, bi-cubic B-spline patch, the local PIA format is convergent. In addition, a special adjusting
manner is developed, which ensures the local PIA format for a generic blending patch with normalized totally positive basis
is convergent. However, in the case of fitting a bi-cubic B-spline patch to regular gridded data, the usual method to directly
compute the interpolating patch is sometimes faster than the PIA method, as the usual method only requires to solve a
tri-diagonal system.

This paper is organized as follows. In Section 2, we develop the local progressive-iterative approximation (PIA) format
for a blending curve with normalized totally positive basis, and show its convergence. In Section 3, we design the local PIA
format for a blending patch, and present some results on its convergence. Section 4 shows the convergence of the local
PIA for a bi-cubic B-spline patch. Moreover, a special adjustment manner is developed in Section 5, which ensures the
convergence of the local PIA for a generic blending patch with normalized totally positive basis. Some experimental results
are illustrated in Section 6. Finally, the last section concludes the paper.

2. Local PIA format for a blending curve

Given an ordered point sequence {P i ∈ R
3 | i = 0,1, . . . ,n}, each point P i is assigned a parameter value ti , i = 0,1, . . . ,n,

satisfying

t0 < t1 < · · · < tn. (1)

With the initial control points,{
P 0

i = P i
∣∣ i = 0,1, . . . ,n

}
, (2)

and a normalized totally positive basis,

{
Bi(t)

∣∣ i = 0,1, . . . ,n
}
, with Bi(t) � 0, and

n∑
i=0

Bi(t) = 1, (3)

an initial blending curve can be constructed, that is,

P 0(t) =
n∑

i=0

P 0
i Bi(t). (4)

By adjusting the control points P k
i , i = 0,1, . . . ,n, k = 1,2, . . . , along the vectors

�k
i = P i − P k(ti), (5)

namely,

P k+1
i = P k

i + �k
i , (6)

we get a curve sequence

P k(t) =
n∑

i=0

P k
i Bi(t), k = 0,1, . . . . (7)

It has been shown in Lin et al. (2004, 2005) that

lim �k
i = 0 and lim P k(ti) = P i, i = 0,1, . . . ,n. (8)
k→∞ k→∞
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That is, the limit curve of {P k(t)} interpolates the point sequence {P i | i = 0,1, . . . ,n}. It is the so-called progressive-
iterative approximation of a blending curve with normalized totally positive basis. Notably, the above progressive-iterative
approximation format is global, since all of the control points need to be adjusted.

In this section, we will present a more flexible format, the local progressive-iterative approximation format, which adjusts
only a subset of the control points, not all of them.

Suppose only the i0th, i1th, . . . , i I th control points are adjusted, and the other control points, the j0th, j1th, . . . , j J th,
remain unchanged. That is, P k

h = P h , h ∈ { j0, j1, . . . , j J }, k = 0,1, . . . . Therefore, the vectors {�k
i | i = 0,1, . . . ,n, k = 0,1, . . .}

(Eq. (5)) fall into two classes, one for the adjusted control points, called adjusting vectors, and the other for the unchanged
control points, called difference vectors.

On one hand, for the adjusting vector �k+1
l , l ∈ {i0, i1, . . . , i I }, we have

�k+1
l = P l −

n∑
i=0

P k+1
i Bi(tl)

= P l −
∑

i∈{ j0, j1,..., j J }
P i Bi(tl) −

∑
i∈{i0,i1,...,i I }

(
P k

i + �k
i

)
Bi(tl)

= P l −
n∑

i=0

P k
i Bi(tl) − �k

i0
Bi0(tl) − �k

i1
Bi1(tl) − · · · − �k

i I
Bi I (tl)

= �k
l − �k

i0
Bi0(tl) − �k

i1
Bi1(tl) − · · · − �k

i I
Bi I (tl)

= −�k
i0

Bi0(tl) − �k
i1

Bi1(tl) − · · · + (
1 − Bl(tl)

)
�k

l − · · · − �k
i I

Bi I (tl). (9)

On the other hand, the difference vector �k+1
h , h ∈ { j0, j1, . . . , j J }, corresponding to the unchanged control point P h is

�k+1
h = P h −

n∑
i=0

P k+1
i Bi(th)

= P h −
∑

i∈{ j0, j1,..., j J }
P i Bi(th) −

∑
i∈{i0,i1,...,i I }

(
P k

i + �k
i

)
Bi(th)

= P h −
n∑

i=0

P k
i Bi(th) − �k

i0
Bi0(th) − �k

i1
Bi1(th) − · · · − �k

i I
Bi I (th)

= �k
h − �k

i0
Bi0(th) − �k

i1
Bi1(th) − · · · − �k

i I
Bi I (th). (10)

Specifically, denote

�k = [
�k

j0
,�k

j1
, . . . ,�k

j J
,�k

i0
,�k

i1
, . . . ,�k

i I

]T
, (11)

the iterative format for �k is

�k+1 = C�k, k = 0,1, . . . , (12)

where C is the iterative matrix,

C =
[

I C1
0 C2

]
. (13)

Here, I is the identity matrix of rank ( J + 1) × ( J + 1), and

C1 =
⎡⎢⎣

−Bi0(t j0) −Bi1(t j0) · · · −BiI (t j0)−Bi0(t j1) −Bi1(t j1) · · · −BiI (t j1)· · · · · · · · · · · ·
−Bi0(t j J ) −Bi1(t j J ) · · · −BiI (t j J )

⎤⎥⎦ , (14)

C2 = I − B2, (15)

where I is the identity matrix of rank (I + 1) × (I + 1), and

B2 =
⎡⎢⎣

Bi0(ti0) Bi1(ti0) · · · BiI (ti0)

Bi0(ti1) Bi1(ti1) · · · BiI (ti1)· · · · · · · · · · · ·

⎤⎥⎦ . (16)
Bi0(ti I ) Bi1(ti I ) · · · BiI (ti I )
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Note that, the iterative matrix C (Eq. (13)) is a reducible matrix, so the adjusting vectors and difference vectors can be
handled individually.

