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Abstract—The coarse bounding cage of a dense
mesh plays important roles in computer graphics,
computer vision, and geometric design. Specifically,
in volume-based deformation, a coarse bounding
cage is required to manipulate the dense mesh model
it enclosed; in subdivision surface fitting, the fitting
starts from a coarse cage bounding the fitted dense
mesh or point set; and so on. However, the generation
of a coarse bounding cage is mainly by interactive
ways, which are very tedious and time-consuming.
In this paper, we develop a fully automatic method
to generate a coarse cage bounding a dense mesh
model. The automatically generated coarse bounding
cage can keep the topological structure and major
geometric features of the original mesh model, which
is validated by theoretical analysis and experimental
data presented in this paper. Further more, we
employ the automatically generated coarse bounding
cage in some applications, such as deformation, and
subdivision fitting, producing good results.

Keywords—bounding box, coarse bounding cage,
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1. INTRODUCTION

The Coarse Bounding Cages(abbr. CBC) of dense
mesh models are required in lots of applications in geo-
metric design, computer graphics, and computer vision.
For example, in volume-based deformation, a coarse
cage bounding a dense mesh model needs to be extracted
and is employed to manipulate the mesh model [1], [2],
[3], [4], [5]. In geometric design, to fit a dense mesh by
a subdivision surface, its coarse bounding cage is taken
as the initial control mesh, and repeatedly subdivided
to approximate the dense mesh [6], [7]. Moreover, the
CBC is also used in collision detection to reduce the
computation complexity [8], [9].

Although the CBC of a dense mesh is very useful, it is
constructed mainly by interactive ways currently, either
entirely manually [6], or by subdividing a bounding
box [3], [10]. To make sure the generated coarse cage
strictly enclose the dense mesh, users have to adjust
the vertices of the cage by hand. Thus, the interactive
CBC generation methods are very tedious and time-
consuming. More seriously, when the topological struc-
ture of the mesh model is complex, as illustrated in
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Fig. 1, interactive methods are hard to generate a CBC
homeomorphic to the original mesh model.

Specifically and evidentally, the CBC of a dense mesh
can be generated by mesh simplification and offset-
ting (or extruding). However, mesh simplification can
not guarantee the generated CBC encloses the original
model, and offsetting the simplified mesh outwards may
produce self-intersection. Thus, with mesh simplification
and offsetting, lots of user interactions are required to
adjust the CBC vertices to generate a valid CBC.

Fig. 1. Mesh model elk(left) and its automatically generated coarse
bounding cage (right).

In this paper, we develop a fully automatic method to
generate the coarse bounding cage from a dense mesh.
The automatic CBC generation method and the CBC it
generated have the following advantages(refer to Fig. 1):

1) Homeomorphism: The automatic method can
generate a CBC homeomorphic to the original
dense mesh (refer to Fig. 1, and section 3.6 for
details).

2) Shape preservation: By selecting an appropri-
ate size of the voxels, the constructed CBC can
preserve the salient features of the original dense
mesh (see section 4).

3) Multi-resolution: The automatic method is pro-
gressive and can generate multi-resolution CBCs
by making the size of voxels smaller and smaller.
Different applications can choose different CBCs
with different resolutions as their cages.

4) Full automation: The method is fully automatic,
and greatly reduces the interactive burden of users.

5) Efficiency: Since the method is fully automatic,
the generation of a CBC is generally accomplished
within several seconds.

The remainder of this paper is organized as follows.
In section 2, we present some basic concepts and the
overview of the algorithm. The automatic CBC genera-



tion algorithm is described in detail in section 3. Section
4 presents some results and experimental data. Sec-
tion 5 demonstrates the capability of the automatically
generated CBC in some applications. Finally, section 6
concludes the paper.

2. PRELIMINARIES

2.1 Basic Concepts

Given a dense mesh model with connected mesh sur-
face, the automatic CBC generation method developed
in this paper first voxelizes the mesh model, and then
classifies the voxels into three types, that is, the voxels
which intersect with the mesh surface, called feature
voxels; the voxels out of the model, called outer voxels;
the voxels in the model, called inner voxels. We assign
value 0 to the feature voxels, 1 to the outer voxels, and
−1 to the inner voxels. They make up of the tri-values
distance field.

