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Figure 1: Fertility model. Left: given triangular mesh model. Middle: all-hex volume mesh filling the left mesh model. Right: cutaway view
of the all-hex volume mesh.

Abstract

The hexahedral mesh (hex mesh) is preferred to the tetrahedral
mesh (tet mesh) in finite element methods for numerical simula-
tion. However, generating a hex mesh with desirable qualities of-
ten requires significant geometric decomposition and considerable
user interactions. Therefore, this process may require days or even
weeks in the case of complex shapes. In this paper, we develop a
method based on subdivision fitting to fill a given triangular mesh
model with an all-hex volume mesh. Our method first constructs an
initial control solid, which consists of a face-to-face combination
of several cubes, based on the skeleton of the given model. The
orientation of each cube is determined by the local orientation of
the skeleton and the local shape of the given model. Therefore, the
shape of the control solid is close to that of the given model. Next,
the surface mesh of the initial control solid is extracted and fitted
to the given mesh model by an iterative subdivision fitting method.
In each iteration, the movement of the surface mesh is diffused to
the inner vertices by an optimization technique. After the iteration
stops, an all-hex volume mesh that fills the given triangular mesh
model can be generated by subdividing the control solid with the
multi-linear cell-averaging (MLCA) volume subdivision rule. The
smoothness of the MLCA subdivision rule guarantees that the qual-
ity of the generated all-hex volume mesh is good. Empirical data
show that our algorithm is effective and efficient.
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1 Introduction

In finite element methods for numerical simulation, the hexahe-
dral mesh (hex mesh) is preferred to the tetrahedral mesh (tet
mesh) owing to the reduced error and smaller number of ele-
ments [Shepherd and Johnson 2008]. However, generating a hex
mesh with desirable qualities often requires significant geometric
decomposition. Therefore, hex mesh generation can be extremely
difficult to perform and automate. As a result, it requires consid-
erable user interactions and may require days or even weeks in the
case of complex shapes [Shepherd 2007].

In the hex mesh generation methods, the mapping and sub-mapping
methods can usually generate high quality hex mesh. Recently,
an efficient sub-mapping method based on PolyCube was pre-
sented [Han et al. 2010; Gregson et al. 2011]. Given a volume
mesh model (usually a tet mesh), this method first constructs a
PolyCube [Tarini et al. 2004]. A PolyCube is a solid formed by
combining a number of cubes with the same orientation; hence, it
has a trivial hex mesh. By devising a mapping between the Poly-
Cube and the input model, the sub-mapping method transfers the
hex mesh in the PolyCube to the input model. Therefore, the qual-
ity of the hex mesh is heavily related to the shape of the PolyCube
and the mapping.

In general, the closer the shape of the PolyCube to that of the input
model and the smaller the distortion of the mapping between the
PolyCube and the model, the better is the quality of the hex mesh
transferred to the input model. However, the orientations of the
cubes comprising the PolyCube are the same. Then, in cases where



there are some branches in the input model far away from the axes
of the Polycube, the shape of the PolyCube will be far different
from that of the input model. This will lead to large mapping dis-
tortions and a hex mesh of poor quality. Moreover, achieving low-
distortion mapping is also difficult. In fact, calculating the Poly-
Cube structure and identifying a low-distortion mapping between
the PolyCube and the input model for general shapes remains an
open problem [Xia et al. 2010; Gregson et al. 2011].

In this paper, we develop a method based on subdivision fitting to
fill a given triangular mesh model with an all-hex volume mesh.
This problem is more difficult than that converting a tet mesh to
hex mesh, but very useful because the triangular mesh models
are widely employed in CAD and computer graphics community.
Given a triangular mesh model, we first construct an initial control
solid based on its skeleton. This control solid is also a face-to-face
combination of several cubes. However, unlike in the construction
of a PolyCube, the orientation of each cube in the control solid is
determined by the local orientation of the skeleton and the local
shape of the input model. Therefore, the orientations of the cubes
can differ and the shape of the initial control solid is closer to the
input model than that of the PolyCube.

Furthermore, the surface mesh of the initial control solid is ex-
tracted and fitted to the input mesh model by an iterative subdivi-
sion fitting method. In each iteration, the movement of the surface
mesh is diffused to the inner vertices by an optimization technique.
Finally, the iteration stops when the fitting error between the sub-
division surface mesh and the input mesh satisfies the termination
condition. Thus, an all-hex volume mesh that fills the input triangu-
lar mesh model can be generated by subdividing the control solid
with the multi-linear cell-averaging (MLCA) volume subdivision
rule [Bajaj et al. 2002]. Owing to the smoothness of the MLCA
subdivision volume, the quality of the generated all-hex mesh is
good.