Theorem 1. If the matrix B2 (16) is nonsingular, the adjusted control points P k
l tend to P l , l ∈ {i0, i1, . . . , i I }, when k ⇒ ∞. That is,

P k
l ⇒ P l , k ⇒ ∞, l ∈ {i0, i1, . . . , i I }.

Proof. For any l ∈ {i0, i1, . . . , i I }, since �k
l = P l − P k(tl), we only need to show limk→∞ �k

l = 0.
As stated above, since the iterative matrix C (Eq. (13)) is reducible, the adjusting vectors and difference vectors can be

dealt with individually. If we denote

�k
I = [

�k
i0
,�k

i1
, . . . ,�k

i I

]T
,

we have

�k+1
I = C2�

k
I . (17)

That is, C2 is the iterative matrix for the adjusting vectors.
From Eq. (15), we have C2 = I − B2. The nonsingular matrix B2 (16) is a principal sub-matrix of the totally positive

collocation matrix of the normalized totally positive basis {Bi(t) | i = 0,1, . . . ,n}, so B2 is a nonsingular totally positive
matrix, and all of its eigenvalues satisfy 0 < λ(B2) � 1. Therefore, the spectral radius of the iterative matrix C2, ρ(C2) =
ρ(1 − B2) < 1, and then �k

I ⇒ 0, k ⇒ ∞. �
Furthermore, in the following Theorem 2, we will deduce the limit vector of each difference vector �k

h , h ∈
{ j0, j1, . . . , j J }, when k ⇒ ∞. To do so, denote the eigenvalues of the matrix C2 as λ0, λ1, . . . , λI . Since B2 (16) is a
totally positive matrix, there exists the invertible matrix X , such that

C2 = X−1 diag(λ0, λ1, . . . , λI )X,

where diag(·) is the diagonal matrix. Additionally, denote

�k
J = [

�k
j0
,�k

j1
, . . . ,�k

j J

]T
. (18)

Theorem 2. The difference vector �k
J (18) converges when k ⇒ ∞, and the limit vector is

� J = �0
J + D�0

I . (19)

Here,

D = C1 X−1 diag

(
1

1 − λ0
,

1

1 − λ1
, . . . ,

1

1 − λI

)
X,

where the matrix C1 is presented in Eq. (14), and 0 � λi < 1, i = 0,1, . . . , I .

Proof. It is obtained from Eq. (10) that, for any difference vector �k
h , h ∈ { j0, j1, . . . , j J }, k = 1,2, . . . ,

�k
h = �k−1

h − �k−1
i0

Bi0(th) − �k−1
i1

Bi1(th) − · · · − �k−1
i I

Bi I (th)

= �0
h − Bi0(th)

k−1∑
j=0

�
j
i0

− Bi1(th)

k−1∑
j=0

�
j
i1

− · · · − BiI (th)

k−1∑
j=0

�
j
i I
.

Therefore,

�k
J = �0

J + C1

k−1∑
j=0

�
j
I . (20)

On the other hand, from the proof of Theorem 1, we know that C2 = I − B2, and B2 is a nonsingular totally positive
matrix. So, there exists an invertible matrix X , such that

C2 = X−1 diag(λ0, λ1, . . . , λI )X,

where 0 � λi < 1, i = 0,1, . . . , I, are the eigenvalues of the matrix C2. According to the iterative format (17) of �k
I , it follows,

�
j = C2�

j−1 = X−1 diag
(
λ

j
, λ

j
, . . . , λ

j)X�0, j = 1,2, . . . .
I I 0 1 I I
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Hence,

k−1∑
j=0

�
j
I = X−1

k−1∑
j=0

diag
(
λ

j
0, λ

j
1, . . . , λ

j
I

)
X�0

I = X−1 diag

(
1 − λk

0

1 − λ0
, . . . ,

1 − λk
I

1 − λI

)
X�0

I . (21)

Substituting the above equation (21) to Eq. (20), leads to

�k
J = �0

J + C1 X−1 diag

(
1 − λk

0

1 − λ0
, . . . ,

1 − λk
I

1 − λI

)
X�0

I .

Because λi ∈ [0,1), i = 0,1, . . . , I , when k ⇒ ∞, �k
J converges to

� J = �0
J + C1 X−1 diag

(
1

1 − λ0
, . . . ,

1

1 − λI

)
X�0

I .

This concludes the proof. �
Specifically, if only one control point P l is adjusted, and all of the others remain unchanged, we have the corollary below.

Corollary 1. If only one control point P l is adjusted, the difference vector

lim
k→∞

�k
h = �0

h − Bl(th)

Bl(tl)
�0

l , h = 0,1, . . . , l − 1, l + 1, . . . ,n.

2.1. Rational curves

In this section, we will show that the local progressive-iterative approximation format for a rational curve,

T (t) =
∑n

i=0 ωi P i Bi(t)∑n
i=0 ωi Bi(t)

, (22)

is also convergent. Here, P i are the given data points (Eq. (2)), Bi(t) are the normalized totally positive basis (Eq. (3)), and
ωi > 0 are the weights endowed to the data points where i = 0,1, . . . ,n.

