
Visual Comput (2005)
DOI 10.1007/s00371-005-0304-4 O R I G I N A L A R T I C L E

Hongwei Lin
Wei Chen
Guojin Wang

Curve reconstruction based on an interval
B-spline curve

Published online: 14 July 2005
 Springer-Verlag 2005

H. Lin · W. Chen (�) · G. Wang
State Key Laboratory of CAD&CG,
Zhejiang University,
Hangzhou, China, 310027
chenwei@cad.zju.edu.cn

Abstract Curve reconstruction
that generates a piece of centric
curve from a piece of planar strip-
shaped point cloud is a fundamental
problem in reverse engineering. In
this paper, we present a new curve-
reconstruction algorithm based on
an interval B-spline curve. The algo-
rithm constructs a rectangle sequence
approximating the point cloud using
a new data clustering technique,
which facilitates the determination of
curve order implied in the shape of
the point cloud. A quasicentric point
sequence and two pieces of boundary
point sequences are then computed,

based on which a piece of interval
B-spline curve representing the
geometric shape of the point cloud
is constructed. Its centric curve is
the final reconstructed curve. The
whole algorithm is intuitive, simple,
and efficient, as demonstrated by
experimental results.

Keywords Point cloud · Curve
reconstruction · Interval B-spline
curve · Reverse engineering

1 Motivation

In reverse engineering, curve reconstruction, in which
attempts are made to reconstruct a piece of a curve in
NURBS form from a piece of a planar strip-shaped point
cloud, plays an important role in surface reconstruction [5,
15]. Many well-studied methods have been proposed re-
cently. Pottmann and Randrup [10] proposed discretizing
the involved plane into a binary image first and calcu-
lating its medial axis by a conventional image-thinning
algorithm. A parametric curve is then fitted to points ly-
ing in the medial axis. Another method, presented by
Goshtasby [3], computes a radial basis function (RBF)
surface based on a point cloud and discretizes the RBF
surface into an image. The reconstructed curve from the
point cloud can be computed by tracing the spine of the
image. Obviously, the accuracy of resultant curves using
the above two methods is dominated by the image reso-
lution.

Levin [6] introduced the moving least squares MLS
method. For each point in the point cloud, its neighbor-
ing points are fitted by a curve with a weighted regres-
sion. The point is then replaced by some point on the
curve. The whole procedure is repeated until the point
cloud is thin enough to accomplish the curve reconstruc-
tion. Note that the reconstruction result is dependent on
the size of the selected neighborhood. Lee [5] carefully
studied the effect of neighborhood size and proposes an
optimal neighborhood-size-selection scheme.

With the aim of estimating the reconstructing curve,
Fang et al. [2] proposed computing the fitting curve based
on the spring-energy minimization model. Taubin and
Ronfard [13] made use of an implicit simplicial curve de-
fined by a triangular mesh and the values at the mesh
vertices to reconstruct a curve from an unordered point
set. However, both methods are difficult to handle in cases
with too much noise.

Generally speaking, the key problem in curve recon-
struction is to transform the unordered point cloud into

Curve reconstruction based on an interval B-spline curve

an orderly point set, where the order is implied in the
geometric shape of the point cloud. Given that the order
is known, curve reconstruction can be achieved by inter-
polating or fitting an ordered point set with a paramet-
ric curve. Based on this investigation, we propose the
curve reconstruction algorithm based on an interval B-
spline curve (CRIBC). For a piece of a strip-shaped planar
point cloud, the plane is first discretized into a uniform
grid, whose resolution and step size are determined by
the intrinsic property of the point cloud. A sequence of
rectangles is then computed to classify the point cloud
using a new data clustering technique, which facilitates the
determination of the order implied in the point cloud. Sub-
sequently, we calculate a sequence of quasicentric points
from the rectangle sequence together with two boundary
point sequences. Thereafter, two pieces of B-spline curves
fitting two boundary-point sequences are computed, and
their control points are connected as interval control points
of an interval B-spline curve. The centric curve of the in-
terval B-spline curve is the final reconstructed curve.

Our algorithm makes use of interval B-spline curves
introduced in [7, 11, 12, 14] to avoid error accumulation
in floating-point operations of curve approximation. They
are different from standard Bézier or B-spline curves, as
each of their control points varies in a rectangular re-
gion. Hence, a piece of planar interval B-spline curve has
a strip-like shape. In this paper, a generalized B-spline
curve whose control point varies on a line segment is
used to envelop the strip-shaped point cloud. Its boundary
structure is much simpler than that of an interval B-spline
curve.