The structure of this paper is as follows. In Section 2, we briefly
review related work. In Section 3, we present an overview of the
entire algorithm. Moreover, we develop the initial control solid con-
struction method in Section 4 and the volume subdivision fitting al-
gorithm in Section 5. After presenting some results and discussions
in Section 6, we conclude the paper in Section 7.

2 Related Work

Hex mesh generation: There is a great deal of lit-
erature on the generation of volume meshes including
tet [Labelle and Shewchuk 2007; Tournois et al. 2009] and
hex meshes. In this paper, we focus on hex mesh generation.
According to Owen’s classification [Owen 1998], hex mesh
generation methods can be categorized into three classes, i.e.,
direct, indirect, and structured methods.

Starting with a quadrilateral boundary surface mesh, direct meth-
ods generate a hexahedron for each quadrilateral according to a
heuristically advancing-front approach. However, when the algo-
rithmic heuristics are exhausted, no additional hexahedra can be
placed. Consequently, this will leave void regions in the generated
hex mesh [Blacker and Meyers 1993; Staten et al. 2005].

Indirect methods first generate a tet mesh, and then convert
it to a hex mesh by tetrahedral decomposition or combination.
The disadvantage of these methods is that the quality of re-
sultant hex mesh can be very poor owing to the high valence
nodes [Melander et al. 1997; Owen and Saigal 2000].

A structured hex mesh is a mesh whose inner vertex valence is
only six . A popular structured method for hex mesh generation

is known as mapping [Cook and Oakes 1982], by which a map
from the given solid with six surfaces to a cuboid is constructed.
A cuboid has a trivial hex mesh, and the hex mesh in the given
solid can be generated by inverse mapping. Although the mapping
method can generate a high-quality hex mesh, it can only deal with
solids of relatively simple shape, i.e., those with six boundary sur-
faces.

To deal with complex solids, a submapping method has been devel-
oped [White et al. 1995]. This submapping algorithm decomposes
the given solid into separate mappable subregions while ensuring
that the constraints within each subregion are consistent with the
adjacent subregions.

The recently proposed hex mesh generation methods based on the
PolyCube are also submapping methods that focus on the con-
struction of the mapping [Han et al. 2010]. In [Li et al. 2010], the
method of fundamental solutions is employed to design a harmonic
volumetric mapping. In [Xia et al. 2010], the given model is first
decomposed into the direct product of a surface and curve and
then parameterized; subsequently, the mapping between the model
and the PolyCube is constructed. Moreover, a volumetric defor-
mation method is utilized to construct the correspondence between
the given model and its PolyCube [Gregson et al. 2011]. However,
computing the PolyCube as well as a low-distortion mapping be-
tween it and the given model for general shapes remains an open
problem [Xia et al. 2010].

For more work on hex mesh generation, we refer the reader to ex-
cellent surveys [Shepherd and Johnson 2008; Owen 1998].

Subdivision Surface Fitting: The limit surface of ap-
proximating subdivision schemes, such as Catmull-Clark
scheme [Catmull and Clark 1978] will shrink, especially when the
initial control mesh is sparse. Usually, this problem is solved by
making the approximating subdivision surface fit the vertices of
the initial mesh, by either global methods [Halstead et al. 1993], or
local methods [Lai and Cheng 2006].

Recently, some new methods, such as progressive interpolation
(abbr. PI) and geometric interpolation (abbr. GI), have been pro-
posed for subdivision surface fitting. They adjust the vertices of the
control mesh iteratively, depending on either parametric distance
in PI or geometric distance in GI, and the limit subdivision sur-
face fits the initial mesh. The convergence of PI has been shown
for the Loop [Cheng et al. 2009], Doo-Sabin [Fan and Lai 2008],
and Catmull-Clark schemes [Chen et al. 2008]. On the other
hand, [Maekawa et al. 2007] develop a geometric interpola-
tion algorithm for the Loop subdivision scheme. Moreover,
[Nishiyama et al. 2008] present a geometric approximation algo-
rithm for the Loop subdivision surface by distributing the difference
vector for each data point to the related control vertices. Given that
the geometric interpolation (approximation) algorithm must com-
pute the closest point on the limit surface for each data point in
each iteration, it incurs great computational costs.