To measure the degree of sparseness of a CBC, we
define the sparse factor, denoted by sF :

sF =
Nc

Nd
, (1)

where, Nd and Nc are the numbers of vertices of a dense
mesh and its CBC, respectively. The sparse factor is also
used to determine the initial resolution of voxelization
(See section 3.5).

On the other hand, to check the shape preservation
capacity of a CBC, we employ the shape descriptor
proposed in Ref. [11] to measure the similarity between
a dense mesh and its CBC (See section 4).

2.2 Overview of the Algorithm

As illustrated in Fig. 2, the automatic CBC generation
algorithm from a dense mesh model mainly includes the
following steps:

1) Compute the bounding box of the dense mesh by
Principal Component Analysis (PCA);

2) Voxelize the mesh model, identify feature voxels,
and calculate the tri-value distance field;

3) Extract and triangulate the outer faces of the
feature voxels;

4) Smooth the CBC by an improved mean curvature
flow method.

3. COARSE BOUNDING CAGE GENERATION

Given a dense mesh model M with connected mesh
surface, denoted by ∂M , a closed and connected mesh
surface separates the space in two parts: inside and
outside. In this section, an automatic coarse bounding
cage (CBC) generation algorithm will be described in
detail.

3.1 Bounding Box Computation by PCA

The first step of the CBC generation algorithm is to
compute the bounding box of the initial dense mesh
model M by principal component analysis (PCA) [12].
Specifically, the (p, q, r)-th moment mpqr of mesh M
is given by,

mpqr =
∫

∂M

xpyqzrdxdydz. (2)

In the discrete form, denoting the coordinates of
vertices of mesh M by {xi, yi, zi}N

i=1, its (p, q, r)-th
moment can be approximated by

m̂pqr =
1
N

N∑

i=1

xp
i y

q
i zr

i . (3)

Thus, the covariance matrix of the second-order mo-
ment is constructed with Eq. (3). By performing singular
value decomposition to the covariance matrix, we get
three characteristic direction vectors as the axes of a
new Cartesian coordinate system with the origin at the
centroid of mesh M . Hence, a bounding box of M is
built in the new Cartesian system. In our implementa-
tion, the bounding box is slightly enlarged to ensure the
generated CBC encloses the dense mesh model.

The so constructed bounding box captures the major
geometric shape of the mesh M , and can reduce the
computation complexity in the following voxelization.

3.2 Voxelization and Tri-value Distance Field Calcula-
tion

In this step, the bounding box generated in section 3.1
is discretized into a series of voxels, feature voxels are
identified, and the tri-value distance field is computed.

After the bounding box is discretized into voxels at an
initial resolution, which is determined by a user specified
or predefined sparse factor (please refer to section 3.5 for
details), the feature voxels should be identified. Feature
voxels are the ones intersecting with the mesh surface.
Therefore, to identify feature voxels, we need to check
which voxels the mesh M intersects with.

To do so, the max-norm distance computation method
developed in [13] is employed. For clarity, we give a
brief description of the method, and details can be found
in Ref. [13].

As illustrated in Fig. 3, to calculate the max-norm
distance between the center O of a voxel and a triangle
4P1P2P3 (Fig. 3 b), twelve auxiliary partition triangles
should be constructed (Fig. 3 a). Suppose t1 and t2 are
the intersections between triangle 4P1P2P3 and one of
the partition triangles, the max-norm distance between
O and 4P1P2P3 is the minimum of the distances from
O to P1, P2, P3, t1 and t2. Let wv , d∞ be the length of
an edge of a voxel and the max-norm distance from
its center to a triangle of mesh M , respectively. If
d∞ ≤ wv

2 , the voxel intersects with the triangle, and
it is identified as a feature voxel, assigned value 0.
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Fig. 2. Flowchart of the automatic CBC generation algorithm.

Fig. 3. Computing max-norm distance from the center of a voxel to a
triangle.(a)Partitioning triangles; (b) max-norm distance computation
for a triangle [13].

Fig. 4. Sketch of voxel classification by filling algorithm. (a)Closed,
(b)open.

As stated above, the feature voxels are assigned value
0. If the mesh M is closed, the feature voxel set
separates the discretized bounding box into inner part
and outer part. We employ the filling algorithm [14] (see
Fig. 4) to identify these inner voxels and outer voxels.

The outer voxels are first distinguished by the filling
algorithm starting from a seed. According to the con-
struction of the bounding box, the eight corner voxels
are certainly outer voxels, and can be taken as the seed.
All outer voxels are assigned value 1.

