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a b s t r a c t

This paper formulates pixel labelling as a series of two-category classification. Unlike existing

techniques, which assign a determinate label to each pixel, we assign a label set to each pixel and shrink

the label set step by step. Determinate labelling is achieved within log2n (n is size of label set) steps. In

each step, we bisect the label set into two subsets and discard the one with higher cost of assigning it to

the pixel. Simultaneous labelling of an image is carried out by minimizing an energy function that can

be minimized via graph cut algorithm. Based on the bisection approach, we propose a bitwise algorithm

for pixel labelling, which set one bit of each pixel’s label in each step. We apply the proposed algorithm

to stereo matching and image restoration. Experimental results demonstrate that both good

performance and high efficiency are achieved.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Many early vision tasks require assigning labels to pixels based
on the observed images. The labels can denote quantities such as
gray, disparity and so on. The label fields can be elegantly
expressed as Markov random fields (MRFs). Then, the pixel
labelling problem can be formulated as maximum a posterior

estimation of the Markov random fields (MAP-MRF) in a Bayesian
framework, it results in an energy minimization problem [1,2].

Simulated annealing is easy to implement and can optimize an
arbitrary energy function. Theoretically, if annealing’s tempera-
ture parameter is sufficiently low, it should eventually find the
global minimum. Nevertheless, it gives results far from global
minimum [3]. Moreover, it requires exponential time and it is
very slow. Iterated conditional modes (ICM) adopts a greedy
technique to find a local minimum [4]. It starts with an initial
labelling and updates the labelling until a minimum is reached.
Since only one pixel can change its label at each step, the results
are extremely sensitive to the initial labelling and their quality is
usually low.

Recently, people have developed graph cut for energy mini-
mization. Graph cut methods [5–7] construct a weighted graph
such that the minimum cut corresponds to a configuration
minimizing the energy function. The minimum cut can be found
efficiently by max flow algorithms such as the ‘‘push-relabel’’ [8].
When there are two labels involved, the global minimum can be
ll rights reserved.
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found by a single minimum cut computation [3]. Usually, there
are more than two labels involved, for example, image gray and
disparity have many levels. Then, it is necessary to solve a
multiway minimum cut problem. Unfortunately, multiway mini-
mum cut problem is NP-hard [5].

Boykov et al. proposed a2b�swap and a�expansion algorithm
to compute an approximate optimal solution [9]. These algo-
rithms start with an initial labelling and update it iteratively. In
each iteration, they perform a swap move for every pair of labels
and an expansion move for every label, respectively, to minimize
the energy. There are only two possible labels involved in the
moves, and the optimal moves are found via standard minimum
cut algorithm. Since a large number of pixels are allowed to
change their labels simultaneously, they find local minimum with
respect to very large moves and produce results with high quality
[10]. The complexities of a2b�swap algorithm and a�expansion
algorithm are Oðk � n2Þ and Oðk � nÞ, respectively, where k is the
number of iterations and n is the size of the label set.

Moreover, people have developed belief propagation algo-
rithms for energy minimization. Belief propagation algorithms
[11,12] adopt a message propagating mechanism to assist pixel
labelling. Each pixel receives messages from neighboring pixels.
The message propagation is iterated until its convergence. Each
pixel accepts the label that supports its maximal belief. Since
the graphical model for pixel labelling consists of many loops,
the belief propagation algorithm can eventually find an approx-
imate solution. Belief propagation algorithms produce results
with comparable quality as that of graph cut algorithms
[10,13,14]. The complexity of the algorithm is Oðk � p � n2Þ, where
p is the number of pixels in the image. The complexities of
belief propagation and graph cut algorithms are either linear or
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quadric in n, they are not efficient enough to support realtime
applications.