By assigning each data point a parameter ti , i = 0,1, . . . ,n, as shown in Eq. (1), and introducing the homogeneous
coordinates Q 0

i = Q i = (ωi P i,ωi), i = 0,1, . . . ,n, the following global progressive-iterative approximation format for a
rational curve in homogeneous form can be constructed,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Rk(t) =
n∑

j=0

Q k
j B j(t),

�k
i = Q i − Rk(ti),

Q k+1
i = Q k

i + �k
i ,

i = 0,1, . . . ,n; k = 0,1, . . . .

(23)

The curve sequence {Rk(t) | k = 0,1, . . .} is called the iterative rational curve sequence in homogeneous form. Moreover, suppose
Rk(t) = {ωk(t)T k(t),ωk(t)}, where ωk(t) = ∑n

i=0 ωk
i Bi(t). By projecting, it can be transformed into Euclidean coordinate

form,

T k(t) =
∑n

i=0 ωk
i P k

i Bi(t)∑n
i=0 ωk

i Bi(t)
, k = 0,1, . . . , (24)

called the iterative rational curve sequence in Euclidean form.
For simplicity, denote Rk

i = Rk(ti), T k
i = T k(ti), and Ωk

i = ωk(ti). We have,

Theorem 3. The iterative rational curve sequence in homogeneous form (Eq. (23)) is convergent, namely, limk→∞ Rk
i = Q i , i =

0,1, . . . ,n.

Because the iterative matrix of {Rk(t) | k = 0,1, . . .} is the same as that of the corresponding iterative format for a
polynomial curve, the proof of Theorem 3 is very similar to that of the convergence of the global progressive-iterative
format for a polynomial curve. For the details of the proof, please refer to Lin et al. (2004, 2005) and Shi and Wang (2006).

Furthermore, we have,
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Theorem 4. limk→∞ T k
i = P i , and limk→∞ Ωk

i = ωi , i = 0,1, . . . ,n.

The above theorem means that, in Euclidean space, the rational curve sequence {T k(t)} will interpolate the data point P i
at the parameter ti , and ωk(ti) tends to ωi when k ⇒ ∞, where i = 0,1, . . . ,n. The result of the above theorem is proved
in Shi and Wang (2006), but to cubic NURBS curve and surface. However, the proof can be employed to prove the general
result in the above theorem without any modification. For the sake of integrality, we append the proof in Appendix A.

Similarly, the local progressive-iterative approximation format for the rational curve can be defined, by allowing only a
subset of the control points Q k

l , l ∈ {i0, i1, . . . , i I }, k = 0,1, . . . , to be adjusted, and the other control points unchanged. The
result below is the direct corollary of Theorems 1, 3, 4.

Corollary 2. For any adjusted control point Q k
l , l ∈ {i0, i1, . . . , i I }, k = 0,1, . . . , limk→∞ Rk

l = Q l , limk→∞ T k
l = P l , and

limk→∞ Ωk
l = ωl .

3. Local PIA format for a blending patch

In this section, we develop the local PIA format for a blending patch, and study its convergence. At last, we show that if
the local PIA format for a polynomial patch is convergent, so is the format for the corresponding rational patch. For clarity
in developing the local PIA format, we need to first introduce the global PIA format (Lin et al., 2004, 2005).

3.1. Global PIA format

Given an ordered point set {P i j ∈ R
3}m

i=0
n
j=0, each point P i j is assigned a parameter value (ui, v j), i = 0,1, . . . ,m, j =

0,1, . . . ,n, satisfying

u0 < u1 < · · · < um, v0 < v1 < · · · < vn. (25)

With the control points{
P 0

i j = P i j
}m

i=0
n
j=0, (26)

an initial surface can be constructed, that is,

S0(u, v) =
m∑

i=0

n∑
j=0

P 0
i j Bi(u)B j(v), (27)

where Bi(u), B j(v) are basis functions.
By adjusting the control points P k

i j,k = 1,2, . . . , along the vectors,

�k
i j = P i j − Sk(ui, v j), (28)

that is,

P k+1
i j = P k

i j + �k
i j, (29)

we get a surface sequence

Sk(u, v) =
m∑

i=0

n∑
j=0

P k
i j Bi(u)B j(v), k = 0,1, . . . . (30)

The global progressive-iterative approximation (PIA) property (Lin et al., 2004, 2005) of the blending patch (27) is that

lim
k→∞

�k
i j = 0, or equivalently,

lim
k→∞

Sk(ui, v j) = P i j, i = 0,1, . . . ,m, j = 0,1, . . . ,n. (31)

That is, the limit surface of {Sk(u, v)} interpolates the point set {P i j | i = 0,1, . . . ,m, j = 0,1, . . . ,n}.
Specifically, denote

�l = [
�l

00,�
l
01, . . . ,�

l
0n,�

l
11, . . . ,�

l
1n, . . . ,�

l
m1, . . . ,�

l
mn

]T
, l = k,k + 1, (32)

the iterative format for �l is
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�k+1 = G�k, G = I − D, k = 0,1, . . . , (33)

where I is the identity matrix; the collocation matrix D is the Kronecker product of D1 and D2, namely,

D = D1 ⊗ D2, (34)

with

D1 =
⎡⎢⎣

B0(u0) B1(u0) · · · Bm(u0)

B0(u1) B1(u1) · · · Bm(u1)

· · · · · · · · · · · ·
B0(um) B1(um) · · · Bm(um)

⎤⎥⎦ ,

D2 =
⎡⎢⎣

B0(v0) B1(v0) · · · Bn(v0)

B0(v1) B1(v1) · · · Bn(v1)

· · · · · · · · · · · ·
B0(vn) B1(vn) · · · Bn(vn)

⎤⎥⎦ . (35)

If the basis is normalized totally positive, then D1 and D2 are stochastic and totally positive matrices. Thus, if D1 and
D2 are nonsingular, the spectral radius of the matrix D is in the interval (0,1], so the iterative format (33) is convergent to
zero, meaning that the limit surface interpolates the given point set {P i j ∈ R

3}m
i=0

n
j=0 (Lin et al., 2004, 2005).