Different from existing subdivision fitting algorithms which take
the limit surface of subdivision as the approximating surface, in this
paper, we develop an iterative subdivision surface fitting algorithm
which takes the mesh surface after finite time subdivisions as the
approximating surface.

Volume Subdivision: Similar to the two-dimensional (2D) subdi-
vision scheme, the volume subdivision scheme can generate a se-
quence of increasingly dense volume meshes by recursive subdivi-
sion starting from a coarse volume mesh. The volume subdivision
is mainly applied to model deformation, and its smoothness analy-
sis is difficult to handle.



Thus far, only a few volume subdivision schemes have been de-
veloped. These schemes can be categorized into two classes: hex-
ahedral and tetrahedral. To our best knowledge, the first volume
subdivision scheme was developed in [MacCracken and Joy 1996]
for subdividing hex meshes. This scheme is an extension of
the Catmull-Clark subdivision scheme. Furthermore, Bajaj et al.
developed the MLCA subdivision rule and analyzed its smooth-
ness [Bajaj et al. 2002]. The MLCA subdivision rule can be applied
in any dimension, including 2D quadrilateral surface mesh, and 3D
hex volume mesh.

On the other hand, tet mesh subdivision schemes have been
devised by generalizing the subdivision rules for trivariate box
splines, either with [Chang et al. 2002] or without a preferred di-
rection [Schaefer et al. 2004].

In this paper, we develop a progressive volume subdivision fitting
method for filling the given triangular mesh model.

3 Overview

Our algorithm takes a triangular mesh P as input and outputs an all-
hex mesh that fills the inside of P . The algorithm can be divided
into two steps: initial control solid construction and progressive
volume subdivision fitting.

Initial Control solid construction: Given a triangular mesh P ,
we first extract its skeleton, and decompose it into several levels
of branches, each of which is actually a piece of polyline. We then
construct a sweeping solid along each branch. Finally, the sweeping
solids are merged into a unified solid by a grafting operation. This
unified solid of all-hex mesh is taken as the initial control solid,
whose shape is much closer to the given mesh model P than that of
the PolyCube.

Progressive volume subdivision fitting is an iterative method that
consists of two parts: progressive MLCA surface subdivision fitting
(abbr. progressive MSS fitting) and movement diffusion from the
surface mesh vertices to the inner vertices. Given an initial con-
trol solid, we extract its quadrilateral surface mesh and develop
a progressive MSS fitting algorithm to fit the surface mesh to the
given mesh P . The progressive MSS fitting algorithm is performed
iteratively, and the movements of the surface mesh vertices are
transferred to the inner vertices of control solid after each itera-
tion. When the iteration stops, the all-hex volume mesh that fills
the given mesh model P can be generated by subdividing the final
control solid with the MLCA rule.

4 Initial Control Solid Construction

The shape of the initial control solid is one of the major factors that
influences the quality of the generated hex mesh. In this section,
we develop a method for constructing the initial control solid. The
shape of the constructed control solid is not only very close to the
given mesh P , but also easily discretized into an all-hex mesh.

4.1 Skeleton extraction and decomposition

Given a mesh model P , the control solid construction algorithm
begins with its skeleton. We employ the mesh contraction algo-
rithm [Au et al. 2008] to generate the skeleton of mesh P (Fig. 2).
The algorithm can output not only the skeleton of mesh P itself,
but also information on which mesh vertices contract to a skeleton
vertex. This information is useful in the following steps.

In fact, there are two types of vertices in the skeleton: normal ver-
tices and joint vertices. A normal vertex has two adjacent edges, ex-

(a) (b)

Figure 2: Skeleton (b) of the given mesh model ’dog’ (a). The
polyline in red is the first level branch, and the polylines in blue are
the second level branches.

cept the head and tail vertices, each of which has only one adjacent
edge. A joint vertex has three or more adjacent edges (Fig. 2(b)).

Next, regarding the so-constructed skeleton as a graph, it is decom-
posed into several levels of branches called skeleton branches, each
of which is a piece of polyline (Fig. 2(b)). Of these branches, the
first-level branch is the most important for the shape of the solid.
To make the first-level branch desirable, we allow users to select a
number of vertices of the skeleton and take the shortest path pass-
ing these vertices as the first-level branch. In our implementation,
we use the Dijkstra algorithm to generate the shortest path.