The rest of this paper is organized as follows: in
Sect. 2, an outline of the algorithm is given after intro-
ducing some basic concepts. Section 3 describes a new
sequence-joining method for the generation of the rect-
angle and quasicentric point sequences. In Sect. 4, the
computation of two boundary point sequences and the in-
terval B-spline curve is presented. Section 5 elaborates
upon experimental results. Finally, Sect. 6 summarizes the
concepts presented.

2 Related concepts and outline of the algorithm

2.1 Related concepts

To make our explanation clear, we first introduce some
related concepts. Suppose that S is a strip-shaped planar
point cloud with N points. We can perform Delaunay tri-
angulation [9] on it, yielding a planar triangular mesh M,
whose vertices are points in S. Each vertex p of M has sev-
eral adjacent edges, among which the largest edge length
is denoted by dmax

p . Accordingly, we define the average
sampling radius as follows:
Definition 1. The average of the largest adjacent edge
length of all vertices in M is called the “average sampling

radius,” denoted by rmax, i.e.,

rmax =

∑

p∈S
dmax

p

N
. (1)

Meanwhile, we can calculate the arbitrarily-oriented
minimum-area bounding box of S based on the convex
hull of the point cloud as described in [9]. Note that both
the average sampling radius and the arbitrarily-oriented
minimum-area bounding box are intrinsic properties of
a point cloud and are independent of special coordinates.

The arbitrarily-oriented minimum-area bounding box
can be further divided into a set of uniform gridpoints
whose step size is selected as rmax . This grid is called
a “global grid.” A grid unit containing points is called
a “feature unit,” and a grid unit without points is called
a “non-feature unit”.
Definition 2. A feature unit is called an “inner feature
unit” if and only if its four nearest-neighbor grid units are
feature units. Otherwise, it is a “boundary feature unit.”

Each grid unit in the global grid is labeled by integer
coordinates (i, j). We call a rectangular subregion of the
global grid a “subgrid.” It can be represented with four in-
tegers as shown in Fig. 1:

{imin ≤ i ≤ imax, jmin ≤ j ≤ jmax} (2)

We call the barycenter of the point set in each subgrid
a “quasicentric point” because it is not exactly in the fi-
nal reconstructed curve. For each quasicentric point P in
a subgrid A, we define its global width as shown in Fig. 2.
Specifically, a vector T originating from P is first con-
structed by a rule that will be described later. The line
passing P perpendicular to T is denoted by L. All points
in the boundary feature units through which L passes are
projected to L. The distance between the two outermost
projected points is called the global width at P.

Fig. 1. Subgrid and its four boundaries

H. Lin et al.

Fig. 2. Global width of quasicentric point P

2.2 Algorithm outline

The curve reconstruction algorithm based on an interval
B-spline curve consists of four stages as follows.

Algorithm 1: Curve reconstruction based on an interval B-
spline curve

1. Compute the average sampling radius of the point
cloud by means of Delaunay triangulation. Compute
the arbitrarily-oriented minimum-area bounding box of
the point cloud, and discretize the bounding box into
a uniform grid.

2. Compute the rectangle sequence using the new data
clustering technique mentioned below.

3. Compute the quasicentric point sequence and two
pieces of boundary point sequences.

4. Compute the interval B-spline curve enveloping the
point cloud. Its centric curve is taken as the recon-
structed curve.

We will describe stages 2–4 in detail in the following
sections.

Fig. 3. The rectangle sequence constructed
using the sequence-joining method

3 Sequence-joining to determine order

The goal of sequence-joining is to classify the point cloud
S into a set of point clusters. Each cluster is represented
by a rectangle subgrid, facilitating the determination of the
order implied in the point cloud. Our new method, called
the sequence joining method (SJM), is different from the
classical joining method in two respects. First, the join-
ing primitives of SJM are feature units instead of points.
Second, a reasonable joining scheme is used during the
joining procedure taking into account the shape of the
point cloud. Figure 3 illustrates one example using SJM
where the quasicentric curve is obtained by connecting the
quasicentric point sequence.

Basically, SJM is a special-purpose data clustering
technique. We will first give a brief introduction to the
classical joining method. We then describe our shape-
based joining scheme using feature units and subgrids.
Thereafter, SJM is described in detail.

