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1. Introduction

The curvature at a point on a planar parametric curve (x(t), y(t)) is given by

κ = |ẋ ÿ − ẏẍ|
(ẋ2 + ẏ2)

3
2

. (1)

At the point P(0) on the Bézier curve in Fig. 1(a), we have ẋ = ẏ = 0, and therefore κ = 0
0 . We will refer to a point at

which curvature is undefined as a singular point. If we plot the curve in Fig. 1(a) over the domain [−1,1], we see that P0 is
actually a cusp, as shown in Fig. 1(b). Fig. 1(c) plots curvature as a function of t , showing that the curvature goes to infinity
as t approaches zero. This is true of most singular curves.

The curve in Fig. 2(a) is also singular and also has a cusp at P0. However, the curvature plot in Fig. 2(c) reveals that the
curvature in the neighborhood of P0 is finite, and the curvature at t = 0 is a removable discontinuity.

Fig. 3(b) shows a special case of a singularity in which the entire curve is doubly traced because P(t) = Q(t2). The
conditions for this are P0 = P1 = Q0, P2 = 2Q0+Q1

3 , P3 = Q1, and P4 = Q2. As illustrated in Fig. 3(c), the curvature at the
singularity t = 0 is again a removable discontinuity, and the curvature plot is symmetric.

We define a singular corner point of a Bézier surface patch P(s, t) to be an (s, t) pair at which Gaussian, mean, or normal
curvature is undefined because one or more directional derivatives vanish. These points can occur in numerous ways, such
as when P00 = P10 (so Ps(0,0) = 0), or when P01, P00 and P10 are collinear but not coincident (Ps and Pt do not vanish but
their cross product does). The limit curvature for a singular point on a surface is usually infinite and can create complicated
geometry, as illustrated in Fig. 4. However, conditions exist under which Gaussian and mean curvatures have a unique, finite
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Fig. 1. Generic singular Bézier curve with infinite curvature.

Fig. 2. Bézier curve with removable discontinuity in the curvature function.

Fig. 3. Improperly parametrized Bézier curve P(t) = Q(t2). P(t) is doubly traced.

Fig. 4. Surface x = s2 − st2, y = t2, z = s2t2 is singular at (s, t) = (0,0).

limit (i.e., a removable discontinuity) at a singular point. This paper presents necessary and sufficient conditions under
which this happens.

Singular corners have several practical applications in CAGD, such as representing an octant of a sphere using a tensor-
product patch for which an edge collapses to a point. Singular corners also occur at extraordinary points in TURBS
surfaces (Reif, 1998).

Analyzing the curvature of a generic singular surface is not straightforward. For example, the following approaches are
not tenable:

• Apply the traditional equations for curvature based on differential geometry (Do Carmo, 1976) and then resolve the
resulting 0

0 using L’Hospital’s rule. Unfortunately, no version of L’Hospital’s rule exists for functions of two variables.
• Perform a reparametrization (Reif, 1998). If a singular curve has the special form P(t) = P0 + Pktk + P2kt2k + O (t2k+1)

with k > 1, we can substitute t = u
1
k to obtain a non-singular curve P(u) = P0 + P1u + P2u2 + · · · and curvature can

be computed conventionally. Note the requirement Pk+1 = · · · = P2k−1 = 0. This approach can also be used for some
singular surfaces, but only ones that honor similar restrictions.



T.W. Sederberg et al. / Computer Aided Geometric Design 28 (2011) 233–244 235
Fig. 5. Rational Bézier curve.

• Perform a local expansion of the form z = f (x, y), then analyze the curvature of the expansion. But such an expansion
does not exist in general, such as the example x = s2 − st2, y = t2, z = s2t2 in Fig. 4.

• Implicitize the singular surface and compute the curvature as in Goldman (2005). Since the implicit equation for a
degree m × m tensor-product surface is of degree 2m2, this approach is intractable. Furthermore, the implicit equation
of a singular parametric surface often has vanishing partial derivatives that cause the formulae in Goldman (2005) to
be undefined.

• Examine the limit curvature as the singularity is approached from any direction. This works in theory, but the resulting
algebraic expressions are unwieldy.

Curvature at singular points has been studied in a few special cases, but no general treatment exists. Wolter and Tuohy
(1991) analyze curvature for the case in which all control points on one boundary of a tensor-product Bézier surface patch
collapse to a point, although the solution does not allow second-order anomalous curves (defined in Section 4). Singular
patches are also mentioned in Bohl and Reif (1997), Hogervorst and van Damme (1993), Neamtu and Pfluger (1994), Pfluger
and Neamtu (1993), Reif (1995). Curvature at the singular corner of a “D2 patch” is derived in Reif (1998), but the paper
gives no general solution to curvature at a surface singularity, remarking that the general solution involves “extremely
complicated non-linear necessary conditions”.

We present a general solution in terms of linear equations that are not extremely complicated. Our method is based on
the concept of order-of-contact (Snyder and Hutchinson, 1902; Bruce and Giblin, 1984). Section 2 reviews the concept of
order-of-contact and describes how the method can be adapted for singular points. Formulae are derived in Section 3 for
curvature at a singular endpoint of a rational Bézier curve. Section 4 discusses tangency of singular surfaces and Section 6
discusses curvature of general singular surfaces.