The remaining voxels, other than feature and outer
voxels, are inner voxels, and assigned value −1. In this
way, the tri-value distance field is obtained.

The tri-value distance field takes effect in extracting
outer faces (see section 3.3), and in ensuring the CBC
strictly enclose the dense mesh M in cage smoothing
(see section 3.4).

It should be pointed out that, if mesh M is open, it
is possible that the feature voxel set is also open, and
there are only two kinds of voxels, feature and non-
feature(see Fig.4b). In this case, we set the value 0 to

the feature voxels, and 1 to the non-feature voxels.
Noticeably, the scan-conversion method [14] can also

be employed to distinguish the outer and inner voxels.
However, it will fail in some singular cases, and is not
so efficient as the filling algorithm.

Fig. 5. Non-manifold edge and vertex. (a)Non-manifold edge with
more than two adjacent faces, (b)non-manifold vertex where two
sheets touch.

3.3 Outer Surface Extraction and Triangulation
With the tri-value distance field, the outer faces of the

feature voxels can be extracted easily. The outer face is
the one adjacent to an outer voxel and a feature voxel,
with value 1 and 0, respectively. Thus, by checking
the values of adjacent voxels for each face of each
feature voxel, the outer surface of the feature voxel set
can be generated, which constitutes the initial CBC, a
quadrilateral mesh.

However, it is possible that the initial CBC is not
2-manifold. That is, in the initial CBC, there may be
non-manifold edges (Fig. 5a), whose adjacent faces are
more than two, or non-manifold vertices(Fig. 5b), where
two sheets touch.

A non-manifold CBC needs further process to make
it be a valid 2-manifold mesh. As illustrated in Fig. 6,
for a non-manifold edge (Fig. 6a), we perform an voxel-
attaching operation by specifying one outer voxel adja-
cent to the edge as a feature voxel (Fig. 6b); similarly,
for a non-manifold vertex, a vertex-split operation is
employed to separate its adjacent feature voxels.

The voxel-attaching and vertex-split operations make
a non-manifold CBC be a valid 2-manifold mesh. Since
it is quadrilateral, its triangulation is straightforward, just
by splitting one quadrangle to two triangles.

3.4 Cage Smoothing
The shape of the CBC so extracted is very scraggly,

containing many step-like joints (See Figs. 2, 5). Hence,
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Fig. 6. Mesh correction. (a)Non-manifold edge, (b) voxel-attaching
operation, (c)non-manifold vertex, (d)vertex-split operation.

it should be smoothed to generate a CBC with desirable
shape. Differing from common mesh smoothing, in the
CBC smoothing procedure, we should ensure that the
CBC always encloses the dense mesh M . In this section,
the mean curvature flow method [15] is improved to
smooth the CBC while guaranteeing that it always
encloses the mesh M during smoothing.

The mean curvature flow smoothing method performs
iteratively by,

vk+1
i = vk

i − µdtHn, k = 0, 1, 2, · · · (4)

where, v0
i are the vertices of the initial CBC, H is the

mean curvature, and n is the unit normal vector. µdt
is the time step satisfying 0 ≤ µdt ≤ 1 [15]. In our
implementation, we set µdt = 1.

Fig. 7. Sketch for the discrete form of −Hn.

The discrete form of −Hn can be computed by [15],

−Hn =
1

4A(v)

∑

vi∈N(v)

(cot αi + cot βi)(vi − v), (5)

where N(v) is the set of 1-ring neighbor vertices around
v, A(v) denotes the Voronoi area around v, and αi, βi

are two angles opposite to edge (v, vi), respectively(see
Fig. 7).

With the discrete form (5), at a convex vertex, the
curvature vector −Hn points inwards; at a concave
vertex, it points outwards (see Fig. 8).

Fig. 8. (a) At a convex vertex, −Hn points inwards; (b) at a concave
vertex, −Hn points outwards.