3.1 Classical joining method

Conceptually, the classical joining method [4] in cluster
analysis takes four stages:

1. Take each point in the point cloud as a cluster;
2. Compute the distance between each pair of clusters,

and merge the pair of clusters with minimum distance
into one cluster;

3. Repeat step 2 until all points are joined to one cluster;
4. Construct the final clustering by some joining scheme.

We take eleven points shown in Fig. 4 as an example.
The first step joins a and b into cluster 1, the second
step joins d and e into cluster 2, the fifth step joins a, b,
and c into cluster 5, and so on. The final step constructs
cluster 10, which contains all 11 points. Thereafter, a pre-
determined clustering operation is performed according to
a number of criteria. For example, if the joining stops at

Curve reconstruction based on an interval B-spline curve

Fig. 4. The clustering scheme for the joining procedure

the eighth step, 11 points can be classified into three clus-
ters; namely, {a, b, c, d, e, f, g}, {h, i, j} and {k}.

3.2 Shape-based joining scheme

Note that the clustering primitives are feature units or
subgrids instead of points. The joining procedure starts
with an initial global grid, or say, a set of feature units,
and any successive joining operation generates subgrids.
Suppose that the subgrid to be processed takes the form
{imin ≤ i ≤ imax, jmin ≤ j ≤ jmax}. If its left boundary
{i = imin, jmin ≤ j ≤ jmax} contains any unhandled fea-
ture unit, the boundary is called an “open boundary.”
Otherwise, it is called a “closed boundary.” Open bound-
aries need to be extended outwards, i.e., decreasing imin
by one. On the other hand, there is no point outside of the
closed boundary because the side length of any grid unit
is the average sampling radius. Thus, the closed bound-
ary remains unchanged. Along the other three boundaries,
i.e.,{i = imax, jmin ≤ j ≤ jmax}, {imin ≤ i ≤ imax, j =
jmin} and {imin ≤ i ≤ imax, j = jmax}, similar processes
are carried out. We call the procedure of updating the four
boundaries of a subgrid a “joining cycle” for the cluster.

Note that the joining procedure is recursive and results
in a rectangle sequence, which is an approximation to the
point cloud. In order to make the approximation as close
as possible, we propose a shape-based joining scheme.
A subgrid stops joining and becomes the final cluster if
and only if it satisfies one of following conditions: first,
two of its opposite boundaries are both closed boundaries.
Second, the length of its the longest boundary is greater
than the global width at the quasicentric point of the sub-
grid prior to the generation of the subgrid.

3.3 Sequence-joining method

We now describe the detailed procedure of SJM. First, the
feature unit with minimal i and j coordinates is set as the
seed unit for joining. Beginning at the seed unit, the first
subgrid, denoted by {imin ≤ i ≤ imax, jmin ≤ j ≤ jmax},

can be constructed by the aforementioned shape-based
joining scheme. However, the conditions to stop joining
should be adjusted slightly here because the current global
width cannot be calculated. Consequently, we adopt a dif-
ferent joining criterion, i.e., if two arbitrary boundaries
of the underlying subgrid are both closed boundaries, the
subgrid stops joining and becomes the first subgrid.

The first subgrid needs to grow further along either the
i or j direction. To this end, four neighboring subgrids
with the same size as the current subgrid are constructed:

1. {imin ≤ i ≤ imax, jmax+1 ≤ j ≤ jmax+ lenj},
2. {imin ≤ i ≤ imax, jmin− lenj ≤ j ≤ jmin−1},
3. {imin− leni ≤ i ≤ imin −1, jmin ≤ j ≤ jmax},
4. {imax+1 ≤ i ≤ imax+ leni, jmin ≤ j ≤ jmax}.
Here, leni = imax − imin +1 and lenj = jmax − jmin +1
are the side lengths of the current subgrid along the i and
j directions, respectively.

We choose the subgrid that is adjacent to the open
boundaries of the current subgrid and has a maximal num-
ber of points as the initial state of the next subgrid. In
Fig. 5a, SB and SA are two potential candidates. SB is cho-
sen because it has more points than SA (see Fig. 5b). The
initial state SB is further processed as follows: first, the
boundaries that do not contain unhandled feature units are
moved incrementally inward until the resultant boundaries
are all open boundaries (see Fig. 5c). Second, suppose the
length of the boundary of the resultant subgrid SB

′
, which

is adjacent to SC, is l1, and the other side length is l2.
We fix the boundary adjacent to SC and translate its op-
posite boundary along the direction to the fixed boundary
by �l2/2�. The other two boundaries of SB′ are translated
toward each other by �l1/4� (see Fig. 5d). Here, the oper-
ator � � is used to compute the floor integer of a floating
point. The adjusted subgrid SB* is then set as the new
seed, and the second subgrid can be generated using the
same method as that used for the first subgrid.