Deleting the first-level branch from the skeleton, which is a graph,
may leave a number of separate sub-graphs. In each sub-graph,
we search the longest path as the second-level branch and delete it
from the sub-graph. This procedure continues until no sub-graphs
remain. In this way, the entire skeleton is decomposed into several
branches (Fig. 2(b)).

Finally, based on the decomposed skeleton branches and the infor-
mation about which mesh vertices contract to a skeleton vertex, the
mesh model P can be segmented into several sub-meshes, each of
which corresponds to a piece of skeleton branch.

4.2 Sweeping solid generation

As stated in Section 4.1, each branch level is a piece of polyline that
corresponds to a sub-mesh. In this section, we construct a sweeping
solid along each skeleton branch (Fig. 3).

(a) (b)

Figure 3: Constructing a sweeping solid along a skeleton branch.
(a) The sphere sequence. (b) The constructed sweeping solid.

Given a piece of branch, we first insert spheres at its joint vertices,
head and tail vertices, and feature vertices (i.e., those with angles
less than 30◦). The inserted spheres divide the branch into several
segments. Along each segment, spheres are inserted by dichotomy
until their union contains all of the branch. Sphere insertion is per-
formed by the averaging method as follows.

Averaging method: To insert a sphere at a point on the branch, we



construct a plane perpendicular to the tangent vector of the branch
at this point. This plane intersects with the mesh edges of the sub-
mesh corresponding to the branch at a series of points qj , j =

1, 2, · · · ,m. We take the averaging point o =
∑m

j=1 qj

m
as the cen-

ter of the inserted sphere, and the average value
∑m

j=1∥qj−o∥
m

as its
radius.

If the sphere is inserted at a vertex vi, i = 1, 2, · · · , n of a branch,
its tangent vector is taken as,

ti =


v2 − v1, i = 1;
vi+1−vi

∥vi+1−vi∥ − vi−1−vi

∥vi−1−vi∥ , 1 < i < n;

vn − vn−1, i = n.

(1)

On the other hand, if the sphere is inserted at an inner point on an
edge of the branch, the edge is taken as the tangent line at this point.

Intersection and self-intersection elimination: Before construct-
ing the sweeping solid, the inserted sphere sequence for each branch
should be further processed to avoid self-intersection and unwanted
intersection between branches.

In fact, such intersection and self-intersection can be avoided if the
sphere sequences satisfy the following conditions:

• In each sphere sequence, one sphere intersects with at most
two adjacent spheres;

• two sphere sequences at the same level can not intersect with
each other;

• the sphere at the joint vertex intersects with each adjacent
higher level sphere sequence at a single sphere.

If a sphere violates the conditions, the related spheres should be
shrunk in proportion to the ratio of their radii until they satisfy the
condition.

We are now in a position to construct the sweeping solid for each
branch. Recall that in constructing the sphere sequence, we place a
plane, which intersects with the corresponding sub-mesh at a series
of points, at the center of each sphere. On each plane, we first estab-
lish a Cartesian coordinate system, (to be explained in the follow-
ing paragraph), and then compute the axis-aligned bounding box of
these intersection points. In this way, a sequence of rectangles is
constructed, each on a plane at the center of a sphere. Finally, by
connecting these rectangles in order, we can generate the sweeping
solid, which is called a control solid branch (Fig. 3(b)).

Construction of Cartesian coordinate system: The orientation
of the Cartesian coordinate system has an effect on the degree of
distortion of the constructed sweeping solid. To reduce this distor-
tion, in constructing the sweeping solid along the first-level skeleton
branch, we compute the oriented bounding box (OBB) of its ver-
tices and project the shortest edge (with direction) of the OBB to
each plane as the first axis. Moreover, in constructing the sweeping
solid along the second- or higher-level skeleton branch, the tangent
vector (see Eq. (1)) of the lower-level branch at the joint vertex,
which connects the current and the lower-level branch, is projected
onto each plane as the first axis. The second axis is perpendicular
to the first axis.

4.3 Hex mesh grafting

The so-constructed control solid branches are separated, each cor-
responding to a piece of skeleton branch. To integrate them into
a unified control solid, we develop a level-by-level mesh grafting
strategy. That is, the second-level solid branches are grafted to the

first level, the third-level branches to the second level, · · · , and so
on.

Before grafting, the first-level solid branch is subdivided twice
by using the MLCA volume subdivision rule [Bajaj et al. 2002]
(Fig. 4(a)). In the following section, we take the second-level solid
branch as an example to elucidate the mesh grafting method, which
is identical for the next-level solid branches.