This paper proposes an efficient method for pixel labelling. We
treat labels as indicators of categories, i.e. pixels with same label
belong to same category while pixels with different labels belong
to different categories. Then, we formulate the pixel labelling
problem as a classification problem, and classify pixels by a series
of two-category classification. In other words, a label set instead
of a determinate label is assigned to each pixel and it is shrunk
step by step until the label set consists of only one label. It is not
necessary to test every label or every pair of labels as that of
a2b�swap algorithm and a�expansion algorithm. Using bisec-
tion technique, determinate label can be achieved within log2n

steps. As a result, the whole process consists only log2n steps, and
the complexity is reduced to Oðlog2nÞ.

This rest of this paper is organized as follows. Section 2
formulates pixel labelling problem as a classification problem and
Section 3 shows how to solve it using graph cut algorithm. A
bitwise algorithm for pixel labelling is proposed in Section 4.
Experimental results are presented in Section 5 and conclusions
are drawn in Section 6.
0 1 2 3
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Fig. 1. Binary decision tree for classification. All brother nodes are aligned

horizontally to be one layer, whose number is shown in left column. The

classification is carried out layer by layer from top to bottom, one layer each time.
2. Pixel labelling via classification

2.1. Pixel labelling problem

A MRF is a set of random variables F ¼ fFp; pAPg adhering to a
field of pixels P¼ fp1; . . . ; pmg; each random variable Fp can take a
value fp in some label set L¼ fl1; . . . ; lng. It has the local

characteristics: the value Fp on pixel p only depends on the value
Fq of its neighboring pixels qANp; Np is the set of neighbors of p

and N¼ fNp; pAPg is a neighborhood system on the field.
Pixel labelling problem is a common task in computer vision. It

needs to assign one label l in L to each pixel p in P such that the
configuration and the observed data are as consistent as possible.
In the Bayesian framework, it is expressed as finding the
maximum a posterior configuration of F corresponding to a
realization of the random field [1]. It results in minimizing the
following energy function:

Eðf Þ ¼ Edðf ÞþEsðf Þ ð1Þ

where data term Edðf Þ, which measures the agreement between
labelling and the observed data, reflects the likelihood of the
labelling; smooth term Esðf Þ, which measures smoothness of the
labelling, reflects the prior probability of the labelling. This paper
focuses on pairwise MRFs, i.e. the clique potentials involve only
pairs of neighboring pixels. Then, Edðf Þ and Esðf Þ have the
following forms:

Edðf Þ ¼
X
pAP

DpðfpÞ ð2Þ

Esðf Þ ¼
X

p;qAN

Vp;qðfp; fqÞ ð3Þ

where DpðfpÞmeasures how well fp fits the observed data at p, and
the penalty Vp;qðfp; fqÞ makes f vary smoothly across neighboring
pixels. Minimizing the data term forces the labelling to agree with
observed data while as minimizing the smooth term forces the
labelling varies smoothly everywhere. The effect of data term and
the smooth term can be adjusted by weighting their contribution
to the total energy. Moreover, discontinuity preserving energy
functions can be adopted to deal with discontinuity at object
boundary [15].

Since each pixel can take n labels, the total number of possible
configurations is nm. It is very difficult to search the optimal one
among so many possible solutions. Simulated annealing samples
the configuration space randomly to search the best configura-
tion. It needs enough samples to find the optimal solution,
therefore it is very slow. Iterated conditional modes adopt a
greedy technique to find a local optimal solution. Since only one
pixel can change its label at each step, they depend on the initial
labelling greatly and usually cannot find good solution.
a�expansion algorithm perform expansion move to find local
optimal solution. All pixels can change their labels simultaneously
in each step. However, they are allowed to adopt one new label at
each step. Therefore, it must test against all labels to find good
solution. Similarly, a2b�swap algorithm must test against every
pair of labels. Both a�expansion algorithm and a2b�swap
algorithm need to carry out graph cut algorithm iteratively. As a
result, their complexities are Oðk � n2Þ and Oðk � nÞ, respectively.