By connecting two quasicentric points of the first and
second subgrids, i.e., P1 and P2, and defining T = −−→

P1 P2,
we get the new global width W2 at P2. Choosing a seed
according to the above procedure, a third subgrid can be
constructed as described in the 3.2. Similarly, we can com-
pute W3 and the fourth subgrid, W4 and the fifth subgrid,
and so on. This joining procedure continues until the cur-
rent subgrid contains four closed boundaries. Note that
if the last subgrid contains points that belong to the first
subgrid, we state that the point cloud is in closed form.
Otherwise, we take another joining procedure from the
first subgrid along the other direction until the final rectan-
gular subgrid sequence is achieved.

The resultant sequence needs to be adjusted slightly.
Because the condition to stop joining for the first and sec-
ond subgrids is quite simple, they do not represent the real
shape of the segment of the point cloud that they cover. We
replace them with new subgrids that are grown from one of
their neighboring subgrids (see Fig. 6).

H. Lin et al.

Fig. 5. Determination of the joining direction. a The subgrid SC is the current subgrid; SA and SB are the potential initial states of the next
subgrid. b The subgrid SB contains a maximal number of points and is chosen as the initial state of the next subgrid. c SB is adjusted to
SB′. d SB′ is further adjusted to SB*, which is set as the seed of the next subgrid

Fig. 6. The states of the first (in red) and second (in green) subgrids before and after adjusting

Finally, we get a well-shaped subgrid sequence cover-
ing the point cloud, whose elements are rectangles. The
barycenters of the point sets in these rectangles construct
a quasicentric point sequence of the point cloud. And the
quasicentric curve of the point cloud can be computed by
connecting these quasicentric points in an orderly fashion,
as shown in Fig. 3. In summary, we present the recursive
SJM algorithm in a pseudo-C language, where e is the sub-

grid employed in the joining, and width is the global width
at a previous quasicentric point.

Algorithm 2: Recursive sequence joining method

1. void SequenceJoining(SubGrid *e, double width)
2. {
3. double maxlen = the length of the longest

boundary of e;

Curve reconstruction based on an interval B-spline curve

4. if (maxlen > width OR two opposite
boundaries of e are closed boundaries)

5. return;
6. if (the boundary {i = e → imax, e → jmin ≤ j

≤ e → jmax} is an open boundary)
7. e → imax = e → imax+1;
8. if (the boundary {i = e → imin, e → jmin ≤ j

≤ e → jmax} is an open boundary)
9. e → imin = e → imin−1;
10. if (the boundary {e → imin ≤ i ≤ e → imax,

j = e → jmax} is an open boundary)
11. e → jmax = e → jmax+1;
12. if (the boundary {e → imin ≤ i ≤ e → imax,

j = e → jmin} is an open boundary)
13. e → jmin = e → jmin−1;
14. SequenceJoining(e, width);
15. }

4 Computation of an interval B-spline curve

Using the method proposed in [14], the rectangle se-
quence can be interpolated or approximated by an interval
B-spline curve. However, the resultant interval B-spline
curve cannot envelop the point cloud tightly because the
approximation of the rectangle sequence to the point cloud
is quite rough. In order to represent the geometric shape of
the strip-shaped point cloud correctly, we propose a new
approach to compute the interval B-spline curve. Based on
the quasicentric point sequence computed in Sect. 3, we
first compute two pieces of the boundary point sequences
of the point cloud. We then fit them with two pieces of B-
spline curves with the same order. Corresponding control
points of the two B-spline curves are connected by lines.
Taking the connected lines as interval control points, an in-
terval B-spline curve tightly enveloping the point cloud is
determined.

The computing of the boundary point is similar to that
of the global width at a quasicentric point (see Fig. 2).
Given a quasicentric point, we assign a vector to the point
and construct a line perpendicular to the vector. All points
in the boundary units through which the line passes are
projected onto the line. The two outermost projected
points are regarded as two boundary points. The assigned
vector to each quasicentric point is determined in two
ways. If the point cloud is open, backward and forward
difference vectors are used for the first and last points
in the quasicentric point sequence. For other points, the
central difference vectors are adopted. If the point cloud
is closed, the central difference vector is taken for each
point.