3.2. Local PIA format

Now, we can present the local progressive-iterative approximation (PIA) format. The local PIA format is more flexible
than the global one, which permits only a part of the control points to be adjusted, not the whole. Thus, the fitting can
be performed adaptively. That is, if the fitting precision at some data points does not achieve the pre-defined threshold,
the control points corresponding to these data points can be adjusted by the local PIA format to improve the fitting pre-
cision, while other control points remain unchanged. Therefore, the local PIA format can save the computational resources
significantly, especially when the number of the data points is huge.

Suppose only the control points with indices (k0, l0), (k1, l1), . . . , (k J , l J ) are adjusted, and other control points remain
unchanged. To present the local progressive-iterative approximation (PIA) format, we re-arrange �l (32) as

�l = [
�l

i0, j0
,�l

i1, j1
, . . . ,�l

i I , j I
,�l

k0,l0
,�l

k1,l1
, . . . ,�l

k J ,l J

]T
, l = k,k + 1. (36)

Here, �l
i0, j0

, . . . ,�l
i I , j I

correspond to the unchanged control points, called difference vectors, while �l
k0,l0

, . . . ,�l
k J ,l J

corre-

spond to the adjusted control points, called adjusting vectors. They are arranged in row-major order, respectively. In the
following, adjusting vectors and difference vectors will be studied separately.

First, the iterative format for the adjusting vector �l
kr ,lr

, r = 0,1, . . . , J , is

�k+1
kr ,lr

= P kr ,lr − Sk+1(ukr , vlr )

= P kr ,lr −
m∑

i=0

n∑
j=0

P k
i j Bi(ukr )B j(vlr ) − �k

k0,l0
Bk0(ukr )Bl0(vlr )

− · · · − �k
k J ,l J

Bk J (ukr )Bl J (vlr )

= −�k
k0,l0

Bk0(ukr )Bl0(vlr ) − · · · − (
Bkr (ukr )Blr (vlr ) − 1

)
�k

kr ,lr

− · · · − �k
k J ,l J

Bk J (ukr )Bl J (vlr ). (37)

Second, the iterative format for the difference vector �l
ir , jr

, r = 0,1, . . . , I , is

�k+1
ir , jr

= P ir , jr − Sk+1(uir , v jr )

= P ir , jr −
m∑

i=0

n∑
j=0

P k
i j Bi(uir )B j(v jr ) − �k

k0,l0
Bk0(uir )Bl0(v jr )

− · · · − �k
k J ,l J

Bk J (uir )Bl J (v jr )

= �k
ir , jr

− �k
k0,l0

Bk0(uir )Bl0(v jr ) − · · · − �k
k J ,l J

Bk J (uir )Bl J (v jr ). (38)

Combining Eqs. (37) and (38), we can construct the iterative format for �l , l = k,k + 1 (36), that is,

�k+1 = C�k, k = 0,1,2, . . . , (39)
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where C is the iterative matrix,

C =
[

I C1
0 C2

]
. (40)

Here, I is the identity matrix of rank (I + 1) × (I + 1), and

C1 =

⎡⎢⎢⎣
−Bk0(ui0)Bl0(v j0) −Bk1(ui0)Bl1(v j0) · · · −Bk J (ui0)Bl J (v j0)

−Bk0(ui1)Bl0(v j1) −Bk1(ui1)Bl1(v j1) · · · −Bk J (ui1)Bl J (v j1)

· · · · · · · · · · · ·
−Bk0(uiI )Bl0(v jI ) −Bk1(uiI )Bl1(v jI ) · · · −Bk J (uiI )Bl J (v jI )

⎤⎥⎥⎦ ,

C2 =

⎡⎢⎢⎣
1 − Bk0(uk0)Bl0(vl0) −Bk1(uk0)Bl1(vl0) · · · −Bk J (uk0)Bl J (vl0)

−Bk0(uk1)Bl0(vk1) 1 − Bk1(uk1)Bl1(vl1) · · · −Bk J (uk1)Bl J (vl1)

· · · · · · · · · · · ·
−Bk0(uk J )Bl0(vl J ) −Bk1(uk J )Bl1(vl J ) · · · 1 − Bk J (uk J )Bl J (vl J )

⎤⎥⎥⎦ . (41)

Note that the iterative matrix (40) is reducible, so we can handle the adjusting vectors and difference vectors individually.
Specifically, the iterative format for the adjusting vectors is

�k+1
J = C2�

k
J = (I − E)�k

J , (42)

where �l
J = [�l

k0,l0
,�l

k1,l1
, . . . ,�l

k J ,l J
], l = k,k + 1, I is the identity matrix of rank ( J + 1) × ( J + 1), and

E =

⎡⎢⎢⎣
Bk0(uk0)Bl0(vl0) Bk1(uk0)Bl1(vl0) · · · Bk J (uk0)Bl J (vl0)

Bk0(uk1)Bl0(vk1) Bk1(uk1)Bl1(vl1) · · · Bk J (uk1)Bl J (vl1)

· · · · · · · · · · · ·
Bk0(uk J )Bl0(vl J ) Bk1(uk J )Bl1(vl J ) · · · Bk J (uk J )Bl J (vl J )

⎤⎥⎥⎦ . (43)

In fact, the matrix E (43) is a principal sub-matrix of the matrix D (34). If the first row of E is in the ith row of D , the first
column of E is in the ith column of D , and so on.