(a) (b)

Figure 4: Mesh grafting. (a) Before grafting. (b) After grafting and
Laplacian smoothing, the unified solid is taken as the control solid.

Mesh grafting: The higher-level (the second-level) solid branch is
grafted to the lower level (the first level) by first deleting the hexahe-
dra of the higher-level branch, which intersect with the lower-level
branch, and then inserting a number of hexahedra connecting the
two branches (Fig.4(a)).

After deleting the hexahedra of the second-level branch, which in-
tersect with the first level, the two levels of solid branches are still
connected by the skeleton (Fig. 4(a)). Suppose the skeleton inter-
sects the second-level solid at point ps on a hexahedral face S, and
intersects the first-level solid at point pf on a hexahedral face F . In
this way, the skeleton provides a natural correspondence of face F
to face S between the solids of the two levels.

The mesh grafting algorithm searches a suitable n × n hexahedral
region Rn around the face F , where the 1× 1 region R1 is simply
the face F itself, and connects the corresponding vertices of Rn and
S to form a hexahedron. The correspondence between the vertices
should render the distortion of the generated hexahedron as small
as possible.

Suppose the vertices of Rn and S are rni , si, i = 0, 1, 2, 3, respec-
tively. To determine the correspondence between them, we define
two energy functions, En

dis for the distance, and En
dir for the direc-

tion, i.e.,

En
dis(j) =

3∑
i=0

∥∥si − rn(j+i) mod 4

∥∥ , (2)

and,

En
dir(j) =

3∑
i=0

si−rn(j+i) mod 4∥∥∥si−rn
(j+i) mod 4

∥∥∥ · ps−pf

∥ps−pf∥ , (3)

where · is the dot product. The correspondence between rni and
si is more desirable if the sum of the distances between them (i.e.,
En

dis) is smaller and if the direction of the vector sir
n
i is closer

to the direction of the local skeleton pspf , (namely, the En
dir is

greater). Therefore, combining the two energies yields the total
energy function,

En
total(j) = αEn

dis(j) + β 1
En

dir
(j)

, (4)

where α and β are weights. In our implementation, they are taken
as α = 0.6, and β = 0.4.



For each n, we compute a correspondence between si and rni , i =
0, 1, 2, 3 that minimizes En

total by enumeration, and denote it as
En

total(jn). Then, with the expansion of the region Rn, we obtain
an energy sequence {En

total(jn), n = 1, 2, · · · }. The energy will
decrease if the region expansion can reduce the distortion. This
means that when En+1

total(jn+1) > En
total(jn), the region expansion

will increase the distortion. In this case, we stop the expansion and
connect the corresponding vertices between si and rni , forming a
hexahedron connecting the solids of the two levels (Fig. 4(b)).

Furthermore, each hexahedron in the second-level solid is subdi-
vided into an n × n × n volume mesh, and the correspondence
between the vertices on the face S and Rn can be inferred from
that between si and rni , i = 0, 1, 2, 3. Finally, the two levels of
solid branches are grafted by connecting the corresponding vertices
on S and Rn. After Laplacian smoothing, it can be taken as the
initial control solid (Fig. 4(b)).

5 Progressive Volume Subdivision Fitting

Currently, the solid branches are integrated into an initial control
solid with a quadrilateral surface mesh V . Starting with the initial
control solid, we develop a progressive volume subdivision fitting
algorithm to make the subdivided volume fill the space enclosed by
the given mesh P , while the subdivided surface mesh approximates
the mesh P .

The volume subdivision fitting algorithm is an iterative method,
where each iteration includes two procedures: the movement of the
vertices of the surface mesh V , and the movement diffusion from
the vertices of mesh V to the inner vertices of the control solid.
In fact, the vertex iterations of mesh V constitute the progressive
MLCA surface subdivision fitting (abbr. progressive MSS fitting)
algorithm, which will be elucidated in Section 5.1.

When the iteration stops, an all-hex volume mesh that fills the space
enclosed by the given mesh model P can be generated by subdi-
viding the control solid with the MLCA volume subdivision rule.
Owing to the smoothness of the MLCA rule, the generated all-hex
volume mesh is of good quality.

5.1 Progressive MLCA surface subdivision fitting

Existing subdivision fitting algorithms take the limit surface of sub-
division as the approximating surface. This does not meet the re-
quirement of hex mesh generation, which relies on a mesh after
finite time subdivision rather than the subdivision limit surface.
Therefore, the progressive MSS fitting algorithm developed in this
section takes the mesh surface after finite time subdivisions as the
approximating surface.