2. Order-of-contact

Given a non-singular parametric curve P defined in homogeneous form (x(t), y(t), w(t)), where the Cartesian coordinates
of points on the curve are (x(t)/w(t), y(t)/w(t)), and a second non-singular curve Q given in implicit form as a homoge-
neous polynomial equation q(x, y, w) = 0, the roots of f (t) = P ◦ Q = q(x(t), y(t), w(t)) = 0 are the parameter values of the
points at which P intersects Q. If f (τ ) = f ′(τ ) = · · · = f (k−1)(τ ) = 0 and f (k) �= 0, P and Q are said to have order-of-contact
of k at t = τ (Bruce and Giblin, 1984). If x(t), y(t), and w(t) are polynomials (as they are in this paper), then order-of-
contact is equivalent to root multiplicity of f (t). If P and Q have at least second-order contact at a point, they are tangent
to each other and if they have at least third-order contact at a point, they have the same curvature at that point (Bruce and
Giblin, 1984). This provides a tool for analyzing curvature, as we now illustrate using a rational Bézier curve with control
points Pi = (xi, yi), weights ωi , and equation in homogeneous form

P(t) = (
x(t), y(t),ω(t)

) =
n∑

i=0

ωi(xi, yi,1)Bn
i (t). (2)

Choose a Cartesian coordinate system such that P0 = (0,0), P1 = (a,0), and P2 = (x2,h), as shown in Fig. 5.
Let Q be a parabola with homogeneous equation

q(x, y, w) = c1x2 − c2 yw = 0. (3)

Then,

f (t) = q
(
x(t), y(t), w(t)

) =
2n∑

i=0

f i B2n
i (t) (4)

where
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f i =
∑

j1+ j2=i

( n
j1

)( n
j2

)
(2n

i

) w j1 w j2(c1x j1 x j2 − c2 y j2). (5)

Since f0 = f1 = 0, P and Q have at least second-order contact and thus are tangent at (0,0). If non-singular P and Q meet
with third-order contact, they are said to osculate, and Q is an osculating parabola. Third-order contact requires

f2 = c1a2n2ω2
1 − c2

n(n−1)
2 ω0ω2h(2n

2

) = 0.

This is satisfied if

2c1

c2
= n − 1

n

ω0ω2

ω2
1

h

a2
. (6)

By coincidence, the curvature of Q at (0,0) is κ = 2c1/c2. Since (6) assures third-order contact, the curvature of P at P0 is

κ = n − 1

n

ω0ω2

ω2
1

h

a2
. (7)

This is the well-known equation for curvature at the non-singular endpoint of a rational Bézier curve (Farin, 1997, p. 176),
which provides beautiful geometric insight.

It is worth noting that the derivation of (7) using order-of-contact requires much less work than a derivation based
directly on Eq. (1).

3. Singular rational Bézier curves

We now adapt the method of order-of-contact in analyzing tangent and curvature at the endpoint of a singular rational
Bézier curve (2) where

P0 = · · · = Pk−1 = (0,0) �= Pk, with k > 1, ω0,ωk > 0. (8)

Section 3.2 describes a preprocess for dealing with zero weights.

Theorem 1. For a singular rational Bézier curve (8), the tangent line at P(0) is P0Pk.

Proof. Consider the family of lines passing through the origin:

q(x, y, w) = ax + by = 0.

The intersection between P and such a line is given by the roots of the equation

f (t) = q
(
x(t), y(t), w(t)

) =
n∑

i=0

f i Bn
i (t) = 0

where

f i = axi + byi .

In the non-singular case k = 1, we have f0 = 0. The tangent line has second-order contact with P, and is therefore the line
for which f1 = ax1 + by1 = 0, which is the line P0P1. But if P is singular, we have f0 = · · · = fk−1 = 0 for all values of a
and b. The tangent line is the one that has highest intersection multiplicity, which is the one for which fk = akx + bk y = 0.
This is the line P0Pk . �
Theorem 2. For a singular Bézier curve P under the conditions in (8), the limit curvature at P(0) is ∞ unless Pk+1, . . . ,P2k−1 are
collinear with P0Pk and ω2k > 0; then the limit curvature is

κ = 2
( n

2k

)
(n

k

)2

ω0ω2k

ω2
k

h

a2
(9)

where a and h are the distances shown in Fig. 6. In the non-degenerate case k = 1, (9) reduces to (7) as expected.
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Fig. 6. Conditions for finite limit curvature at singular endpoint.

Proof. Set Pk = (xk,0), xk �= 0, so that the tangent line is the x-axis. The intersection between P and parabola Q (3) is given
by (4) where the f i are given by (5). Since x0 = · · · = xk−1 = 0 and y0 = · · · = yk = 0, we have f0 = · · · = fk = 0 for all
choices of c1 and c2. The osculating parabola is the one with largest intersection multiplicity. The osculating parabola must
cause fk+1 = 0. From (5),

fk+1 = −
( n

k+1

)
c2ω0ωk+1 yk+1( 2n

k+1

)
which vanishes if c2 = 0 or yk+1 = 0. If c2 = 0, the curvature is ∞. Indeed, as illustrated in Fig. 1(a), this is the correct limit
curvature if yk+1 �= 0.