The above approaches adopt what we called determinate
labelling schema: every pixel has one determinate label in the
process of labelling. Since the configuration space is very large, it
costs much time to search the optimal configuration. This paper
proposes a novel technique for pixel labelling: a label set instead
of a label is assigned to the pixel. This schema reduces the
complexity greatly.

2.2. Pixel labelling via classification

Let all pixels assigned with same label belong to one category,
pixel labelling can be treated as a classification problem: classify
each pixel pAP into one category cAC corresponding to one label
lAL. As shown in [16], classification can be carried out based on a
decision tree.

2.2.1. Binary decision tree construction

Assumption 1. Assume that the given labels are

li ¼ i� 1; i¼ 1; . . . ;n ð4Þ

Otherwise, we can define a function mapping the original label to
such labels.

We write each label lAL as a binary number and create a
binary decision tree to assist the classification. First, we create a
root node to denote L. Then, we create left and right child nodes to
denote L0 and L1, respectively, L0 and L1 are two subsets of L: L0

and L1 consist of the labels with their highest bit being zero or
one, i.e.

lA
L0; bitðl; iÞ ¼ 0

L1; bitðl; iÞ ¼ 1

(
ð5Þ

where i is the index of the highest bit and bitðl; iÞ is a function
returning the i th bit of label l. Similarly, we create two child
nodes for each of above nodes. This process is repeated until every
leaf node denotes a set contains only one label. In the example
shown in Fig. 1, the whole label set is L¼ f0;1;2;3g and the
highest bit is 1th bit.
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D. Chai et al. / Pattern Recognition 43 (2010) 1826–18341828
The binary tree is used as a decision tree for the classification.
Each node denotes one subset L0DL, which also denotes one
category. Each node denotes a super category of the categories
corresponding to their child nodes, on the contrary, each child
node denotes one subcategory of their parent node’s category.
Sometimes, we use such term as label set, category and node
interchangeably, the meaning is indicated by their context. We
call the category corresponding to a leaf node a final category, it
corresponds to a determinate label.

2.2.2. Classification for a single pixel

Given a pixel p, it can be classified into one final category by
finding a ‘‘root to leaf’’ path on the decision tree T. Each step
towards this goal is a two-categories decision. We use a binary-

valued variable xAf0;1g to represent the decision, i.e. x¼ 0 and 1
indicates that pAL0 and pAL1, respectively. The decision is based
on some cost function EðxÞ measuring the probability of p

belonging to the two categories:

x¼
0; Eð0ÞoEð1Þ

1; Eð1ÞoEð0Þ

(
ð6Þ

2.2.3. Classification for a pixel set

Given a label set P, all pixels can be classified into their final
categories simultaneously. First, all pixels are classified into the
root node, then they are classified into one of the nodes in
the next layer on the decision tree. This is repeated until it reaches
the bottom layer and all pixels are classified into their final
categories.

Let us focus on one step of the classification corresponding to
one layer on the decision tree. We use xpAf0;1g to represent the
decision for pixel p and X ¼ fxp; pAPg to represent the decision for
all pixels. Determination of MRF X is based on the cost function
as follows:

EðXÞ ¼ EdðXÞþEsðXÞ ¼
X
pAP

EpðxpÞþ
X
pAP

X
qANp

Ep;qðxp; xqÞ ð7Þ

where EdðXÞ and EsðXÞ are data term and smooth term, respec-
tively. Since xp does not indicate that p belongs to one final
category and has one determinate label, the data term and
smooth term cannot be defined in the traditional way.

Since there are a few layers in the decision tree, the whole
classification process consists of only a few steps. All pixels can
get their determinate labels within a few steps. Each step is a two-
category classification and is formulated as bi-label labelling
problem.

2.3. Energy construction in a probabilistic framework

As shown in Section 2.1, Fp is a random variable takes value in
L. If p is classified into one category Lp, Fp can only take value in Lp.
Therefore, the classifying process restricts the possible values of
the random variable Fp step by step until Fp gets one determinate
value. In other words, a set of possible labels instead of a
determinate label is assigned to the pixels, and the set is bisected
repeatedly until the pixels get their determinate label.