Taking the quadrilateral surface mesh V to be the initial control
mesh of a MLCA surface subdivision procedure, a mesh surface
denoted as Vγ will be generated after γ time MLCA surface subdi-
visions. Moreover, supposing that the vertices of V and P are v and
p, and called control points and data points, respectively, each iter-
ation of the progressive MSS fitting includes the following steps:

1. For each data point p, compute the closest mesh vertex vcl,γ
on mesh Vγ ;

2. calculate the difference vector δ = p − vcl,γ for each data
point p, and distribute it to the related control points on mesh
V that generate the vertex vcl,γ ;

3. for each control point v, averaging the difference vectors dis-
tributed to it produces the difference vector ∆ for the control
point;

4. adding the difference vector ∆ to the control point v generates
the new control point vnew of the new control mesh,

vnew = v +∆. (5)

The first step is to compute the closest vertex vcl,γ on the mesh
surface Vγ for each vertex p, which will cost a large amount of
computation if the closest point is searched globally. To save com-
putation, we select ten percent of vertices of mesh P with evenly
spaced serial numbers as seeds. The vertices on the mesh Vγ which
are closest to the seeds are first calculated globally. Then, the other
vertices of mesh P are processed in order according to their prox-
imity to the seeds, i.e., first the one-ring adjacencies, followed by
the two-ring adjacencies, · · · , and so on, by searching the vertices
on Vγ with local minimum distances to them. For such a vertex pc
on P , the local search starts with a vertex on Vγ , which is closest
to a vertex at the one ring adjacencies of pc. The searching area
is expanded gradually until a vertex on Vγ with the local minimum
distance to pc is found.

It should be pointed out that in the first five iterations, we com-
pute the closest vertex on the mesh surface Vγ for each data point
on mesh P . Afterwards, the parameters of the closest points on
the mesh surface Vγ are fixed for reducing the computational load.
Moreover, to avoid self-intersection, the Laplace smoothing opera-
tion is performed after each of the first five iterations.

Figure 5: The difference vector (in
red) for data point is distributed
to related control points (vectors in
blue).

The second step is to
construct the difference
vector for data point, i.e.,

δ = p− vcl,γ . (6)

This difference vector
will be distributed to
the related control points
of the control mesh V
(Fig. 5). Recall that the
mesh vertex on mesh Vγ

is a linear combination of
the related control points v1, v2, · · · , vn of the control mesh V , i.e.,

vcl,γ = c1v1 + c2v2 + · · ·+ cnvn, with
n∑

i=1

ci = 1, (7)

where the coefficients ci, i = 1, 2, · · · , n can be easily obtained by
the MLCA surface subdivision rule [Bajaj et al. 2002]. Thus, the
weighted difference vector ciδ is distributed to the control point
vi, i = 1, 2, · · · , n (Fig. 5).

As the third step, all of the difference vectors {cjδj} distributed to a
control point v are collected and averaged in the following manner,

∆ =
∑

j cjδj∑
j cj

, (8)

to generate the difference vector ∆ for control point v.

Finally, adding ∆ to the control point v, generates the new control
point vnew (Eq. (5)) of the new control mesh.

The four steps above are performed iteratively until

∣∣∣ e(k+1)

e(k) − 1
∣∣∣ < ε0, with e(k) =

√∑m
j=1

∥∥∥δ(k)
j

∥∥∥2

m
,

where e(k) is the root mean square (RMS) fitting error of the kth

iteration (see Appendix), and ε0 is a threshold. In our implementa-
tion, we take ε0 = 10−3.



The convergence of the progressive MSS fitting is shown in the
Appendix.

5.2 Movement diffusion

In the above section, we presented the progressive MSS fitting al-
gorithm for surface mesh fitting. After each iteration of the progres-
sive MSS fitting, the movement of the surface mesh vertices should
be diffused to the inner vertices of the control solid. In this section,
a level Laplacian operation is proposed to diffuse the movement of
the surface mesh vertices.

Firstly, the inner vertices are classified into levels according to their
adjacency to the vertices of surface mesh V . Specifically, the inner
vertices in one-ring adjacency to the surface mesh vertices are the
first-level vertices; the left inner vertices in one-ring adjacency to
the first-level vertices are the second-level vertices; · · · ; and so on.