We next consider the special case yk+1 = 0, which causes fk+1 ≡ 0 and the osculating parabola is the one that causes
fk+2 = 0. However, this only happens if c2 = 0 (which again implies infinite curvature) or yk+2 = 0. So we set yk+2 = 0 and
check for conditions under which fk+3 = 0. Continuing this process, we eventually find that a finite curvature exists only
for curves for which

y0 = · · · = y2k−1 = 0 and xk �= 0. (10)

In this case, f0 = · · · = f2k−1 = 0 and

f2k = c1

(n
k

)2(2n
2k

)ω2
k x2

k − c2

(n
0

)( n
2k

)
(2n

2k

) ω0ω2k y2k. (11)

The ratio c1/c2 that makes (11) vanish (and thus defines the osculating parabola) is

c1

c2
= κ

2
=

( n
2k

)
(n

k

)2

ω0ω2k

ω2
k

y2k

x2
k

.

Consequently, the limit curvature of a singular curve (2) subject to (8) and (10) is

κ = 2

( n
2k

)
(n

k

)2

ω0ω2k

ω2
k

y2k

x2
k

. (12)

For our choice of coordinate system, xk = a and y2k = h. �
Theorems 1 and 2 can also be proven using L’Hospital’s rule or by analyzing the limit of κ(t) as t → 0, although the

proofs are more complicated.

3.1. Three-dimensional curves

For singular rational Bézier curves in R
3, Theorem 3 follows trivially from the R

2 case. Theorem 4 restates Eq. (9) by
replacing a and h with vector expressions. Theorem 5 follows directly from the definition of Frenet frame.

Theorem 3. A Bézier curve in R
3 subject to (8) has tangent vector Pk − P0 at t = 0.
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Theorem 4. A Bézier curve in R
3 subject to (8) has finite limit curvature at t = 0 if and only if each control point Pk+1, . . . ,P2k−1 is

collinear with P0 − Pk, in which case

κ(0) = 2
( n

2k

)
(n

k

)2

ω0ω2k

ω2
k

‖(Pk − P0) × (P2k − P0)‖
‖(Pk − P0)‖3

. (13)

Theorem 5. If (Pk − P0) × (P2k − P0) �= 0, the Frenet frame for a rational Bézier curve in R
3 subject to (8) is:

(1) the tangent vector is T = Pk − P0;
(2) the bi-normal vector is (Pk − P0) × (P2k − P0);
(3) the normal vector is N = ((Pk − P0) × (P2k − P0)) × (Pk − P0).

Corollary 6. The osculating plane for a rational Bézier curve in R
3 subject to (8) is spanned by T and N and is the plane containing P0

that has the largest intersection multiplicity with P at t = 0.

3.2. Zero weights

We have required ω0,ωk,ω2k > 0. If initially any ωi = 0, the order-of-contact method of computing curvature can still
be used after we first find an equivalent curve for which all ωi > 0 as follows. If ω0 = · · · = ωm−1 = 0, P(t) can be replaced
with

P̂(t) =
∑n−m

i=0 ω̂i P̂i Bn−m
i (t)∑n−m

i=0 ω̂i Bn−m
i (t)

where P̂i = Pi+m, ω̂i =
( n

i+m

)
(n−m

i

)ωi+m.

The case ωn−m+1 = · · · = ωn = 0 can be dealt with in similar fashion. Any other zero weights can be eliminated through
degree elevation.

4. Singular surface patches

We consider the rational tensor-product Bézier surface

C̃(ũ, ṽ) = (x̃(ũ, ṽ), ỹ(ũ, ṽ), z̃(ũ, ṽ))

ω̃(ũ, ṽ)
=

∑m
i=0

∑n
j=0 ω̃i j C̃i j Bm

i (ũ)Bn
j (ṽ)∑m

i=0
∑n

j=0 ω̃i j Bm
i (ũ)Bn

j (ṽ)
. (14)

We will use the form

C(u, v) = (
x(u, v), y(u, v), z(u, v), w(u, v)

) =
m∑

i=0

n∑
j=0

(xij, yij, zi j, wij)ui v j (15)

which is equivalent to (14) under the substitutions wij = (m
i

)(n
j

)
ω̃i j , Ci j = (xij, yij, zi j) = (m

i

)(n
j

)
ω̃i j C̃i j , u = ũ

1−ũ , and v = ṽ
1−ṽ

and the reparametrization x̃(ũ, ṽ) = x(u, v) ∗ (1 − ũ)m(1 − ṽ)n , etc. We translate the surface so that C̃0,0 = C0,0 = (0,0,0).
Our discussion makes heavy use of the set

Γi0, j0 =
{

P(t) = C
(
u(t), v(t)

) ∣∣∣ u(t) =
∞∑

i=i0

uit
i, v(t) =

∞∑
j= j0

v jt
j

}
(16)

with ui0 , v j0 not both zero, and where

P(t) =
∞∑

i=0

(Pi, wi)t
i =

∞∑
i=0

(xi, yi, zi, wi)t
i . (17)

We are particularly interested in Γi0, j0 that represents the set of all analytic curves (u(t), v(t)) whose images pass
through C00. For almost all singularities, Γ1,1 meets this requirement. Exceptions are that for a singularity for which
C(u,0) ≡ C(0,0), u ∈ R , we must use Γ0,1 and for a singularity for which C(0, v) ≡ C(0,0), v ∈ R , we must use Γ1,0. In
the remainder of the paper, Γ = Γ1,1. Only in Section 7.2.1 will we use Γ0,1.