Suppose that Lp is assigned to p, then Fp takes any value in Lp. It
is reasonable to assume that the chance of taking any label is
equal. EpðxpÞ can be defined by adopting ‘‘winner takes all’’
schema:

EpðxpÞ ¼minðDpðfpÞ; fpAL
xp
p Þ ð8Þ

Since DpðfpÞ measures the likelihood of pixel p having label fp,
EpðxpÞ defined by the above equation can measure the likelihood
of label fp being in L
xp
p , i.e. the likelihood of p belonging to the

corresponding category.
Suppose that p and q are a pair of neighboring pixels, and that

Lp and Lq are assigned to them. Then, Fp takes value in Lp and Fq

takes value in Lq. Since the joint probability is proportional to the
exponential of clique potential, we have

Prðfp; fqÞ ¼
expð�Vp;qðfp; fqÞÞP

fp AL
xp
p ;fq A L

xq
q

expð�Vp;qðfp; fqÞÞ
ð9Þ

where the denominator is a normalization constant. Ep;qðxp; xqÞ can
be defined as the expectation of Vp;qðFp; FqÞ:

Ep;qðxp; xqÞ ¼
X

fp A L
xp
p

X
fq A L

xq
q

Vp;qðfp; fqÞPrðfp; fqÞ ð10Þ

Since Vp;qðfp; fqÞ reflects the prior probability of p and q having fp

and fq, Ep;qðxp; xqÞ defined by the above equation reflects the prior

probability of fp and fq being in L
xp
p and L

xq

q , i.e. the probability of p

and q belonging to the corresponding categories.
We can define Ep;qðxp; xqÞ just by xp and xq. However, the

classification process is a many to one mapping from fp to xp,
therefore, one pair of xp and xq indicates many kinds of labelling
and cannot distinguish the different cases. Eq. (10) calculates the
expected distance between fp and fq. It assigns different values to
different cases and makes a difference between them.

The constructed energy is an approximation to the original
energy and the proposed method is an approximate approach.
However, it works well in practice as demonstrated in Section 5.
3. Energy minimization via graph cut

Kolmogorov and Zabih presented a theoretic foundation on
what energy can be minimized via graph cut [17]. The main result
is that:

Theorem 1. Let E be a function of m binary variables xi; i¼ 1; . . . ;m

Eðx1; . . . ; xmÞ ¼
X

i

EiðxiÞþ
X

i;j

Ei;jðxi; xjÞ ð11Þ

Then E can be minimized via graph cut if and only if each term Ei;j

satisfies the inequality

Ei;jð0;0ÞþEi;jð1;1ÞrEi;jð0;1ÞþEi;jð1;0Þ ð12Þ

Following Assumption 1 and the classification schema de-
scribed in Section 2.2, we have Ls

p ¼ flp
s
i ; i¼ 1; . . . ; kg; lps

i ¼ iþ ls;

s¼ 0;1; l1 ¼ l0þk. Moreover, we have:

Theorem 2. If Ls
p ¼ Ls

q; s¼ 0;1 and Vp;qðlp; lqÞ ¼ jlp � lqj, then

Ep;qð0;0ÞþEp;qð1;1ÞrEp;qð0;1ÞþEp;qð1;0Þ ð13Þ

Since Vp;qðlp; lqÞ ¼ jlp � lqj denotes the distance between lp and lq,
Ep;qðs; tÞ is the weighted average of distances between labels from
Ls

p and Lt
q, respectively, it can be interpreted as distance between

the two label sets and written as Dst . As illustrated in Fig. 2, they
satisfy D00þD11rD01þD10. The mathematic proof is presented in
the Appendix.
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Fig. 3. Distance relationship 2. Dst is the distance between Ls
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q , s; t ¼ 0;1, they

satisfy D00þD11 rD01þD10.
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Fig. 4. Labels in the possible label sets.
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Furthermore, we can remove the condition Ls
p ¼ Ls

q; s¼ 0;1 in
Theorem 2 and have:

Theorem 3. If Vp;qðlp; lqÞ ¼ jlp � lqj, then

Ep;qð0;0ÞþEp;qð1;1ÞrEp;qð0;1ÞþEp;qð1;0Þ ð14Þ

In this case, the label sets and their distances are shown in
Fig. 3. It has two extremities according to the value of d¼ lq0

1 � lp0
1:
(1)
 d¼ 0, then Ls
p ¼ Ls

q; s¼ 0;1and D00þD11oD01þD10 as shown
in Fig. 2.
Fig. 5. Bitwise algorithm for stereo matching.
(2)
 d¼1, then D00 ¼D11 ¼D01 ¼D10 ¼1, and D00þD11r
D01þD10.
The rest cases are between these two and satisfy D00þD11r
D01þD10.

According to Theorems 1–3, Eq. (7) can be minimized via graph
cut when the penalty Vp;qðlp; lqÞ ¼ jlp � lqj. With a simple modifica-
tion, we can prove that Eq. (7) can be minimized via graph cut
when the penalty is Potts model. More importantly, we can
remove the implicit assumption that the labels are one-dimen-
sional and generalize the above theorems to multi-dimensional
cases to deal with problems such as motion estimation. It involves
more calculation but follows the same way. Therefore it is not
presented in this paper.
4. Bitwise algorithm

As shown in Section 2.2.3, each step of the classification
corresponds to one layer on the decision tree and determines one
bit of the labels. Without loss of generality, let us assume that the
labels have 8 bits and focus on the first step of the classification.
As shown in Fig. 4, the highest bit of lp is 0 and 1 when lpAL0

p and
lpAL1

p , respectively. Since xp represents the decision for p, we can
use xp to set the highest bit of lp. The rest bits of the labels can also
be determined in the same way. Fig. 5 presents the bitwise

algorithm for the pixel labelling problem.
Since the smooth term is determined by the current labels of

all involved pixels and each pixel has a finite number of possible
labels, the smooth term can be computed and stored in a table.
Then, smooth term construction involves only table searching, the
complexity is dominated by the graph cut computation. As
shown, bitwise algorithm consists nb¼ log2n (n is size of label
set) steps and each step involves only one graph cut computation.
The complexity of the bitwise algorithm is Oðlog2nÞ.

The higher bits are determined before the lower bits. Every set
of possible labels is shrunk step by step, and contains only one
label at last. Bitwise algorithm performs from coarse to fine like
multi-resolution MRFs [18], but the refinement is conducted in
the label field instead of site field. It suffers from the drawbacks of
multi-resolution approaches: mistakes on the coarse level have
strong negative impact on the fine level, and may impair the
labelling quality.
5. Experimental results

Stereo matching and image restoration can be formulated as
pixel labelling problem. Graph cut and belief propagation are the
state of the art algorithms for pixel labelling. Since bitwise
algorithm is built on graph cut algorithm, it is reasonable to
compare bitwise algorithm with graph cut algorithms.
a�expansion and a2b�swap algorithms have nearly the same
performance while as a�expansion algorithm is more efficient
than a2b�swap. Therefore, this section presents results on both
stereo matching and image restoration, and compares it with
a�expansion algorithm.

5.1. Stereo matching

In the presented experiments on stereo matching, the data
terms and smooth terms are based on below functions:

DpðfpÞ ¼ jIðpÞ � I0ðpþ fpÞj ð15Þ

Vp;qðfp; fqÞ ¼ up;qjfp � fqj ð16Þ

up;q ¼
2 � K jIðpÞ � IðqÞjr8

K jIðpÞ � IðqÞj48

(
ð17Þ

where IðpÞ and I0ðpÞ are the gray of pixel p in each image of the
stereo pair, the image sampling issue is taken into account by
using measure presented in [19]. K is set to be 10.

