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Abstract

T-spline overcomes the topological constraints of the control net of NURBS model successfully. However,
the introduction of T-junctions, L-junctions and the isolated vertices in the T-mesh makes its topological
structure very flexible. As a result, not only the T-mesh is hard to be represented, but the computation
and local refinement of T-spline are difficult to be implemented as well. This hinders the studies and
applications of T-splines in practice. In this paper, we develop the extended T-mesh, which can be
represented in an obj -like format file, and converted into the face-edge-vertex data structure conveniently.
With such data structure, the computation of T-splines can be made much easier. Furthermore, we
develop a new local refinement algorithm, by virtue of the extended T-mesh. The new algorithm is easy
to be implemented, by separating the local refinement into two procedures, the mesh refinement, and
blending function refinement.
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1 Introduction

To overcome the topological constraints of the control net of NURBS model, Sederberg et al.
invent the T-spline, which is a generalization of NURBS. The T-spline control mesh (called T-
mesh) allows a row of control points to terminate, forming a T-junction, so that it is able of
significantly reducing the number of superfluous control points in the NURBS model.

However, since T-spline breaks the topological constraints of NURBS model, the T-mesh can be
made very flexible and complex. Taking two T-meshes presented in Ref. [1] as examples (Fig. 1),
at the left T-mesh (Fig. 1 (a)), there is an L-junction at P3; at the right T-mesh (Fig. 1 (b)),
there is an isolated vertex P . These singular cases make the T-mesh difficult to be represented,
and then the T-spline hard to be computed and refined. As a result, it hinders the wide-ranging
applications of T-splines in practice.
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(a) L-junction at P3. (b) Isolated vertex at P.

Fig. 1: Pre-images of two typical T-meshes in Ref. [1]

In this paper, we recommend using the extended T-mesh instead of the original one. We will
show that, the extended T-mesh can be represented by a obj -like format file, and converted into a
simple face-edge-vertex data structure easily. By the face-edge-vertex structure, the knot vectors
of the blending function attaching to each vertex can be determined conveniently.

More importantly, relying on the extended T-mesh, we develop a new local refinement algo-
rithm, which is the most important algorithm in T-spline. The new algorithm separates the
local refinement into two procedures, mesh refinement and blending function refinement. By the
mesh refinement, we can get the topological structure of the refined T-mesh before the blending
function refinement and new control point generation. Thus, the new local refinement algorithm
is much easier to be implemented than the violation test method proposed in Ref. [1].

1.1 Related Work

Invented by Sederberg et al., T-spline is first presented in [2], and improved in [1]. Moreover,
Wang et al. develop the control point removal algorithm for T-splines [3]. Buffa et al. study
the linear independence of the T-spline blending functions associated with some particular T-
meshes [4]. Inspired by T-splines, He et al. develop the manifold T-spline, defined on arbitrary
manifold domain of any topological type [5].

T-splines have been applied in some areas. Song et al. construct a T-spine volume for defor-
mation [6]. Zheng et al. make use of T-spline to fit Z-map model [7]. Recently, T-spline shows
its great potential in isogeometric analysis [8, 9].

2 The Extended T-mesh and Data Structure

T-spline is a Point-based spline (PB-spline). Each of its control point Pi corresponds to a blending
function,

Bi(s, t) = Ni0(s)Ni0(t), (1)

where, Ni0(s) is a cubic B-spline basis function defined on the knot vector,

si = [si0, si1, si2, si3, si4], (2)

and Ni0(t) is defined on the knot vector,

ti = [ti0, ti1, ti2, ti3, ti4]. (3)
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The knot vectors si (2) and ti (3) are inferred from the T-mesh neighborhood of Pi by the
following rule [1]:

Rule 1. (si2, ti2) are the knot coordinates of Pi. Consider a ray in parameter space R(α) =
(si2 + α, ti2). Then si3 and si4 are the s coordinates of the first two s−edges intersected by the
ray (not including the initial (si2, ti2)). By s−edge, we mean a vertical line segment of constant
s (refer to Fig. 2); similarly, t−edge means a horizontal line segment of constant t. The other
knots in si and ti are found in like manner.
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ti0
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Pi

Fig. 2: Knot lines, s−edges, and t−edges (in green) for the blending function Bi(s, t) [1]

The extended T-mesh retains the s−edges and t−edges for the blending functions at the T-
junctions, L-junctions, and the isolated vertices. As illustrated in Fig. 3, there are four T-junctions
at P1,P2,P3,P4, an L-junction at P5, and an isolated vertex at P6. By retaining the s−edges
and t−edges of the blending functions at these vertices, we get the extended T-mesh in Fig. 3.
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Fig. 3: Pre-image of an extended T-mesh