We enforce w0 = ω00 �= 0 to avoid a base point; the method of eliminating zero weights in Section 3.2 does not extend
to surfaces.
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Definition 7. Depending on its argument, the function L means:

1. L(P) = k, where P ∈ Γ , P0 = · · · = Pk−1 = (0,0,0) �= Pk .
2. L(C(u, v)) is the smallest sum i + j for which there exists a Ci j �= (0,0,0).
3. If S is a set of polynomials, L(S) = min{L(P) | P ∈ S}. For example, L(Γ ) = min{L(P) | P ∈ Γ }.

Definition 8. C is singular at C(0,0) if there exists a curve P ∈ Γ for which L(P) > 1.

Definition 9. An anomalous curve is any P ∈ Γ for which L(P) > L(Γ ).

A curve P ∈ Γ is anomalous if and only if Pk = (0,0,0) where k = L(Γ ). Since P = C(u(t), v(t)), and Ci j = (0,0,0) for all
i + j < k, an anomalous curve occurs only when:

Pk = (
xk(u1, v1), yk(u1, v1), zk(u1, v1)

) =
∑

i+ j=k

Ci ju
i
1 v j

1 = (0,0,0). (18)

Each homogeneous polynomial equation xk(u1, v1) = 0, yk(u1, v1) = 0, zk(u1, v1) = 0 has k roots u1 : v1, so (18) is satisfied
only when all three polynomials have one or more roots in common; this will not happen if the Ci j , i + j = k, are in general
position. The difference L(P) − L(Γ ) is the order of the anomaly. We will call each root of (18) an anomalous direction,
because each ratio u1 : v1 defines a tangent direction in (u, v) space. The maximum number of anomalous directions is k,
which is realized only if the triples Ci j , i + j = k, are scales of each other.

4.1. Examples of singularities and anomalous curves

1. The only class of singularities which have no anomalous curves are those for which Ci j = (0,0,0), 1 � i + j < k, and for

which
∑

i+ j=k Ci jui
1 v j

1 �= (0,0,0) for any non-trivial u1, v1. This is the case if all Ci j , i + j = k, are in general position.
2. The surface for which C00 = (0,0,0) and C10 = −αC01 �= (0,0,0) is singular even though L(C(u, v)) = 1, because there

is an anomalous curve at u1 : v1 = α : 1. A generic P ∈ Γ for this surface has coefficient P1 = (u1 − αv1)C10, so all
non-anomalous P ∈ Γ have an endpoint tangent vector parallel to C10 − (0,0,0). Anomalous curves have coefficient
P2 = (u2 − αv2)C10 + u2

1C20 + 2u1 v1C11 + v2
1C02.

3. For a surface with C10 = C00 = (0,0,0) �= C01, a family of anomalous curves exists with v1 = 0. For each anomalous
curve, P0 = P1 = (0,0,0) and

P2 = C20u2
1 + C01 v2, P3 = C30u3

1 + 2C20u1u2 + C11u1 v2 + C01 v3.

The curvature of this specific singular surface is addressed in Wolter and Tuohy (1991). A higher-order anomaly can be

created if C01 = −αC20 because then P2 = (0,0,0) if
u2

1
v2

= α — this case is not allowed in Wolter and Tuohy (1991). This
example illustrates the fact that anomalous curves can be “nested” in the sense that one family of anomalous curves
can include higher-order anomalous curves.

4. The surface for which C00 = C10 = C01 = (0,0,0) is singular, with L(Γ ) = L(C(u, v)) = 2. A generic P ∈ Γ for this
surface has coefficient P2 = C20u2

1 + C11u1 v1 + C02 v2
1 and if C20, C11, and C02 are in general position, this case is

described in example (1) and has no anomalous curves. If, however, we have C20 = (2,4,0), C11 = (3,4,0), C02 =
(−2,−3,0), then P2 = (0,0,0) for all curves P ∈ Γ for which u1 : v1 = 1 : 2. Such curves are anomalous, with L(P) > 2.

5. Tangent plane at a singular corner

Denote by L(P) the coefficient of the leading non-zero term for a curve P ∈ Γ , that is, L(P) = Pk where k = L(P). Define

T = {
L(P) − P0

∣∣ P ∈ Γ
}
. (19)

Theorem 10. If T spans a vector space with dimension 2, a tangent plane exists.

Proof. L(P) − P0 defines the tangent direction of each P ∈ Γ . Thus, T is the set of tangent directions for all P ∈ Γ and
hence is the tangent space for the surface at C(0,0). If T spans a vector space of dimension 2, the tangent space lies in a
plane. �
Corollary 11. At the origin, all non-anomalous curves P ∈ Γ have tangent vectors that are linear combinations of the vectors Ci j − C00 ,
i + j = k = L(Γ ).