Fig. 6 shows how bitwise algorithm determines the labels step
by step. Figs. 6(a) and (b) show left and right images of tsukuba
stereo pair. In this experiment, the disparity (label) range is
0r lr15, they are scaled by a factor of 16 for better illustration.
Fig. 6(c) is the disparity image after one step of the bitwise
algorithm, highest bit of the labels for the gray and dark pixels are
1 and 0, respectively. The disparities are refined step by step as
illustrate in Figs. 6(d)–(f). The whole process consists only 4 steps.
As shown, it produces good results efficiently.

The comparisons of bitwise algorithm and a�expansion
algorithm are shown in Figs. 7–10. In each figure, (a) is the left
image of the stereo pair and (b) is its true disparity image. (c) and
(d) show disparity image computed using bitwise algorithm and
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left image right map

disparities after 1 step disparities after 2 steps

disparities after 3 steps disparities after 4 steps

Fig. 6. Process of bitwise algorithm: (a) left image, (b) right map, (c) disparities

after 1 step, (d) disparities after 2 steps, (e) disparities after 3 steps, (f) disparities

after 4 steps.

left image

disparities by bitwise algorithm

Fig. 7. Stereo matching on map image example: (a) left image, (b) true disparities,
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a�expansion algorithm, respectively. The computed disparity is
compared with the true disparity. If the difference is larger than
1.0, it is reported as bad pixel. The percentage of bad pixels in
non-occluded, textureless and discontinuity regions are recorded
and presented in Tables 1 and 2. The evaluation methodology is
described in [10]. As shown, these two algorithms have nearly the
same performance on stereo computation. We should point out
that these two algorithms do not incorporate such information as
occlusion and segmentation into stereo computation, as a result,
they produce results inferior to that of state of the art stereo
algorithms [20–22]. Moreover, their computation times are
recorded and presented in Table 3.
5.2. Image restoration

In the presented experiments on image restoration, the data
terms and smooth terms are based on below functions:

DpðfpÞ ¼ jIðpÞ � fpj ð18Þ

Vp;qðfp; fqÞ ¼ jfp � fqj ð19Þ

where IðpÞ is the gray of pixel p.
The comparisons of bitwise algorithm and a�expansion

algorithm are shown in Figs. 11 and 12. (a) and (b) are the
input image and the ground truth image. (c) and (d) are images
restored by bitwise algorithm and a�expansion algorithm,
respectively. As shown, they have nearly the same performance.
Their computation times are presented in Table 4.

The complexities of bitwise algorithm and a�expansion
algorithm are Oðlog2nÞ and Oðk � nÞ, respectively. Therefore,
bitwise algorithm is far more efficient than a�expansion algo-
rithm as demonstrated by Tables 3 and 4. The more labels, the
more time is saved by bitwise algorithm.
true disparities

disparities by α-expansion algorithm

(c) disparities by bitwise algorithm, (d) disparities by a�expansion algorithm.
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left image true disparities

disparities by bitwise algorithm disparities by α-expansion algorithm

Fig. 8. Stereo matching on sawtooth image example: (a) left image, (b) true disparities, (c) disparities by bitwise algorithm, (d) disparities by a�expansion algorithm.

left image true disparities

disparities by bitwise algorithm disparities by α-expansion algorithm

Fig. 9. Stereo matching on tsukuba image example: (a) left image, (b) true disparities, (c) disparities by bitwise algorithm, (d) disparities by a�expansion algorithm.

D. Chai et al. / Pattern Recognition 43 (2010) 1826–1834 1831
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left image true disparities

disparities by bitwise algorithm disparities by α-expansion algorithm

Fig. 10. Stereo matching on venus image example: (a) left image, (b) true disparities, (c) disparities by bitwise algorithm, (d) disparities by a�expansion algorithm.

Table 2

Quality evaluation of a�expansion algorithm.

Tsukuba Sawtooth Venus Map

Non-occluded 2.59 2.28 2.89 0.49

Textureless 1.57 1.78 3.69 0.72

Discontinuity 13.51 10.10 10.94 5.10

Table 3

Efficiency comparison of bitwise and a�expansion algorithms.