In the extended T-mesh, the retained s−edges and t−edges are named as virtual edges, which
are illustrated in dashed lines in Fig. 3. On the other hand, the mesh edges in the original T-mesh
are called real edges. Moreover, there are four kinds of vertices in the extended T-mesh, the real
vertex, s-vertex, t-vertex, and virtual vertex. The real vertex is the vertex in the original T-mesh
(displayed in red in Fig. 3), which corresponds to a control point in 3-dimensional space; the
s-vertex (in green solid circle in Fig. 3) is the intersection between a real s-edge and a virtual
edge; the t-vertex (in green dashed circle in Fig. 3) is the intersection between a real t-edge and
a virtual edge; the virtual vertex (in blue in Fig. 3) is the intersection between two virtual edges.
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One advantage of the extended T-mesh over the original T-mesh lies in that, all edges terminate
at other edges, thus eliminating the L-junctions (at P5 in Fig. 3), and the isolated vertices (P6

in Fig. 3). Furthermore, the extended T-mesh can be changed as a 2-dimensional manifold, if we
take the mesh face with n vertices, which is adjacent to T-junctions, as a n-gon. For example, the
mesh face F in Fig. 3 can be taken as a 5-gon. Note that, the only function of the virtual vertex
is to make the extended T-mesh be a 2-dimensional manifold. It has no effect in determining the
knot vectors of the blending functions at real vertices.

As a 2-dimensional manifold, the extended T-mesh can be stored in an obj -like format file. We
name it as ebj format, the extended obj format (Table 1).

Table 1: The ebj format file

r s1 t1 x1 y1 z1

r s2 t2 x2 y2 z2

... ... ...

s si ti

s si+1 ti+1

... ... ...

t sj tj

t sj+1 tj+1

... ... ...

v sk tk

v sk+1 tk+1

... ... ...

f n1 n2 n3 n4

f n5 n6 n7 n8 n9

... ... ...

In the ebj format presented in Table 1, ‘r’ denotes the real vertex, which has knot coordinates
(s, t), and the Descartes coordinates (x, y, z) in 3-dimensional space. ‘s’, ‘t’ and ‘v’ denote the
s-vertex, t-vertex, and virtual vertex, respectively, which have only knot coordinates (s, t). ‘f’
represents the mesh face, followed by its vertex serials.

In implementation, the extended T-mesh stored in ebj format can be converted into the face-
edge-vertex data structure (see Table 2). With the structure members descar-coord, s-knots, and
t-knots in the vertex structure, the T-splines can be calculated conveniently.

3 Local Refinement Algorithm on the Extended T-mesh

In Ref. [1], the local refinement is performed by the violation test method, which tests whether
there exist the following violations after the vertices are inserted into the T-mesh. That is,

• Violation 1 A blending function is missing a knot dictated by Rule 1 for the current
T-mesh.
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Table 2: The face-edge-vertex data structure

// the face structure

struct face{
int ser; //the serial of the face

int vertices[]; //the serials of the vertices of the face

int edges[]; //the serials of the edges of the face

}

//the edge structure

struct edge{
int ser; //the serial of the edge

int sign[2]; //sign(1): real edge, or virtual edge

sign(2): s-edge, or t-edge

int vertices[2]; //the serials of the vertices of the edge

int adj-face[2]; //the serials of the adjacent faces of the edge

}

//the vertex structure

struct vertex{
int ser; //the serial of the vertex

int sign; //real vertex, s-vertex, t-vertex, or virtual vertex

int adj-edges[]; //serials of the adjacent edges of the vertex

int adj-faces[]; //serials of the adjacent faces of the vertex

double knot-coord[2]; //the knot coordinates of the vertex

double descar-coord[3]; //the Descartes coordinates of the vertex

double s-knots[5]; //the knot vector along s-direction

double t-knots[5]; //the knot vector along t-direction

}

• Violation 2 A blending function has a knot that is not dictated by Rule 1 for the current
T-mesh.

• Violation 3 A control point has no blending function associated with it.

And the topology phase of the violation test method for the local refinement consists of the four
steps [1]:

1. Insert all desired control points into the T-mesh.

2. If any blending function is guilty of Violation 1, perform the necessary knot insertions into
that blending function.

3. If any blending function is guilty of Violation 2, add an appropriate control point into the
T-mesh.
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4. Repeat Steps 2 and 3 until there are no more violations.

In fact, there are two procedures in the local refinement algorithm. One is the mesh refinement;
the other is the blending function refinement. The above four steps in the violation test method
integrate the two procedures in one circulation. In some cases, it will make the local refinement
operation very complex, and hard to be implemented in computers. More seriously, it is easy to
lose some violation tests, making the refinement incorrect.