Proof. For a non-anomalous curve, Pk �= (0,0,0) and P0 = C00. From (18), Pk is a linear combination of Ci j , i + j = k.
Therefore, the tangent vector Pk − P0 is a linear combinations of the vectors Ci j − C00, i + j = k. �
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Corollary 12. Sufficient condition for the existence of a tangent plane at the point C(0,0) is that Γ contains no anomalous curves, and
that the vectors Ci j − C00 , i + j = k = L(Γ ), span a vector space with dimension 2.

Proof. For all P ∈ Γ , L(P) is a linear combination of Ci j , i + j = k. Therefore, if all vectors Ci j − C00, i + j = k, span a vector
space with dimension 2, so must T . �

If a surface has anomalous curves, additional constraints are needed to assure the existence of a tangent plane.

6. Gaussian and mean curvature at a singular corner

Define

F = {
f (x, y, z, w) = ax2 + bxy + cy2 − dzw

∣∣ a,b, c,d ∈ R
}

(20)

where, for each f ∈ F , f = 0 is a paraboloid that has a tangent plane z = 0 at the origin. For each f ∈ F and P ∈ Γ , the
composition

g(t) = f ◦ P = f
(
x(t), y(t), z(t), w(t)

)
is a polynomial whose roots are the values of t at which P intersects the paraboloid f = 0. We will say that a paraboloid
osculates with P ∈ Γ if L( f ◦ P) > L(F ◦ P) where F ◦ P = { f ◦ P | f ∈ F }. An osculating paraboloid osculates with all P ∈ Γ .

Assume that C has a tangent plane z = 0 at C(0,0) = (0,0,0). If an osculating paraboloid ax2 + bxy + cy2 − dzw = 0
exists, Theorem 14 shows that its curvatures at (0,0,0) are the limit curvatures of C. Specifically, Gaussian curvature is

K = K1 K2 = 4ac − b2

d2
, (21)

mean curvature is

H = K1 + K2

2
= a + c

d
, (22)

principle curvatures are

K1, K2 = a + c ± √
b2 + (a − c)2

d
,

and the principal planes are[
c − a +

√
b2 + (a − c)2

]
x − by = 0 and

[−c + a +
√

b2 + (a − c)2
]
x + by = 0.

The proof of Theorem 14 focuses on normal curvatures. A normal plane N through a singular point of a surface C will
generally intersect C in a curve that has two or more branches that are tangent to each other, as suggested by Fig. 4(b).

Lemma 13. Given a singular surface C(u, v) (15) that has a tangent plane z = 0. For each normal plane N, each branch of N ∩ C is
intersected by a curve in Γ with intersection multiplicity � r at C(0,0), where r is any integer.

Proof. Let N be the plane ax + by = 0. The curve N ∩ C, given by

f (u, v) = a ∗ x(u, v) + b ∗ y(u, v) =
m∑

i=0

n∑
j=0

αi ju
i v j = 0, where αi j = axij + byij,

can have several branches (e.g., Fig. 4(b)). For each branch, we prove the existence of (u(t), v(t)) (16) such that the first r
coefficients of

g(t) = f
(
u(t), v(t)

) =
∞∑

i=0

git
i

vanish. Letting k = L( f (u, v)), we have g0 = · · · = gk−1 = 0 and

gk =
∑

i+ j=k

αi ju
i
1 v j

1 = 0. (23)

There is one real solution u1 : v1 to (23) for each real branch of N ∩ C. Fixing u1 : v1 to be one of those roots, we find that
the coefficient gk+1 is linear in u2 and v2 and does not involve uβ , vβ , β > 2, so we can solve u2 : v2 to cause gk+1 = 0.
Likewise, the coefficient gk+μ is linear in uμ+1 and vμ+1 and does not involve uβ , vβ , β > μ + 1, so we can systematically
zero out gk, . . . , gr . �
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Theorem 14. If a singular surface C has an osculating paraboloid P , the limit Gaussian and mean curvatures of C are equal to the
Gaussian and mean curvatures of P .

Proof. We show that, for any normal plane N through (0,0,0), the limit curvature of N ∩ C is equal to the curvature of
N ∩ P . Let C ∈ Γ be a curve that intersects N ∩ C with multiplicity 2k + 1 where k = L(C). Lemma 13 assures the existence
of C . By the definition of osculating paraboloid, C osculates with P . If we express C in Bézier form, its first k control points
lie at the origin, and its first 2k + 1 control points lie on N. C thus also osculates with N ∩ P and therefore has the same
limit curvature as N ∩ P . �
7. Examples

Theorem 14 provides a general mechanism for analyzing curvature. The conditions under which an osculating paraboloid
exists can be expressed in straightforward algebraic terms. This section presents several examples.

7.1. Curvature when there are no anomalous curves

In this section we discuss the curvature of surfaces that have no anomalous curves and k = L(P). We assure a tangent
plane of z = 0 by setting Ci j = (0,0,0), i + j < k, and Ci j = (xij, yij,0), i + j = k.