Tsukuba Sawtooth Venus Map

Width 384 434 434 284

Height 288 380 383 216

Disparity levels 16 32 32 32

Time (bitwise, seconds) 0.875 1.687 2.109 0.61

Time (a�expansion, seconds) 17.922 43.656 60.593 17.735

input image true image

bitwise algorithm α-expansion algorithm

Fig. 11. Restoration on house image example: (a) input image, (b) true image,

(c) bitwise algorithm, (d) a�expansion algorithm.

Table 1
Quality evaluation of bitwise algorithm.

Tsukuba Sawtooth Venus Map

Non-occluded 3.55 3.57 1.37 0.86

Textureless 2.26 1.73 1.11 0.00

Discontinuity 15.72 10.23 6.99 9.70

D. Chai et al. / Pattern Recognition 43 (2010) 1826–18341832
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input image true image bitwise algo-
rithm

α-expansion al-
gorithm

Fig. 12. Restoration on penguin image example: (a) input image, (b) true image, (c) bitwise algorithm, (d) a�expansion algorithm.

Table 4

Efficiency comparison of bitwise and a�expansion algorithms.

House Penguin

Width 256 122

Height 256 179

Gray levels 256 256

Time (bitwise, seconds) 0.985 0.39

Time (a�expansion, seconds) 208.968 55.063
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6. Conclusion

This paper has demonstrated that pixel labelling problem can
be expressed as a classification problem, and then formulated it as
a series of two-category classification. In contrast with existing
techniques, which assign a determinate label to each pixel, our
new approach assigns a set of labels to each pixel and bisect the
label set step by step until it contains only one label. Each step is
formulated as a bi-label labelling problem and can be solved by
standard graph cut method. Based on this formulation, we
developed a bitwise algorithm for pixel labelling. The whole
process consists of log2n steps, each step sets one bit of the labels
and involves only one graph cut computation. As shown in our
experiments, efficiency of the labelling is improved greatly while
quality of the results is preserved.

The proposed method performs in a coarse to fine way like
multi-resolution MRFs. But the refinement is conducted in the
label field instead of site field. Like other multi-resolution
methods, decision in the early steps has great impact on the later
steps. As can be seen in Section 5, errors are usually introduced in
the early steps. We plan to improve reliability of the labelling by
incorporating reliable features into the labelling process. Reliable
features act as control points and may improve quality of the
results.
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Appendix A. Proof of Theorem 2

First, let us compute Ep;qðs; tÞ using Eqs. (10) and (9)