On the other hand, denoting by d(i, j, k) the tri-value
distance field defined in the voxels, the gradient vector,

∇d = (d(i + 1, j, k)− d(i, j, k),
d(i, j + 1, k)− d(i, j, k), d(i, j, k + 1)− d(i, j, k)),

always points outwards.
Therefore, letting θ be the angle between −Hn and

∇d at a CBC vertex, if 0 ≤ θ < π
2 , both vectors

point outwards. In this case, we make the vertex move
along the direction ∇d. If π

2 ≤ θ < π, the curvature
vector −Hn points inwards (Fig. 9). To keep the current
vertex out of the mesh M , we force the vertex moving
along the direction −Hn sin θ, which lies in the plane
perpendicular to the gradient vector ∇d. Hence, the
improved iterative smoothing format is,

vk+1
i =

{
vk

i + µdtH∇d, 0 ≤ θ < π
2 ,

vk
i − µdtHn sin θ, π

2 ≤ θ < π.
(6)

Finally, we check the distance value at each cage
vertex after each smoothing. If some vertex penetrates
into the original model, we move it out of the original
mesh along the direction of the gradient vector.

The improved mean curvature flow smoothing method
stated above keeps the CBC out of the dense mesh M
during smoothing, and produces good results in practice,
as illustrated in sections 4 and 5.

Fig. 9. The angle between the gradient vector and curvature vector
is greater than π/2.

3.5 Initial Resolution
In section 3.2, the bounding box is discretized into

voxels with an initial resolution. It can be computed
approximately by a user-specified or pre-defined sparse
factor sF .

Suppose n is the initial resolution, that is, the bound-
ing box is discretized into n × n × n voxels. Then, on
the six outer faces of the discretized bounding box, there
are totally 6(n + 1)2 + 12n− 4 ≈ 6n2 vertices. The six
outer faces constitute a bounding cage, so the number of
its vertices is a good approximation to that of the actual
CBC. Thus, according to the definition of the sparse
factor (Eq. (1)), we have,

sF ≈ 6n2

Nd
,

where Nd is the number of vertices of the dense mesh
M . Therefore, the initial resolution n can be determined
as,

n ≈
√

Nd sF

6
.
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3.6 Homeomorphic CBC Generation

Some applications, such as subdivision surface fitting,
require that the dense mesh M and its CBC are home-
omorphic. In this section, we develop an algorithm to
generate the CBC homeomorphic to the dense mesh it
encloses.

As stated above, the automatically generated CBC
keeps out of the dense mesh M . With larger and
larger voxelization resolution, the generated CBC will
approach closer and closer to the dense mesh, acquiring
more and more topological and geometric features of the
mesh model M . Hence, by increasing the resolution of
voxelization, if we can get a CBC whose value of Euler
formula, Gc = Vc−Ec+Fc, is equal to that of the dense
mesh M , Gd = Vd −Ed + Fd, they are homeomorphic
to each other. Here, Vc, Ec, and Fc are the numbers
of vertices, edges, and faces of the CBC, respectively;
similarly, Vd, Ed, and Fd are the numbers of vertices,
edges, and faces of the dense mesh M , respectively.

Consequently, the following algorithm is developed to
generate the CBC homeomorphic to the original mesh
M .

Calculate Gd = Vd − Ed + Fd (Euler formula for
the dense mesh M );
Voxelize the bounding box with an initial
resolution, and compute the initial CBC;
Calculate Gc = Vc − Ec + Fc for the initial CBC;
while Gc 6= Gd do

Voxelize the bounding box with a larger
resolution;
Compute the CBC;
Calculate Gc = Vc − Ec + Fc for the CBC;

end

Fig. 10. Amarlido (left) and its CBC (right).

4. RESULTS AND DISCUSSION

The automatic CBC generation algorithm developed
in this paper is implemented with V C + +2005 and
OpenGL, and runs on the PC with 2.4 GHz Pentium
IV CPU and 1.0GB memory. The generated results
are listed in Fig. 10 to Fig. 15. Additionally, the data
on the dense meshes and their CBC are shown in
table 1. In this table, the second and third columns

Fig. 11. Elephant (left) and its CBC (right).

list the numbers of vertices of the dense meshes and
their CBCs, respectively. The fourth column presents
the similarity values between the dense meshes and its
CBCs, calculated by the method developed in Ref. [11].
The last column shows the sparse factors of the CBCs
(Eq. (1)).

Figs. 10 and 11 demonstrate two graphical models and
their CBCs. The dense mesh model Amarlido in Fig. 10
has 130838 vertices. Its CBC has a very low sparse
factor 0.01, and high similarity value 0.75 with the the
original mesh. The model elephant in Fig. 11 contains
24955 vertices. Its CBC has the sparse factor 0.037 and
higher similarity value 0.80. Generally speaking, the
automatically generated CBCs have low sparse factor
and high similarity with the original meshes, and by
increasing the sparse factor, the similarity value will be
improved.