The next section studies the convergence of the local PIA format.

3.3. Convergence

Theorem 5. The local progressive-iterative approximation (PIA) format (42) is convergent, if 0 < λ(E) � 1, where λ(E) denotes the
eigenvalue of E.

The proof to Theorem 5 is straightforward, because 0 < λ(E) � 1 is equivalent to 0 � λ(C2) < 1 (42).
In Lin et al. (2004, 2005), it has been shown that, if the basis is normalized totally positive, then D1 and D2 (35) are

stochastic and totally positive matrices. Thus, if both D1 and D2 are nonsingular, the spectral radius of the matrix D (34) is
in the interval (0,1], so the global PIA format (33) is convergent to zero.

However, since the Kronecker product D (34) of two totally positive matrices D1 and D2 (35) is no longer totally positive,
it is not clear whether the eigenvalue of its principal sub-matrix E (43) is still in the interval (0,1]. Fortunately, in Section 4,
we show that, to the most commonly used bi-cubic B-spline patch, 0 < λ(E) � 1, and then the local iterative format (42) is
convergent.

In the following, we will show what will happen if the local PIA format (42) is convergent.
In fact, if the matrix E (43) can be diagonalized, so is C2 (41). That is, there exists a nonsingular matrix X , such that

C2 = X−1 diag(λ0, λ1, . . . , λ J )X,

where λi , i = 0,1, . . . , J , are the eigenvalues of C2 (41).
Denote the difference vector set by �l

I = [�l
i0, j0

,�i1, j1 , . . . ,�i I , j I ], we have,

Theorem 6. If the local PIA format (42) is convergent, and the matrix C2 (41) can be diagonalized, the difference vectors �l
I converge

when k ⇒ ∞, and the limit vectors are

�I = �0
I + F�0

J . (44)

Here,

F = C1 X−1 diag

(
1

1 − λ0
,

1

1 − λ1
, . . . ,

1

1 − λ J

)
X,

where the matrix C1 is presented in Eq. (41), and 0 � λi < 1, i = 0,1, . . . , J , are the eigenvalues of C2 (41).
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The proof of this theorem is similar to that of Theorem 2.
Specifically, if only one control point P i0, j0 is adjusted, and all of the others remain unchanged, we have the corollary

below.

Corollary 3. If only one control point P i0, j0 is adjusted, the difference vector

lim
k→∞

�k
i j = �0

i j − Bi0(ui)B j0(v j)

Bi0(ui0)B j0(v j0)
�0

i0, j0
.

3.4. Rational case

Furthermore, we will study the local PIA format for a rational patch, that is,

T (u, v) =
∑m

i=0
∑n

j=0 ωi j P i j Bi(u)B j(v)∑m
i=0

∑n
j=0 ωi j Bi(u)B j(v)

, (45)

whose homogeneous form is

R(u, v) =
m∑

i=0

n∑
j=0

Q i j Bi(u)B j(v). (46)

Here, Q i j = (ωi j P i j,ωi j), P i j are the given data points (Eq. (26)), and ωi j > 0 are the weights endowed to the data points,
i = 0,1, . . . ,m, j = 0,1, . . . ,n.

As stated above, suppose only J + 1 control points are adjusted, that is, Q kr ,lr , r = 0,1, . . . , J , we have the local PIA
format for the rational patch (46),⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Rk(u, v) =
m∑

i=0

n∑
j=0

Q k
i j Bi(u)B j(v),

�k
i j = Q i j − Rk(ui, v j),

Q k+1
kr ,lr

= Q k
kr ,lr

+ �k
kr ,lr

,

i = 0,1, . . . ,m, j = 0,1, . . . ,n, r = 0,1, . . . , J , k = 0,1, . . . ,

(47)

where Q 0
i j = Q i j , i = 0,1, . . . ,m, j = 0,1, . . . ,n.

It should be pointed out that the local PIA format and iterative matrix for the rational patch in homogeneous form (47)
are the same as Eqs. (39) and (40), respectively. Thus, if denote⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ωk
kr ,lr

=
m∑

i=0

n∑
j=0

ωk
i j Bi(ukr )B j(vlr ),

Rk
kr ,lr

= Rk(ukr , vlr ),

T k
kr ,lr

= T k(ukr , vlr ),

r = 0,1, . . . , J ,

we have,

Theorem 7. If 0 < λ(E) � 1 (43), where λ(E) denotes the eigenvalue of E, the local PIA for the rational patch in homogeneous
form (Eq. (47)) is convergent, namely, limk→∞ Rk

kr ,lr
= Q kr ,lr ; furthermore, limk→∞ T k

kr ,lr
= P kr ,lr , and limk→∞ Ωk

kr ,lr
= ωkr ,lr , r =

0,1, . . . , J .

For the proof of the above theorem, please refer to Shi and Wang (2006) or Appendix A.

4. Convergence of the local PIA format for the bi-cubic B-spline patch

In this section, we will show that the local progressive-iterative approximation (PIA) format (42) is convergent for bi-
cubic B-spline patches.

Refer to Lin et al. (2004), suppose the collocation matrices D1 and D2 of the clamped non-uniform cubic B-spline basis
are:
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D1 =

⎡⎢⎢⎢⎢⎣
a1 0
c1 a2 b2

. . .
. . .

. . .

cm−2 am−1 bm−1
0 am

⎤⎥⎥⎥⎥⎦=
[ a1 0 0

C 1 D̂1 Bm−1
0 0 am

]
,

D2 =

⎡⎢⎢⎢⎢⎣
e1 0
g1 e2 f2

. . .
. . .