Next, fixing the positions of the surface mesh vertices, the first-level
vertices v are moved to the new position vnew by the following
Laplacian operation,

vnew =
∑d(v)

j=1 vj

d(v)
, (9)

where, d(v) is the degree of the vertex v, and vj are the vertices
in the one-ring neighborhood of v. In succession, the first-level
vertices are fixed and the second-level vertices are moved by (9),
· · · , and so on, until all levels of the inner vertices are adjusted. This
procedure is performed iteratively until the ratio between the largest
movement distance and the diagonal length of the bounding box of
mesh P is below a prescribed threshold T . In our implementation,
T is taken as 10−7.

The progressive MSS fitting and the movement diffusion therein
constitute the progressive volume subdivision fitting algorithm.
When this algorithm stops, we obtain a control solid. An all-hex
volume mesh filling the given triangular mesh P can be generated
by subdividing the control solid γ times with the MLCA volume
subdivision rule.

6 Results and Discussions

The all-hex mesh filling algorithm has been implemented with Vi-
sual C++, and run on a PC with Intel Core2 Quad CPU Q9400
2.66GHz and 4G memory. We test our algorithm by a lot of exam-
ples. Some of them are illustrated in Figs. 1, 6, and 7. The all-hex
mesh generated by our algorithm has very few irregular vertices
(Table 1), and the scaled Jacobian values of most hexes lie in the
interval [0.8,1.0]. In our implementation, we take the mesh surface
after one time subdivision as the fitting surface. The fitting preci-
sion between the surface of the all-hex mesh and the given mesh
surface is guaranteed by the convergence of the progressive MSS
fitting, and adding the vertices of the control mesh can improve the
fitting precision. The runtime of our algorithm usually needs tens
of seconds (Tabel 1).

Fig. 1(left) is a mesh model with complex shape and topology. By
selecting the outer ring as the first level branch, our algorithm suc-
cessfully generates the all-hex mesh filling the mesh model. The
number of the irregular vertices in the all-hex mesh is only 36, while
the total vertex number is 16449. The ratio between the numbers
of irregular and total vertices is just 0.2%. The shape of the model
Santa in Fig. 6 is complicated, our algorithm fills the interior of the
model using all-hex mesh with total 18885 vertices and just 32 ir-
regular vertices. The model Torus Knits in Fig 7 has complex topol-
ogy, which is difficult to handle with PolyCube based methods. Our
algorithm fills the model with structured all-hex mesh.

(a) (b)

(c) (d)

Figure 6: Santa and Isis. (a,b) All-hex mesh filling a given tri-
angular mesh. (c,d) Cutaway view of the all-hex mesh with the
distribution diagram of the scaled Jacobian.

Table 1 lists the statistics for our all-hex mesh filling algorithm. The
fitting precision is represented by the ratio between the last RMS
error and the diagonal length of the bounding box of given mesh
P . The runtime is in seconds, not including the time for skeleton
generation.

Limitations: At the vertex on highly concave area of the given
mesh model, like the area near the ears of Dog in Fig. 7(b), the
correspondence between it and the closest vertex at the subdivi-
sion surface may be wrong, this will lead to self-intersection on
the resulted subdivision surface, and some hexahedra with negative
scaled Jacobian values, such as the example in Fig. 7(b). In our
implementation, after each of the initial five iterations of the pro-
gressive MSS fitting, the resulted control mesh is smoothed three
times by the Laplacian operation. Although it can eliminate the
self-intersection in most cases, it has not theoretical guarantee.

7 Conclusion

Given a triangular mesh model, an algorithm based on subdivision
fitting is developed in this paper to fill the given mesh model with an
all-hex volume mesh. Based on the skeleton of the triangular mesh
model, this method first constructs an initial control solid compris-
ing a face-to-face combination of several cubes. The orientation of
each cube is determined by both the local orientation of the skele-
ton and the local shape of the given mesh model. Hence, the shape
of the initial control solid is close to that of the mesh model. More-
over, the surface mesh of the initial control solid are fitted to the
given mesh model by an iterative subdivision fitting procedure. In
each iteration, the movements of the surface mesh vertices are dif-
fused to the inner vertices of the control solid. When the iteration



Table 1: Statistics for the all-hex mesh filling algorithm

Model #vert. of mesh #hex #total vert. of hex #irr. vert. of hex Jac. avg. Jac. min. precision time (s)
Fig. 1 Fertility 10994 12800 16449 36 0.752151 0.087822 0.007152 10.409