The examples above and in section 5 validate the
efficiency and effectiveness of the automatic CBC gen-
eration algorithm developed in this paper.

5. APPLICATIONS

In sections 5.1 and 5.2, the automatically generated
CBCs are employed in two applications, mesh deforma-
tion and subdivision surface fitting.

Fig. 12. Horse and its deformation. (a)Horse model; (b) its CBC; (c)
deformation result.

5.1 Mesh Deformation

Volume-based deformation depends on a coarse cage
bounding the mesh model to be deformed. The coarse
bounding cage is usually generated interactively, and its
generation is very tedious and time-consuming ([1]-[5]).
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TABLE 1
DATA ON THE DENSE MESHES AND THEIR CBC.

Model names Mesh vertices Cage vertices Similarity Resolution Sparse Factor
Amarlido(Fig. 10) 130838 1359 0.75 16× 16× 16 0.010
Elephant(Fig. 11) 24955 934 0.80 16× 16× 16 0.037

Horse(Fig. 12) 19851 159 0.71 4× 8× 8 0.008

Fig. 13. T-shape and its deformation. (a.) T-shape and its CBC (#mesh
vertices = 3762, #CBC vertices = 48), (b.) deformation result.

Fig. 14. Tyre and its deformation. (a.) Tyre model and its CBC
(#mesh vertices = 12660, #CBC vertices = 48), (b.) the deformation
result.

However, by the automatic CBC generation method
developed in this paper, the CBC generation is fully
automatic, and usually costs several seconds. More
importantly, since the automatically generated CBCs
can hold the topological structure and major geometric
features of the original mesh model, they make the
deformation results more desirable (Figs. 12- 14).

The model horse and its deformation result are il-
lustrated in Fig. 12. Fig. 12b demonstrates the auto-
matically generated CBC of the horse, which encloses
the model tightly. Fig. 12c is its deformation result by
manipulating the CBC.

Fig. 13a shows the model T with sharp features and
its CBC. The CBC and the deformation result (Fig. 13b)
hold the sharp features well.

Fig. 14 is a torus-like model and its deformation
result. The model and its CBC are homeomorphic, so
the effect of the adjustment of the CBC vertex is locally
(Fig. 14b), not disturbing the part far away.

The deformation in this section is carried out by the
Green coordinates method developed in Ref. [4].

5.2 Subdivision Surface Fitting

In subdivision surface fitting, the shape of the initial
control mesh is important for good fitting [6]. A desir-
able control mesh can save the subdivision time greatly.

Fig. 15. Subdivision surface fitting. (a) Original mesh model
(#vertices = 69279); (b) the automatically generated CBC is taken
as the initial control mesh (#vert = 693); (c) the control mesh of
the subdivision surface after one subdivision (#vert = 2766); (d) the
subdivision fitting surface.

In this section, we take the automatically generated CBC
(Fig. 15b) as the initial control mesh to fit the dense
mesh model in Fig. 15a by the method developed in
Ref. [6]. Since the CBC captures the major geometric
features of the original mesh model, just with one
subdivision, we obtain the subdivision fitting surface
with max-norm error 7.764 × 10−3, where the original
mesh model is normalized to [−1, 1]× [−1, 1]× [−1, 1].
Fig. 15c is the control mesh of the subdivision surface
after one subdivision, and Fig. 15d shows the final fitting
surface.

6. CONCLUSIONS

In this paper, we propose an automatic method to gen-
erate the coarse bounding box (CBC) for a given original
dense mesh M . The original mesh is first voxelized, and
the feature voxels intersecting with the mesh surface are
identified. In the following, the outer and inner voxels
are determined by the seed filling algorithm, generating
a tri-value distance field defined on the voxels. Next,
the outer faces of the feature voxels are extracted by
checking the distance values of voxels, constituting an
initial CBC. Finally, an improved mean curvature flow
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smoothing method is developed to smooth the initial
CBC. The mean curvature flow method is so improved
that it can keep the CBC out of the original mesh while
smoothing.

By the automatic CBC generation algorithm, a CBC
is usually generated in several seconds, depending on
the amount of data of the original mesh. Thus, it
alleviates the users’ burden greatly. More importantly, as
illustrated in our experimental results, the automatically
generated CBCs can hold the topological structure and
major geometric features of the original mesh model.
Therefore, they work well in lots of applications, such
as mesh deformation and subdivision surface fitting.
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