. . .

gn−2 en−1 fn−1
0 en

⎤⎥⎥⎥⎥⎦=
[ e1 0 0

G1 D̂2 F m−1
0 0 en

]
, (48)

respectively, which are nonsingular, stochastic, and totally positive matrices. Then, the global PIA iterative matrix for bi-cubic
B-spline patch is D = D1 ⊗ D2 (Lin et al., 2004).

Moreover, since the boundary control points of the clamped bi-cubic B-spline patch do not affect its inside, the boundary
and inner control points can be considered independently. We have the following lemma.

Lemma 1. The eigenvalues of the principal sub-matrix of the matrix D̂ = D̂1 ⊗ D̂2 are all real and in the interval (0,1].

Proof. Since both matrices D̂1 and D̂2 (48) are nonsingular and totally positive matrices, and ‖D̂1‖2 = ‖D̂2‖2 = 1, the
eigenvalues of the two matrices are all in the interval (0,1]. Therefore, the eigenvalues of the matrix D̂ , which is the
Kronecker product of D̂1 and D̂2, are also in (0,1].

Note that both matrices D̂1 and D̂2 are tri-diagonal matrices, so they are similar to symmetric matrices, with invertible
diagonal transformation matrices Ω and Φ as follows, respectively (Chen and Chen, 2000),

Ω = diag(ω2, . . . ,ωm−1), Φ = diag(φ2, . . . , φn−1),

where

ωi =
√

bi−1

ci−1
ωi−1, i = 3, . . . ,m − 1, ω2 = 1,

φ j =
√

f j−1

g j−1
φ j−1, j = 3, . . . ,n − 1, φ2 = 1.

Therefore, if we denote

K = Ω ⊗ Φ =

⎡⎢⎢⎣
ω2Φ

ω3Φ
.. .

ωm−1Φ

⎤⎥⎥⎦ ,

D̃ = K D̂ K −1 is a symmetric matrix, namely, D̂ is similar to a symmetric matrix. Furthermore, since K is a diagonal matrix,
any principal sub-matrix of D̂ , that is, D̂([i1, . . . , ik], [i1, . . . , ik]), is also similar to the principal sub-matrix of D̃ = K D̂ K −1,
that is, D̃([i1, . . . , ik], [i1, . . . , ik]), with the invertible diagonal transformation matrix K ([i1, . . . , ik], [i1, . . . , ik]).

Moreover, as the eigenvalues of the matrix D̂ are all in (0,1], the symmetric matrix D̃ is positive definite. Hence, all of
the principal sub-matrices of D̃ are positive definite, and then, all of its eigenvalues are positive. So are the eigenvalues of
the principal sub-matrix of D̂ . Together with the fact that ‖D̂‖2 = 1, we show the result. �

Now, we can present the main result of this section.

Theorem 8. The local progressive-iterative approximation (PIA) format (42) for a bi-cubic B-spline patch is convergent.

Proof. If the adjusted control points are all inner control points of a bi-cubic B-spline patch, the matrix E in the iterative
format (42) is a principal sub-matrix of the matrix D̂ in Lemma 1. By Lemma 1, the eigenvalue of E satisfies 0 < λ(E) � 1.
Based on Theorem 5, the local iterative format is convergent.

Furthermore, if the adjusted control points include both boundary and inner control points of a bi-cubic B-spline patch,
they can be considered independently, as stated above. First, the convergence of the adjusting vectors corresponding to the
inner control points is ensured by the above analysis. Second, the adjustment of the boundary points is just a local PIA
format for a cubic B-spline curve, so it is also convergent. �

As a corollary of Theorems 7 and 8, the local PIA format for a bi-cubic NURBS patch is convergent.
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(a) The data points and original curve. (b) After the first iteration, error = 2.6783 × 10−1.

(c) After the fifth iteration, error = 4.1818 × 10−2. (d) After the tenth iteration, error = 4.1044 × 10−3.

Fig. 1. Approximate one point (red dot) with Bézier curve by local progressive-iterative approximation format. (For interpretation of colors in this figure,
the reader is referred to the web version of this article.)

5. Convergence of the local PIA format for a generic blending patch

In this section, we will show that the local PIA format (42) is convergent for a generic blending patch with normalized
totally positive basis, if the adjusted control points are altered row by row, or column by column.

Theorem 9. If the adjusted control points lie in the same row (or column), and the corresponding collocation matrix is nonsingular, the
local PIA format (42) will be convergent for any blending patch with normalized totally positive basis.

Proof. Without loss of generality, suppose the adjusted control points lie in the ith row, that is, P i, j0 , P i, j1 , . . . , P i, j J ,
j0 < j1 < · · · < j J .

In this case, the iterative matrix E (43) can be re-written as

E = [
Bi(ui)

]⊗ [ B j0(v j0) · · · B j J (v j0)· · · · · · · · ·
B j0(v j J ) · · · B j J (v j J )

]
,

where ⊗ denotes the Kronecker product.
Since the basis of the blending patch is normalized totally positive, together with the property of the Kronecker product,

the eigenvalues of the nonsingular matrix E are in (0,1]. Based on Theorem 5, the local format is convergent.
Similarly, the result is true if the adjusted control points lie in the same column. �
Therefore, if a part of the control points of a generic blending patch with normalized totally positive basis is adjusted to

fit a data point set, they can be adjusted row by row (or column by column). That is, we first alter one row of the adjusted
control points by the local PIA format till the fitting precision satisfies the user’s requirement; then, another row of adjusted
control points are changed iteratively; and so on. Finally, all adjusted control points approximate the corresponding data
points with the pre-defined precision.

6. Results and discussion

In this section, some examples are presented to illustrate the local approximation capability of the local PIA format. We
take the fitting error for the case of curve as

error =
∑ ∥∥P i − P k(ti)

∥∥,

i∈{i0,i1,...,i I }
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(a) The data points and original curve. (b) After the first iteration, error = 1.0256.