7.1.1. Curvature at a non-singular point
We begin by showing how the approach works in the non-singular case, k = 1 and z10 = z01 = 0. Thus, g = f ◦ P =∑ν

i=0 giti has g0 = g1 = 0 and

g2 = (
ax2

10 + bx10 y10 + cy2
10 − dw00z20

)
u2

1 + (
2ax10x01 + b(x10 y01 + y10x01)

+ 2cy10 y01u1 v1 − dw00z11
)
u1 v1 + (

ax2
01 + bx01 y01 + cy2

01 − dw00z02
)

v2
1. (24)

Therefore, L(F ◦ Γ ) = 2 and the osculating paraboloid f = 0 ( f ∈ F ) will cause L( f ◦ Γ ) > 2. Necessary and sufficient
condition for this to happen is for g2 to vanish for all values of u1 and v1 (other than u1 = v1 = 0). This requires the
coefficients of u2

1, u1 v1, and v2
1 in (24) to all vanish, which will happen if and only if the following three linear equations

are satisfied:⎡
⎣ x2

10 x10 y10 y2
10 −w00z20

2x10x01 x10 y01 + y10x01 2y10 y01 −w00z11

x2
01 x01 y01 y2

01 −w00z02

⎤
⎦

⎡
⎢⎣

a
b
c
d

⎤
⎥⎦ =

[0
0
0

]
. (25)

The solutions for this linear system are scales of

a = ω00z02 y2
10 − y01ω00z11 y10 + y2

01ω00z20,

b = −2x01 y01ω00z20 + y10x01ω00z11 + x10 y01ω00z11 − 2x10 y10ω00z02,

c = ω00z02x2
10 − x01ω00z11x10 + x2

01ω00z20,

d = (y10x01 − x10 y01)
2.

The Gaussian curvature (21) for this osculating paraboloid is K = (4ac − b2)/d2, or

K = 4w2
00z20z02 − w2

00z2
11

(y10x01 − x10 y01)2
= w̃2

00

w̃2
10 w̃2

01

(m−1)
m

(n−1)
n w̃20 w̃02 z̃20 z̃02 − w̃2

11 z̃2
11

( ỹ10 x̃01 − x̃10 ỹ01)2
. (26)

Mean curvature can be found from (22). These formulae are equivalent to those derived in Zheng and Sederberg (2003)
using differential geometry.

7.1.2. Curvature at a singular non-anomalous point
Again assuring a z = 0 tangent plane by imposing Ci j = (0,0,0), i + j < k, and Ci j = (xij, yij,0), i + j = k, for the singular

case (k > 1) we have

gk+1 = dω00

∑
i+ j=k+1

zi ju
i
1 v j

1.

If any zi j �= 0, i + j = k + 1, we can only have gk+1 = 0 if d = 0, which implies infinite curvatures. This result is consistent
with the curve case. As in the curve case, we can achieve finite curvature only if we force zi j = 0, i + j < 2k. In this case,
L(F ◦ Γ ) = 2k, and
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g2k =
2k∑

i=0

[ ∑
j1+k1=i
j1+ j2=k
k1+k2=k

[ax j1 j2 xk1k2 + bx j1 j2 yk1k2 + cy j1 j2 yk1k2 ] − dw00zi,2k−i

]
ui

1 v2k−i
1 . (27)

The osculating paraboloid will force g2k = 0 for all u1, v1.
We first consider the case k = 2 and zi j = 0, i + j < 4, for which the lowest-degree non-zero term of g is g4. Specializ-

ing (27) to k = 2,

g4 = (
ax2

20 + bx20 y20 + cy2
20 − dw00z40

)
u4

1 + (
2ax20x11 + b(x20 y11 + y20x11) + 2cy20 y11 − dw00z31

)
u3

1 v1

+ (
a
(
x2

11 + 2x02x20
) + b(x02 y20 + x11 y11 + x20 y02) + c

(
y2

11 + 2y02 y20
) − dw00z22

)
u2

1 v2
1

+ (
2ax02x11 + b(x02 y11 + y02x11) + 2cy02 y11 − dw00z13

)
u1 v3

1

+ (
2ax02x02 + bx02 y02 + cy2

02 − dw00z04
)

v4
1. (28)

An osculating paraboloid exists if g4 ≡ 0 for all u1, v1, which requires a solution to the linear system:⎡
⎢⎢⎢⎢⎣

x2
20 x20 y20 y2

20 z40

2x20x11 x20 y11 + y20x11 2y20 y11 z31

x2
11 + 2x02x20 x02 y20 + x11 y11 + x20 y02 y2

11 + 2y02 y20 z22

2x02x11 x02 y11 + y02x11 2y02 y11 z13

x2
02 x02 y02 y2

02 z04

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣

a
b
c

−w00d

⎤
⎥⎦ = 0 (29)

or [V 1 V 2 V 3 Z ][A] = [0]. A solution exists for (29) only if the rank of the matrix is three. This can be achieved, for example,
by fixing the xij and yij variables in the first three columns, selecting values for a, b, c, and d, then solving

Z = (aV 1 + bV 2 + cV 3)/ω00d. (30)

The Gaussian and mean curvatures can be computed using (21) and (22). For general values of k, the matrix in (29) will
have 2k + 1 rows.