Fig. 6 Santa 10074 14472 18885 32 0.728218 0.086498 0.005058 17.910
Fig. 6 Isis 10957 52544 59941 27 0.743130 0.009021 0.003271 73.977

Fig. 7 Torus Knits 17136 33792 42768 0 0.865208 0.082744 0.002482 18.619
Fig 7 Dog 10058 11904 16097 62 0.721376 -0.099658 0.006301 9.274

Fig. 7 Rabbit 10389 32768 37281 8 0.764151 0.091468 0.005795 29.862
Fig. 7 Ball Joint 10134 41984 47685 31 0.738236 0.093269 0.004280 30.249

#vert. of mesh: number of the vertices in the given triangular mesh; #irr. vert. of hex: number of the irregular vertices in the all-hex mesh;
#hex: number of the hexes in the all-hex mesh; Jac. avg. and Jac. min.: averaged scaled Jacobian, and minimum scaled Jacobian.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: All-hex meshes filling triangular meshes and their cutaway views. (a, b, c, d) All-hex meshes of Torus Knits, Dog, Rabbit, and Ball
Joint. (e,f,g,h) Their cutaway views with the distribution diagrams of scaled Jacobian.

stops, an all-hex volume mesh that fills the given mesh model can be
generated by subdividing the control solid with the MLCA subdivi-
sion rule. The smoothness property of the MLCA rule guarantees
that the all-hex volume mesh will be of good quality.
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Appendix: Convergence of the progressive
MSS fitting

Starting with the initial control mesh V (0) = V , the control mesh
after the kth iteration is denoted as V (k), which has n mesh vertices
v
(k)
i , i = 1, 2, · · · , n, called control points. Subdividing the con-

trol mesh V (k) γ times generates the mesh surface V (k)
γ . Moreover,

suppose the given mesh P have m vertices pj , j = 1, 2, · · · ,m,
called data points, where m > n. To show the convergence of the
progressive MSS fitting, we rewrite Eqs. (6)-(8) with indices in the
following.

In the kth iteration, the difference vector for the data point pj is,

δ
(k)
j = pj − v

(k)
j,γ , (10)

where v
(k)
j,γ is the point on the mesh surface V

(k)
γ with fixed pa-

rameter after the fifth iteration. It is a linear combination of related
control points, i.e.,

v
(k)
j,γ = cj,1v

(k)
1 + cj,2v

(k)
2 + · · ·+ cj,nv

(k)
n , with

n∑
i=1

cj,i = 1.

(11)
By first distributing the weighted difference vector cj,iδ

(k)
j to the

control point v(k)i , and gathering the weighted difference vectors
for each control point in the following manner,

∆
(k)
i =

∑
j∈Ii

cj,iδ
(k)
j∑

j∈Ii
cj,i

=
∑
j∈Ii

cj,i∑
j∈Ii

cj,i
δ
(k)
j , (12)

where Ii is the index set of the data points which distribute their dif-
ference vectors to the control point vki , we get the difference vector
∆

(k)
i for the control point v(k)i . Finally, adding ∆k

i to the control
point vki generates the new control point, i.e.,

v
(k+1)
i = v

(k)
i +∆

(k)
i , i = 1, 2, · · · , n.

Arranging the difference vectors for control points in a sequence,

∆(k) = [∆
(k)
1 ,∆

(k)
2 , · · · ,∆(k)

n ]T ,

the iterative format can be represented in matrix form,

∆(k+1) = (I − ΛATA)∆(k), (13)

where I is an identity matrix, Λ is a diagonal matrix,

Λ = diag{ 1∑
j∈I1

cj,1
, 1∑

j∈I2
cj,2

, · · · , 1∑
j∈In

cj,n
},

and,

A =

 c1,1 c1,2 · · · c1,n
c2,1 c2,2 · · · c2,n

· · · · · ·
cm,1 cm,2 · · · cm,n

 .



On one hand, if ATA is nonsingular, it is positive definite, so
all of its eigenvalues are positive, as well as that of ΛATA, i.e.,
λ(ΛATA) > 0. On the other hand, since

∥∥ΛATA
∥∥ = 1, all of

its eigenvalues are less than or equal to 1, i.e., λ(ΛATA) ≤ 1.
Therefore, the eigenvalues of the matrix I − ΛATA satisfy 0 ≤
λ(I − ΛATA) < 1. It means that the progressive MSS fitting (13)
is convergent.