(c) After the fifth iteration, error = 4.8798 × 10−2. (d) After the tenth iteration, error = 2.8366 × 10−3.

Fig. 2. Approximate three continuous points (red dots) with cubic B-spline curve by local progressive-iterative approximation format. (For interpretation of
colors in this figure, the reader is referred to the web version of this article.)

where {i0, i1, . . . , i I } are the indices of the adjusted control points, and the fitting error for the patch as

error = max
{∥∥P i j − P k(ui, v j)

∥∥ ∣∣ (i, j) ∈ {(k0, l0), (k1, l1), . . . , (k J , l J )
}}

,

where {(k0, l0), (k1, l1), . . . , (k J , l J )} are the indices of the adjusted control points. Fig. 1 to Fig. 3 demonstrate the examples
for curves, and Fig. 4 to Fig. 7 are the examples for patches. All examples are implemented with Matlab, and run on the PC
with 2.83 GHz CPU and 3.25 GB memory.

A Bézier curve is a blending curve with Bernstein basis, which is totally positive. It has been shown in Lin et al. (2005)
that, if the collocation matrix of the Bernstein basis is nonsingular, the global progressive-iterative format is convergent.
Furthermore, based on Theorems 1 and 2 in Section 2, the local progressive-iterative approximation format of the Bézier
curve is also convergent. Due to the global support property of the Bernstein basis function, adjusting even one control
point except the head and tail one will influence the whole curve. Fig. 1 illustrates an example where only one control
point is adjusted. The eleven data points are sampled from the curve Lemniscate of Gerono,{

x(t) = cos(t),
y(t) = sin(t) cos(t),

at ti = −π
2 + i 2π

10 , i = 0,1, . . . ,10.
On the other hand, a B-spline curve is a blending curve with B-spline basis. Here, the B-spline curve is clamped. The

collocation matrix of the B-spline basis at the knots is nonsingular and totally positive. Therefore, both the global and local
progressive-iterative formats are convergent. Differing from the Bézier curve, adjusting a control point of a B-spline curve
only influences several curve segments, not the whole. Fig. 2 demonstrates the local progressive-iterative approximation of
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(a) The data points and original curve. (b) After the first iteration, error = 6.7031 × 10−1.

(c) After the fifth iteration, error = 8.2293 × 10−3. (d) After the tenth iteration, error = 3.7309 × 10−5.

Fig. 3. Approximate three separated points (red dots) with cubic NURB curve by local progressive-iterative approximation format. (For interpretation of
colors in this figure, the reader is referred to the web version of this article.)

a clamped cubic B-spline curve, where three continuous control points are adjusted. In this example, twenty data points are
sampled from the helix,{ x(t) = t cos(4t) + 3,

y(t) = t sin(4t) + 3,

z(t) = 1.2t,

at ti = 3π
10 + i π

10 , i = 0,1, . . . ,19.
Moreover, based on Theorems 3, 4, and Corollary 2, the local progressive-iterative approximation formats for rational

Bézier curve and NURB (Non-Uniform Rational B-spline) curve are both convergent. Similarly, adjusting one control point
of a rational Bézier curve influences the whole curve, while adjusting one control point of an NURB curve only affects
several segments of the curve. Fig. 3 illustrates the local progressive-iterative approximation of a cubic NURB curve to three
separated data points, namely, the seventh, eleventh, and thirteenth. The data points in homogeneous form in this example
are (xi, yi, zi, wi), i = 0,1, . . . ,19, where (xi, yi, zi) are sampled from{ x(t) = 3 cos t,

y(t) = 3 sin t cos t,
z(t) = t,

at ti = i 6π , i = 0,1, . . . ,19, and wi = 1, i = 0,1, . . . ,19, except w7 = w11 = w13 = 0.7.
19
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(a) #Ite. = 0, err. = 1.4734. (b) #Ite. = 5, err. = 0.061.

(c) #Ite. = 9, err. = 0.006.

Fig. 4. Approximate three pre-specified points (red dots) with bi-cubic B-spline patch by local progressive-iterative approximation format. (For interpretation
of colors in this figure, the reader is referred to the web version of this article.)

On the other hand, Fig. 4 to Fig. 7 are the examples for patches. In Fig. 4, the data points are sampled from the peak
function of Matlab, and only three of them (displayed in red dots) are selected to be approximated by the local PIA of
bi-cubic B-spline patch. As illustrated in Fig. 4, the initial fitting error is 1.4736. After nine iterations, the fitting error is
reduced to 0.006.

Furthermore, based on the local PIA format, we can design an adaptive fitting method to fit data points, by just adjusting
the control points with fitting precision above a pre-defined threshold. Figs. 5–7 demonstrate the adaptive fitting method.
In the three examples, the red dots represent the data points with fitting precision above a pre-defined threshold.

In Fig. 5, the data points sampled from the peak function of Matlab is fit using the adaptive manner. At the initial state,
the fitting error is 1.8680, and the fitting precisions at nearly all data points are above the pre-defined threshold 10−2,
except at the four corners. By adjusting just the control points corresponding to these data points, whose fitting precision
is above 10−2, using local PIA of bi-cubic B-spline patch, the fitting precisions at all data points are below the pre-defined
threshold 10−2 after eighteen iterations.

Fig. 6 is another example for adaptive fitting. The data points are sampled from a triangular mesh model ear-cut. The pre-
defined fitting precision is 10−3. With the increase of the iteration time, the number of the data points with fitting precision
above 10−3, displayed in red dots, is decreased continually (Fig. 6(a)–(c)). After seven iterations, the fitting precisions at all
data points are below the pre-defined threshold 10−3 (Fig. 6(d)).
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(a) #Ite. = 0, err. = 1.8680. (b) #Ite. = 6, err. = 0.095.