7.2. Curvature in the presence of anomalous curves

We explore the complications introduced by anomalous curves using the simple case where C10 = C00 = (0,0,0) �= C01,
in which a family of anomalous curves exists with v1 = 0. All anomalous curves P ∈ Γ have coefficients P0 = P1 = (0,0,0)

and

P2 = C20u2
1 + C01 v2.

Thus, necessary and sufficient conditions for a tangent plane of z = 0 are that the z coordinates of C01 and C20 are zero,
and C00, C01 and C20 are distinct and non-collinear. This assures that T spans a vector space of dimension two.

To determine the existence of an osculating paraboloid, start with (25) which gives conditions for all non-anomalous
curves on this surface to osculate with a paraboloid. Since in our current case C10 = (0,0,0), the top row of the matrix in
(25) is identically zero and can be removed. Additional linear constraints must now be added that will force all anomalous
curves to osculate with the paraboloid. Letting g = f ◦ P where P represents all anomalous curves, g0 = g1 = g2 = 0.
Osculation occurs if g3 = 0, but in this case, g3 = −dw00z11u1 v2 − dw00z30u3

1, for which the osculating paraboloid has
d = 0, which implies infinite curvature. Instead, we proceed as in previous cases and set z11 = z30 = 0. Now the lowest-
degree non-zero term has coefficient

g4 = (
ax2

01 + bx01 y01 + cy2
01 − dw00z02

)
v2

2 + (
2ax01x20 + b(x20 y01 + x01 y20)

+ 2cy01 y20 − dw00z21
)
u2

1 v2 + (
ax2

20 + bx20 y20 + cy2
20 − dw00z40

)
u4

1. (31)

We seek values of a,b, c,d that will force g4 = 0 for all values of u1 and v2. We also require that those same values of
a,b, c,d will satisfy the linear system (25), excluding the top row of the matrix. This results in a matrix with five rows, two
of which are identical. After removing the redundant row, we obtain (32), whose top two rows come from (25) and whose
bottom three rows come from (31):⎡

⎢⎢⎣
2x10x01 x10 y01 + y10x01 2y10 y01 −w00z11

x2
01 x01 y01 y2

01 −w00z02

2x01x20 x20 y01 + x01 y20 2y01 y20 −w00z21
2 2

⎤
⎥⎥⎦

⎡
⎢⎣

a
b
c
d

⎤
⎥⎦ =

⎡
⎢⎣

0
0
0
0

⎤
⎥⎦ . (32)
x20 x20 y20 y20 −w00z40
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Fig. 7. Three Bézier patches that are C2 along their shared boundary curves and G2 at the extraordinary point.

The existence of an osculating paraboloid is assured when the matrix is rank three. A solution can be found using, for
example, (30).

Generalizing from this example, we propose a three-step strategy for determining the existence of a finite Gaussian and
mean limit curvature at a singular point that has anomalous curves.

Step 1. Set up a linear system, as in (29), that solves for paraboloid that osculates with all non-anomalous curves. This
matrix will have 2k + 1 rows, where k = L(C(u, v)). Each anomalous direction will introduce a linear dependency
into the linear system, allowing the removal of one row for each dependency.

Step 2. Add some additional rows to the matrix to force the paraboloid to osculate with each anomalous curve, following
the example in (32).

Step 3. If the rank of the matrix is three, solve for a,b, c,d to obtain the osculating paraboloid, from which the Gaussian
and mean limit curvatures can be computed using (21) and (22). If the rank is not three, no osculating paraboloid
exists. Constraints can be imposed on the control points of the surface patch to force a rank of three and assure
the existence of an osculating paraboloid.

7.2.1. Edge collapsing to a point
We now analyze when a bicubic patch with C00 = C10 = C20 = C30 = (0,0,0) has finite Gaussian and mean limit curva-

tures. Since Γ does not contain all analytic curves on C passing through C00, we must use Γ0,1 (see (16)). Then

P1 = v1C01 + u0 v1C11 + u2
0 v1C21 + u3

0 v1C31.

As long as there are no (u0, v1) pairs for which P1 = (0,0,0), this surface has no anomalous curves, and necessary and
sufficient conditions for the existence of a tangent plane is that C̃00, C̃01, C̃11, C̃21, and C̃31 are all co-planar. To analyze
curvature, let the tangent plane be z = 0 by setting Ci,1 = (xi,1, yi,1,0), i = 0,1,2,3. Then F ◦ Γ = { f ◦ P | f ∈ F , P ∈ Γ } is
a polynomial in t whose first two terms vanish, and for which the coefficient of t2 is of the form

6∑
i=0

riu
i
0 v2

1, (33)

where the ri are expressions in terms of a, b, c, d, x jk , y jk , z jk , and w jk . The vanishing of (33) for all values of u0 and v1

requires all ri to vanish. This can be represented in matrix form M[a,b, c,d]T = 0, where each row of M is an ri , and

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
01 x01 y01 y2

01 −w00z02

2x01x11 x01 y01 + x11 y01 2y01 y11 −w10z02

x2
11 + 2x01x21 x11 y11 + x01 y21 + x21 y01 2y01 y21 + y2

11 −w00z22 − w10z12

2x21x11 + 2x01x31 x01 y31 + x21 y11 + x11 y21 + x31 y01 2y01 y31 + 2y11 y21 −w00z32 − w10z22

x2
21 + 2x11x31 x31 y11 + x21 y21 + x11 y31 y2

21 + 2y11 y31 −w20z22 − w10z32

2x21x31 x31 y21 + x21 y31 2y21 y31 −w20z32

x2
31 x31 y31 y2

31 −w30z32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

An osculating paraboloid exists if M is rank 3.