At this point, we have a sequence of triples, each of
which consists of one quasicentric point and two boundary
points. To construct two pieces of boundary sequences, the

Fig. 7. Illustrations of the boundary points

correspondence amongst them can be determined one by
one as follows:

• Take a piece of known partial boundary as shown
in Fig. 7. Suppose b1 is its last point, which corres-
ponds to the quasicentric point o1, and b2, b3 are two
new boundary points corresponding to the quasicentric
point o2.

• Construct r1 = −−→
o1b1, r2 = −−→

o2b2, and r3 = −−→
o2b3, and

normalize them.
• If r1 · r2 > r1 · r3, the angle between r1 and r2 is less

than the angle between r1 and r3; hence, b1 and b2 be-
long to the same boundary while b3 lies in the other
boundary.

Subsequently, we fit two constructed boundary point
sequences with two iterative B-spline curves, as described
in [1, 8]. Because both have the same number of points, the
number of control points of the two fitting B-spline curves
is the same. Connecting two corresponding control points
with separate lines and taking these lines as interval con-
trol points, we get an interval B-spline curve enveloping
the point cloud. According to [7], the boundaries of the in-
terval B-spline curve are two B-spline curves fitting the
two boundary point sequences. The centric curve of the
interval B-spline curve is the final reconstructed curve.

5 Experimental results

The proposed algorithm was implemented on a PC plat-
form with Microsoft Visual C++ 6.0. All testing point
clouds were obtained using the method presented in [5].
For a given planar curve C(t), points are sampled ran-
domly in the region embedded by two offset curves,
C(t)+ N(t)r(t) and C(t)− N(t)r(t), where r(t) denotes
a variable sampling radius, and N(t) is the unit normal
vector of C(t). We performed several experiments to
demonstrate the capabilities of our CRIBC algorithm for
point clouds with a non-uniformly sampling radius, dif-

H. Lin et al.

Fig. 8. a A helix-shaped point cloud with comparatively uniformly varying sampling radius. b The rectangle sequence and the quasicentric
curve. c The two boundaries of the interval B-spline curve. d The reconstructed curve

Fig. 9. a A helix-shaped point cloud with non-uniformly varying sampling radius. b The rectangle sequence and the quasicentric curve. c
The reconstructed curve

ferent sampling densities, or sections approaching each
other closely. These circumstances are intractable with
traditional curve-reconstruction algorithms.

The top left image of Fig. 8 shows a helix-shaped point
cloud whose sampling radius varies comparatively uni-
formly. The rectangle sequence covering the point cloud
and the quasicentric curve, the two boundaries of the inter-
val B-spline curve, and the reconstructed curve are illus-
trated in other images of Fig. 8, respectively.

The left image in Fig. 9 demonstrates another helix-
shaped point cloud sampled from the same curve as that
sampled for Fig. 8. The difference lies in that its sam-

pling radius varies quite non-uniformly. Our algorithm
constructs a sequence of different-sized rectangles along
with a quasicentric curve as shown in the middle image.
The final reconstructed curve (the right image) represents
almost the same shape as that of Fig. 8.

Figure 10 shows another example of a point cloud with
very non-uniform sampling radius.

In Fig. 11, a point cloud with different sampling densi-
ties is handled. Our algorithm reconstructs desirable result
no matter how variable the sampling density is.

Figure 12 demonstrates a complex example in which
a point cloud is sampled from a closed curve with non-

Curve reconstruction based on an interval B-spline curve

Fig. 10. a A point cloud with non-uniformly sampling radius. b The rectangle sequence and the quasicentric curve. c The reconstructed
curve

Fig. 11. a A point cloud with different sampling densities. b The rectangle sequence and the quasicentric curve. c The reconstructed curve

H. Lin et al.

Fig. 12. a A close point cloud with non-uniformly sampling radius, different sampling densities, and two portions approaching each other
closely. b The rectangle sequence and the quasicentric curve. c The two boundaries of interval B-spline curve. d The reconstructed curve

uniform sampling radii and different sampling densities.
In addition, there are two portions that are very close
to each other. The resultant curve presents a satisfactory
shape.