(c) #Ite. = 10, err. = 0.042. (d) #Ite. = 18, err. = 0.0099.

Fig. 5. Approximate the data points sampled from the peak function in Matlab by the adaptive fitting algorithm using local PIA for bi-cubic B-spline patch
till the fitting precision for each point is below e = 10−2, where the points with fitting precision above e = 10−2 are plotted in red, and the points with
precision below e = 10−2 in blue. (For interpretation of colors in this figure, the reader is referred to the web version of this article.)

Table 1
Comparison on the run time between the local and global PIA.

Model names #Iterations Time for local PIA Time for global PIA

Peak (Fig. 5) 18 0.0237 0.3922
Ear-cut (Fig. 6) 7 0.0332 0.4217
Face (Fig. 7) 11 0.8832 6.0143

In Fig. 7, the data point set of 6561 points is sampled from the triangular model face. They are adaptively fit using the
local PIA format of bi-cubic B-spline patch. The fitting precision threshold is set as 10−4. After twelve iterations, the fitting
precisions at all data points are below the threshold.

For comparison, we list in Table 1 the run time of the examples in Fig. 5 to Fig. 7, using the local PIA and global PIA,
respectively. The second column of Table 1 is the iteration times. The third and fourth columns are the time cost by the
local and global PIA, respectively, where the time is in seconds. It can be seen from Table 1 that, the local PIA is faster than
the global PIA algorithm.
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(a) #Ite. = 0, err. = 1.8947 × 10−2. (b) #Ite. = 2, err. = 3.9430 × 10−3.

(c) #Ite. = 5, err. = 1.1857 × 10−3. (d) #Ite. = 7, err. = 9.9403 × 10−4.

Fig. 6. Approximate 21 × 21 = 441 data points sampled from the ear-cut model by the adaptive fitting algorithm using local PIA for bi-cubic B-spline patch
till the fitting precision for each point is below e = 10−3, where the points with fitting precision above e = 10−3 are plotted in red, and the points with
precision below e = 10−3 in blue. (For interpretation of colors in this figure, the reader is referred to the web version of this article.)

Noticeably, the convergence rate of the PIA format is determined by the smallest eigenvalue of the corresponding col-
location matrix. In general, the convergence rate can be improved by multiplying a suitable coefficient before the adjusted
vectors, to make the smallest eigenvalue larger.
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(a) #Ite. = 0, err. = 4.7731 × 10−3. (b) #Ite. = 1, err. = 1.2559 × 10−3. (c) #Ite. = 4, err. = 2.5014 × 10−4.

(d) #Ite. = 7, err. = 1.4431 × 10−4. (e) #Ite. = 12, err. = 9.9953 × 10−5.

Fig. 7. Approximate 81 × 81 = 6561 data points sampled from the face model by the adaptive fitting algorithm using local PIA for bi-cubic B-spline patch
till the fitting precision at each point is below e = 10−4, where the points with fitting precision above e = 10−4 are plotted in red, and the points with
precision below e = 10−4 in blue. (For interpretation of colors in this figure, the reader is referred to the web version of this article.)

7. Conclusion

In this paper, we develop the local PIA format for blending curves and patches. Specifically, we show that the local PIA
format for the blending curve with normalized totally positive basis, as well as the most commonly used bi-cubic B-spline
patch, is convergent. Moreover, a special adjusting manner is developed to make the local PIA format for a generic blending
patch with normalized totally positive basis convergent. The local PIA format adjusts only a part of the control points of
a blending curve or patch, and the limit interpolates the part of the corresponding data points. Based on the local PIA
format, an adaptive fitting algorithm can be designed, by just adjusting the control points with the fitting precision above a
pre-defined threshold.

It should be pointed out that, though we have made lots of experiments on local PIA for a blending patch with normal-
ized totally positive basis, and all of them are convergent, it is still not clear whether the local PIA for a generic blending
patch with normalized totally positive basis is convergent in theory. It is our future work.
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Appendix A. Proof to Theorem 4

Proof. (See Shi and Wang (2006).) ∀ε > 0, without loss of generality, let ε <
ωi
2 . Since Rk

i → Q i , k → ∞, ∃N > 0, when
k > N , we have ‖Rk

i − Q i‖ < ε. Thus,∥∥Rk
i − Q i

∥∥2 = ∥∥Ωk
i T k

i − ωi P i
∥∥2 + ∥∥Ωk

i − ωi
∥∥2

< ε2,

and then,∥∥Ωk
i − ωi

∥∥< ε, and
∥∥Ωk

i T k
i − ωi P i

∥∥< ε,

therefore,

lim
k→∞

Ωk
i = ωi .

On the other hand, let Ωk
i = ωi + η, with |η| < ε. Then,∥∥Ωk

i T k
i − ωi P i

∥∥= ∥∥(ωi + η)T k
i − (ωi + η)P i + ηP i

∥∥= ∥∥(ωi + η)
(
T k

i − P i
)+ ηP i

∥∥< ε,

so, ∥∥(ωi + η)
(
T k

i − P i
)∥∥− ‖ηP i‖ < ε,

namely,∥∥T k
i − P i

∥∥<
(1 + ‖P i‖)ε

|ωi + η| � (1 + ‖P i‖)ε
ωi − |η| .

Since |η| < ε <
ωi
2 , we have∥∥T k

i − P i
∥∥<

2(1 + ‖P i‖)ε
ωi

.

Hence,

lim
k→∞

T k
i = P i . �
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