Ep;qð0;0Þ ¼
Xk

i ¼ 1

Xk

j ¼ 1

Vp;qðlp
0
i ; lq

0
j ÞPrðlp

0
i ; lq

0
j Þ ðA:1Þ
¼
Xk

i ¼ 1

Xk

j ¼ 1

jlp
0
i � lq

0
j j

expð�jlp0
i � lq0

j jÞPk
i ¼ 1

Pk
j ¼ 1 expð�jlp0

i � lq0
j jÞ

ðA:2Þ

¼

Pk
i ¼ 1

Pk
j ¼ 1 ji� jjexpð�ji� jjÞPk

i ¼ 1

Pk
j ¼ 1 expð�ji� jjÞ

ðA:3Þ

similarly,

Ep;qð1;1Þ ¼

Pk
i ¼ 1

Pk
j ¼ 1 ji� jjexpð�ji� jjÞPk

i ¼ 1

Pk
j ¼ 1 expð�ji� jjÞ

ðA:4Þ

Ep;qð0;1Þ ¼

Pk
i ¼ 1

Pk
j ¼ 1 jkþ j� ijexpð�jkþ j� ijÞPk

i ¼ 1

Pk
j ¼ 1 expð�jkþ j� ijÞ

ðA:5Þ

Ep;qð1;0Þ ¼

Pk
i ¼ 1

Pk
j ¼ 1 jkþ i� jjexpð�jkþ i� jjÞPk

i ¼ 1

Pk
j ¼ 1 expð�jkþ i� jjÞ

ðA:6Þ

From Eqs. (A.3)–(A.5), (A.6), we have Ep;qð0;0Þ ¼ Ep;qð1;1Þ;
Ep;qð0;1Þ ¼ Ep;qð1;0Þ. If k¼ 1, then Ep;qð0;0Þ ¼ 0; Ep;qð0;1Þ ¼ 1,
Ep;qð0;0ÞoEp;qð0;1Þ.

Now, we turn to cases when k41. Since irk and jZ1, we
have kþ j� iZ1 and

Ep;qð0;1Þ ¼

Pk
i ¼ 1

Pk
j ¼ 1 jkþ j� ijexpð�jkþ j� ijÞPk

i ¼ 1

Pk
j ¼ 1 expð�jkþ j� ijÞ

ðA:7Þ

Z

Pk
i ¼ 1

Pk
j ¼ 1 expð�ðkþ j� iÞÞPk

i ¼ 1

Pk
j ¼ 1 expð�ðkþ j� iÞÞ

¼ 1 ðA:8Þ

Let Si ¼
Pi�1

t ¼ 1ðt � 1Þexpð�ðtÞÞ; i¼ 1; . . . ; k, we have
S1oS2o � � �oSk and

Sk ¼
Xk�1

t ¼ 1

ðt � 1Þexpð�ðtÞÞ ðA:9Þ

Sk � e¼
Xk�1

t ¼ 1

ðt � 1Þexpð�ðt � 1ÞÞ ¼
Xk�2

t ¼ 0

t expð�tÞ ðA:10Þ

then, we have

Skðe� 1Þ ¼ 0þ
Xk�2

t ¼ 1

expð�ðtÞÞ � ðk� 2Þexpð�ðk� 1ÞÞ ðA:11Þ

r
Xk�2

t ¼ 1

expð�ðtÞÞ ¼
e�1ð1� e�ðk�2ÞÞ

1� e�1
¼
ð1� e�ðk�2ÞÞ

e� 1
ðA:12Þ
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and

Sk ¼
ð1� e�ðk�2ÞÞ

ðe� 1Þðe� 1Þ
o

1

ðe� 1Þ2
o1=2 ðA:13Þ

Thus, Sio1=2; i¼ 1; . . . ; k, and then we have

Ep;qð0;0Þ � 1¼

Pk
i ¼ 1

Pk
j ¼ 1 ji� jjexpð�ji� jjÞPk

i ¼ 1

Pk
j ¼ 1 expð�ji� jjÞ

� 1 ðA:14Þ

¼
2
Pk

i ¼ 1

Pi�1
j ¼ 1ði� jÞexpð�ði� jÞÞ

kþ2
Pk

i ¼ 1

Pi�1
j ¼ 1 expð�ði� jÞÞ

� 1 ðA:15Þ

¼
2
Pk

i ¼ 1

Pi�1
j ¼ 1ði� j� 1Þexpð�ði� jÞÞ � k

kþ2
Pk

i ¼ 1

Pi�1
j ¼ 1 expð�ði� jÞÞ

ðA:16Þ

¼
2
Pk

i ¼ 1

Pi�1
t ¼ 1ðt � 1Þexpð�ðtÞÞ � k

kþ2
Pk

i ¼ 1

Pi�1
j ¼ 1 expð�ði� jÞÞ

ðA:17Þ

¼
2
Pk

i ¼ 1 Si � k

kþ2
Pk

i ¼ 1

Pi�1
j ¼ 1 expð�ði� jÞÞ

ðA:18Þ

o0 ðA:19Þ

Thus, Ep;qð0;0Þo1rEp;qð0;1Þ when k41.
Therefore, Ep;qð0;0ÞoEp;qð0;1Þ when kZ1 and Eq. (13) is

satisfied.
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