6 Conclusions

In this paper, we presented a new robust curve-recon-
struction algorithm based on an interval B-spline curve.
First, we proposed the SJM to cluster the point cloud into
a rectangle sequence, which facilitates the determination
of the curve order implied by the geometric shape of the
point cloud. Second, we described how to compute two
boundary point sequences using the quasicentric point se-
quence. Third, we presented a sort of generalized interval

B-spline curve whose boundaries are two pieces of B-
spline curves. By fitting two pieces of boundary point se-
quences with two iterative B-spline curves, we obtained an
interval B-spline curve enveloping the strip-shaped point
cloud. The interval B-spline curve filters the noises of the
point cloud, and its centric curve is the final reconstructed
curve. The principle of using an interval B-spline curve
is intuitive, and its computation is simple as demonstrated
by our experimental results. We believe that the proposed
method will have wide applications in reverse engineering
and related fields.

Acknowledgement This work is supported by the 973 Project
of China (No. 2004CB719400), National Natural Science Foun-
dation for Innovative Research Groups (No. 60021201), and the
National Natural Science Foundation of China (No. 60373033, No.
60333010).

References
1. De Boor C (1979) How does Agee’s

smoothing method work? In: Proceedings
of the 1979 Army Numerical Analysis and
Computers Conference, ARO Report 79-3,
Army Research Office, pp 299–302

2. Fang L, Gossard DC (1995)
Multidimensional curve fitting to
unorganized data points by nonlinear
minimization. Comput Aided Des
27(1):48–58

3. Goshtasby AA (2000) Grouping and
parameterizing irregularly spaced points for
curve fitting. ACM Trans Graph
19(3):185–203

4. Jain AK, Murty MN, Flynn PJ (1999) Data
clustering: a review. ACM Comput Surveys
31(3):264–323

5. Lee I K (2000) Curve reconstruction from
unorganized points. Comput Aided Geom
Des 17:161–177

6. Levin D (1998) The approximation power
of moving least-squares. Math Comput
67:1517–1531

7. Lin H, Liu L, Wang G (2002) Boundary
evaluation for interval Bézier curve.
Comput Aided Des 34(9):637–646

8. Lin H, Wang G, Dong C (2004)
Constructing iterative non-uniform B-spline
curve and surface to fit data points. Science
in China Series F 47:315–331

Curve reconstruction based on an interval B-spline curve

9. O’Rouke J (1994) Computational geometry
in C. Cambridge University Press,
Cambridge

10. Pottmann H, Randrup T (1998) Rotational
and helical surface approximation for
reverse engineering. Computing
60:307–322

11. Sederberg TW, Farouki RT (1992)
Approximation by interval Bézier curves.
IEEE Comput Graph Appl 15(2):87–95

12. Shen G, Patrikalakis NM (1998) Numerical
and geometric properties of interval
B-Splines. Int J Shape Model 4(1/2):35–62

13. Taubin G, Rondfard R (1996) Implicit
simplicial models for adaptive curve

reconstruction. IEEE Trans Pattern Anal
Mach Intell 18(3):321–325

14. Tuohy ST, Maekawa T, Patrikalakis NM
(1997) Approximation of measured data
with interval B-splines. Comput Aided Des
29(11):791–799

15. Várady T, Martin RR, Cox J (1997)
Reverse engineering of geometric models –
an introduction. Comput Aided Des
29(4):255–268

DR. HONGWEI LIN is now working at the
State Key Laboratory of CAD&CG, Zhejiang
University, China. He received his BSc from
the Department of Applied Mathematics at
Zhejiang University in 1996, and his PhD from
the Department of Mathematics at Zhejiang
University in 2004. He worked as a communi-
cation engineer from 1996 to 1999. His current
research interests include computer-aided ge-
ometric design, computer graphics, and image
processing.

DR. WEI CHEN is an associate professor at
the State Key Lab of CAD&CG at Zhejiang
University, P.R. China. He received his PhD
degree in 2002 from the Department of Ap-
plied Mathematics of Zhejiang University. He
has performed research in volume rendering
and related technical areas for the past three
years. His current interests include hardware-
accelerated visualization, photo-realistic
rendering, bio-medical imaging, and digital
geometry processing.

GUOJIN WANG was born in Shanghai, China
in October, 1944. He is now a professor and su-
pervisor of the doctoral program at the Institute
of Computer Images and Graphics at Zhejiang
University, China. His research interests in-
clude computer-aided geometric design and
computer graphics. He is a commissary of the
Teaching-Guidance Committee of Engineering
Mathematics for Chinese Universities under
the National Education Committee of China.
He is also the principal of the Applied
Mathematics Subject, which is one of
the State Key Subjects.