Algorithm 1: Mesh Refinement

1 Insert the desired vertices on the real mesh edges, mark them as real vertices, and add them
to the new real-vertex array R ;

2 while The new real-vertex array R is not empty do
3 P = R[1], and delete P from R; // P is the current vertex

4 Construct s-edges and t-edges of the basis function at the vertex P ;
5 for Each of the four directions at P , that is, d = inverse s-direction, s-direction, inverse

t-direction, and t-direction do
// Trace the two edges PP1 and P1P2 of the basis function at P along

the direction d
6 if The vertex P1 is a real vertex then
7 Mark the edge PP1 as a real edge ;
8 end
9 else if The vertex P1 is a virtual vertex then

10 Mark P1 as a real vertex, and add it to the array R ;
11 Mark the edge PP1 as a real edge ;

12 end
13 else if The vertex P1 is a s-vertex or t-vertex then
14 if P2 is a real vertex then
15 Mark P1 as a real vertex, and add it to the array R ;
16 Mark both edges PP1 and P1P2 as real edges ;

17 end

18 end

19 end

20 end

To facilitate the local refinement algorithm on T-meshes, a desirable solution is to separate the
two procedures, i.e., determining the topology of the refined T-mesh, before the blending function
refinement and new control point generation. However, it is difficult to devise the explicit mesh
refinement rule which results in the refined T-mesh same as that by the violation test method,
because the topological structure of the T-mesh can be made very flexible.

Based on the fact that, the legal refined T-meshes which accommodate the same knot inser-
tions are not unique, in this paper, we devise a simple mesh refinement algorithm (presented
in Algorithm 1), by virtue of the extended T-mesh. Although it is possible for the new mesh
refinement algorithm to insert more real vertices than that by the original violation test method,
the new mesh refinement method is easy to be implemented, and the refined T-mesh it generates
is guaranteed to be legal.
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The mesh refinement algorithm (Algorithm 1) performs by checking the vertices on the knot
edges of the blending function at the inserted vertex P , along the four directions, s-direction,
inverse s-direction, t-direction, and inverse t-direction. The vertices on these edges along the four
directions can be classified into two categories, according to the connections between them and
the inserted vertex P , i.e., the one-ring adjacent vertices, which are adjacent to the vertex P
directly, and the two-ring adjacent vertices.

We first consider the one-ring adjacent vertices, taking the extended T-meshes in Fig. 4 as
examples, where the vertex P is the newly inserted real vertex. Suppose there is a virtual vertex
P1 in the one-ring adjacent vertices, which is the intersection between the knot edge of the
blending function at the real vertex P2 and that of the newly inserted vertex P . Then, the newly
inserted vertex P , the virtual vertex P1, the first real vertex P2 along the current knot direction
of P1, and the fourth vertex P3, form a knot rectangle (Fig. 4).
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(a) P3 is a real vertex. (b) P3 is a real vertex, and P5 is a s-vertex. (c) Both P3 and P5 are virtual vertices.

Fig. 4: Inserting a real vertex at P1 does not change the legality of the insertion of P , whether the
vertex P3 is real. PP1P2P3 constitute the knot rectangle (in green) in the inverse s-direction. The other
knot rectangle along the s-direction can be constructed in the like manner.

According to the violation test method, it depends on the property of the vertex P3 whether
there should be inserted a real vertex at P1. Specifically, if P3 is a real vertex, there should be
inserted a real vertex at P1; if not, the vertex P1 should be retained as a virtual vertex. However,
even the vertex P3 is not real, inserting a real vertex at P1 does not change the legality of the
insertion of P . Therefore, to simplify the mesh refinement algorithm, in Algorithm 1, if there
exist virtual vertices in the one-ring vertices adjacent to the newly inserted vertex, we mark them
as real vertices.

Moreover, the two-ring adjacent vertices are handled, taking the T-mesh in Fig. 4 (b) as an
example, where P1 is the newly inserted real vertex. If at the two-ring vertices adjacent to P1,
there is a real vertex P2, which is adjacent to the s-vertex P5, the blending function refinement
at P2 will transfer to P5. So P5 should be a real vertex; otherwise, it will lose a real vertex at P5

according to the violation test.

In conclusion, after inserting a real vertex P , the mesh refining principles in Algorithm 1 are:

• If one of the one-ring vertices adjacent to P is a virtual vertex, change it as a real vertex;

• if one of the one-ring vertices adjacent to P is a s-vertex or t-vertex, and the two-ring vertex
adjacent to the vertex is a real vertex, change the s-vertex (or t-vertex) as a real vertex.
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Similar as the violation test method presented in Ref. [1], the mesh refinement algorithm (Algo-
rithm 1) is always guaranteed to terminate, because the real vertex insertions must involve knot
values that initially exist in the T-mesh, or that were added in the mesh refinement procedure.
In the worst case, the algorithm would extend all partial rows of control points to cross the entire
surface.