7.3. Example

Fig. 7 shows three Bézier patches of degree 6 × 6 that are pairwise C2 along their shared boundary curves, and G2 at
the extraordinary point. C2 continuity along all edges that meet at an extraordinary point can only be attained if Pi j = P00,
i, j = 0,1,2, which introduces a singularity. G2 at the singular extraordinary points is assured by forcing all three patches
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to have the same osculating paraboloid, based on the results in Section 7.1.2. The smooth zebra stripes evidence curvature
continuity.

8. Conclusion

This paper shows that, while the limit curvature at a generic singular point of a rational Bézier curve is infinite, in some
cases the limit curvature at a singularity is finite. Necessary and sufficient conditions are presented for this to occur.

Surface singularities can have many different forms, and the paper introduces the notion of anomalous curves to char-
acterize and deal with those singularities. This allows us to analyze limit curvature in algebraic form, yielding a general
method for stating necessary and sufficient conditions for the existence of tangent plane and curvature, along with formu-
lae for computing them. These results have application in strategies for creating G2 extraordinary points, such as in TURBS
surfaces, and in cases where an edge of control points collapses to a point.

The paper has focused on singular point for which one or more directional derivatives vanish, and has not discussed
base points, because for a generic base point, directional derivatives do not vanish. Each base point maps (“blows up”) to an
entire curve, so while base points are not singular in the sense used in this paper, a curvature analysis of base points does
require special handling. Base points occur in Gregory patches and curvature at the corner of a Gregory patch is analyzed
in Hermann (1996). We can also have singular base points for which directional derivatives vanish; this could be a topic for
future research, although it is not clear if there is a practical CAGD application for the study.

Another interesting question is how floating point error impacts the curvature of singular curves and surfaces. For ex-
ample, finite curvature requires some Bézier control points to be collinear or co-planar, yet with floating point arithmetic,
exact collinearity or co-planarity cannot be assured. What does such truncation error imply about the curvature?

Acknowledgements

This paper benefited tremendously from the referees’ very helpful criticism. The first author’s work was in support of a
grant from ONR (No. 00460374). The second author was supported by Natural Science Foundation of China (Nos. 60970150,
60933008), and Zhejiang Provincial Natural Science Foundation of China (No. Y1090416). The third author was supported
by Startup Scientific Research Foundation of CAS and NSF of China (No. 6093148).

References

Bohl, H., Reif, U., 1997. Degenerate Bézier patches with continuous curvature. Computer Aided Geometric Design 14, 749–761.
Bruce, J.W., Giblin, P.J., 1984. Curves and Singularities. Cambridge University Press.
Do Carmo, M.P., 1976. Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs, NJ.
Farin, G., 1997. Curves and Surfaces for Computer Aided Geometric Design, 4th edition. Academic Press.
Goldman, R., 2005. Curvature formulas for implicit curves and surfaces. Computer Aided Geometric Design 22 (7), 632–658.
Hermann, T., 1996. G2 interpolation of free form curve networks by biquintic Gregory patches. Computer Aided Geometric Design 13, 873–893.
Hogervorst, B.J., van Damme, R., 1993. Degenerate polynomial patches of degree 11 for almost GC2 interpolation over triangles. Numerical Algorithms 5

(11), 557–568.
Neamtu, M., Pfluger, P., 1994. Degenerate polynomial patches of degree 4 and 5 used for geometrically smooth interpolation in R3. Computer Aided

Geometric Design 11, 451–474.
Pfluger, P.R., Neamtu, M., 1993. On degenerate surface patches. Numerical Algorithms 5 (11), 569–575.
Reif, U., 1995. A note on degenerate triangular Bézier patches. Computer Aided Geometric Design 12, 547–550.
Reif, U., 1998. TURBS—topologically unrestricted rational B-splines. Constructive Approximation 14, 57–77.
Snyder, V., Hutchinson, J., 1902. Differential and Integral Calculus. American Book Company, New York. Chapter 14.
Wolter, F.-E., Tuohy, S.T., 1991. Curvature computation for degenerate surface patches. Computer Aided Geometric Design 9, 241–270.
Zheng, J., Sederberg, T.W., 2003. Gaussian and mean curvature of rational Bézier patches. Computer Aided Geometric Design 20, 297–301.


	Curvature of singular Bézier curves and surfaces
	Introduction
	Order-of-contact
	Singular rational Bézier curves
	Three-dimensional curves
	Zero weights

	Singular surface patches
	Examples of singularities and anomalous curves

	Tangent plane at a singular corner
	Gaussian and mean curvature at a singular corner
	Examples
	Curvature when there are no anomalous curves
	Curvature at a non-singular point
	Curvature at a singular non-anomalous point 

	Curvature in the presence of anomalous curves
	Edge collapsing to a point

	Example

	Conclusion
	Acknowledgements
	References