In general, it is possible that the mesh refinement algorithm proposed in this paper inserts more
real vertices than the violation test method presented in Ref. [1]. However, in most typical cases,
the refined mesh generated by Algorithm 1 is the same as that by the violation test method.

We illustrate Algorithm 1 with three examples (Figs. 5-7). In examples 1 and 2, the refined
T-meshes by Algorithm 1 are the same as that by the violation test method [1]. In example 3,
the refined T-mesh by Algorithm 1 is inserted more real vertices than that by the violation test
method. Both are legal.

Example 1. The first example is the same as that in Ref. [1]. The original extended T-mesh
is illustrated in Fig. 5 (a). We want to insert a new vertex at P1 (see Fig. 5 (b)). By checking its
s-edges and t-edges, we find a virtual vertex at P2. It is marked as a real vertex, and the edge
P1P2 is marked as a real edge. Next, by checking the s-edges and t-edges of the newly inserted
vertex P2, we find that the vertex P3 is a real vertex. So the edge P3P2 should be marked as a
real edge. The mesh refinement algorithm terminates till there is no unprocessed newly inserted
real vertex. The legal refined mesh is demonstrated in Fig. 5 (c).
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Fig. 5: Example 1: Insert a vertex at P1 by Algorithm 1

Example 2. The second example is illustrated in Fig. 6, where Fig. 6 (a) is the original
extended T-mesh. As in Fig. 6 (b), We want to insert a vertex at P1. By tracing the knot edges
of the blending function at the vertex P1, a virtual vertex P2 is found, which is marked as a real
vertex. Meanwhile, the edge P2P1 is marked as a real edge. Next, we trace the knot edges of
the blending function at the newly inserted real vertex P2. Among its two-ring adjacent vertices,
there is a real vertex P3. So the vertex P6 is marked as a real vertex, and the two edges P3P6

and P6P2 are marked as real edges. By tracing the knot edges of the blending function at P6, it
is not required to insert new vertex. The legal refined mesh is demonstrated in Fig. 6 (c).

Example 3. The third example presents the comparison between the refined T-meshes gen-
erated by Algorithm 1, and the violation test method, respectively, where the original T-mesh
is illustrated in Fig. 7 (a). Fig. 7 (b) is the refined T-mesh after inserting the real vertex P1,
using Algorithm 1, where two additional real vertices P2 and P5 are inserted. Fig. 7 (c) is the
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Fig. 6: Example 2: Insert a vertex at P1 by Algorithm 1
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Fig. 7: Example 3: Comparison between the refined T-mesh by Algorithm 1 (b) and that by the violation
test method (c) after inserting P1. The refined T-mesh by Algorithm 1 is inserted more real vertices
than that by the violation test method.

refined T-mesh after inserting the real vertex P1, using the violation test method [1], where only
one additional real vertex P2 is inserted for legality. This example shows that, it is possible for
Algorithm 1 to insert more real vertices than the violation test method [1].

The mesh refinement algorithm (Algorithm 1) generates the legal refined T-mesh after inserting
some desired real vertices. With the refined T-mesh in hand, the following blending function
refinement and new control point generation is straightforward. We list it in Algorithm 2.

4 Conclusion

In this paper, we present the extended T-mesh, which can be stored in an obj -like format file, and
converted into the face-edge-vertex data structure easily. With the data structure, the computa-
tion of the T-splines can be made much easier. Moreover, by the extended T-mesh, we develop a
new local refinement algorithm, which is convenient to be implemented, by separating the local
refinement into two procedures, mesh refinement and blending function refinement. The extended



592 H. Lin et al. / Journal of Information & Computational Science 9: 3 (2012) 583–593

Algorithm 2: Blending Function Refinement

// Denote the original extended T-mesh before mesh refinement as Mf, and the

refined extended T-mesh as Mc

1 Extract the related real vertices Pi, i = 1, · · · , n on Mf , which are at the s-edges and t-edges
of the inserted vertices, and store them in a list R ;

2 Initialize each of the new control points at the vertices in R and the inserted vertices as {0,
0, 0} ;

3 for i = 1 : n do
4 P = R[i]; // P is the current vertex.

// Denote the blending function at the vertex P on Mf as B(s, t); the

control point at the vertex P on Mf as C.

5 Construct the knot vectors S and T along s-direction and t-direction, respectively, on the
original mesh Mf , for the basis function B(s, t) ;

6 Insert the new knots in the refined mesh Mc to S and T , and refine the blending function
B(s, t), leading to,

B(s, t) =
k∑

i=1

ciBi([s
i
0, · · · , si4], [ti0, · · · , ti4])(s, t);

7 Add ciC to the new control point at (si2, t
i
2), i = 1, 2, · · · , k ;

8 end

T-mesh and the new local refinement algorithm on it make the processing of T-spline much easier.
It will promote the wide-ranging applications of T-splines.
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