
Vis Comput
DOI 10.1007/s00371-011-0595-6

O R I G I NA L A RT I C L E

Automatic cage generation by improved OBBs for mesh
deformation

Chuhua Xian · Hongwei Lin · Shuming Gao

© Springer-Verlag 2011

Abstract In cage-based deformation, the most tedious task
is to construct the coarse cage bounding a model. Currently,
the coarse cage is constructed mainly by hand, and the con-
struction usually takes several hours, even longer. Therefore,
it is important to develop a convenient method to generate
the coarse cage bounding a model. In this paper, we devise
a method to construct the coarse cage automatically using
the improved OBB tree, while allowing the users to modify
the cage easily. Firstly, the OBB tree bounding the model is
generated, where we propose an improved OBB slicing rule
to make the generated OBBs close to the model it contains.
Secondly, the OBBs are adjusted and merged into a whole
entity by the boolean union operation. Finally, the outer sur-
face of the entity is extracted as the coarse cage. Empirical
results demonstrate the effectiveness and efficiency of the
automatic coarse cage-generation method.

Keywords Cage generation · Mesh deformation ·
Geometric design · Computer graphics

Electronic supplementary material The online version of this article
(doi:10.1007/s00371-011-0595-6) contains supplementary material,
which is available to authorized users.

C. Xian · H. Lin (�) · S. Gao
State Key Lab. of CAD & CG, Zhejiang University, Hangzhou,
310058, P.R. China
e-mail: hwlin@cad.zju.edu.cn

C. Xian
e-mail: xianchuhua@cad.zju.edu.cn

S. Gao
e-mail: smgao@cad.zju.edu.cn

1 Introduction

In cage-based deformation, a coarse cage enclosing a model
is required to be constructed in advance for manipulating
the model. The mesh of the coarse cage should be sparse
enough for easy manipulation, while its shape should be as
close as possible to the model for generating desirable de-
formation result. In general, the coarse cage is constructed
either by hand [1–5], or by subdividing a bounding box
of the model [3]. However, the interactive method is very
tedious and time-consuming, usually taking several hours,
even longer. Furthermore, when the shape of the model to be
deformed is complex, just as the Octopus model illustrated
in Fig. 1, it is very hard to construct its coarse cage by hand.
On the other hand, though it is easier to generate the coarse
cage by subdividing the bounding box, the shape of the gen-
erated cage is far from that of the model to be deformed.
Therefore, it is an important problem in cage-based defor-
mation to construct the coarse cage with desirable shape au-
tomatically.

The Oriented Bounding Box (abbr. OBB) is presented
in Ref. [6], and widely employed in the applications such
as collision detection. In this paper, using the improved
OBB tree, we develop a method to construct the coarse
cage bounding a model automatically. Specifically, given a
model, its OBB tree is first constructed, where we improve
the OBB slicing rule to make the OBBs tightly enclose the
model; next, these OBBs are registered and merged into a
whole three-dimensional entity by the boolean union oper-
ation; finally, the outer surface of the 3D entity is extracted
as the coarse cage. Figure 1 shows the automatically con-
structed coarse cage of the Octopus model using the method
developed in this paper.

The automatic coarse cage-generation method can con-
struct a coarse cage with desirable shape bounding a model

http://dx.doi.org/10.1007/s00371-011-0595-6
mailto:hwlin@cad.zju.edu.cn
mailto:xianchuhua@cad.zju.edu.cn
mailto:smgao@cad.zju.edu.cn

C. Xian et al.

Fig. 1 Coarse cage generation for the Octopus model. (a) the Octopus
model; (b) the OBBs; (c) the registered OBBs; (d) the coarse cage of
the Octopus model generated by our method

automatically. However, if the users want to modify the
automatically generated coarse cage, they just need to se-
lect the OBBs to be subdivided further. So the modification
of the coarse cage is easy. The main contributions of this
method include:

1. Automation: This method is automatic after the users set
the two parameters for the termination condition (see
Sect. 2.3), thus greatly reducing the users’ interactive
burden.

2. Improved OBB slicing rule: We improve the rule for slic-
ing the OBBs, which makes the generated coarse cage
enclose the model tightly.

3. Hierarchical cages: Different parameters in the termina-
tion condition (Sect. 2.3) lead to hierarchical cages.

4. Local modification: Users can modify the coarse cage lo-
cally and conveniently, by selecting and modifying a few
OBBs.

The remainder of this paper is organized as follows. In
Sect. 1.1, the related work is reviewed. In Sect. 2, we in-
troduce the details of the coarse cage-generation algorithm.
Section 3 discusses the algorithm in detail. Furthermore,
Sect. 4 presents some results and experimental data. Finally,
we conclude this paper in Sect. 5.

1.1 Related work

Invented by Sederberg et al. [7], free form deformation
(FFD) is a well-known space-based deformation technique,
where a regular lattice is employed to deform the model
it contains. Alternatively, skeleton subspace deformation
(SSD) is presented to facilitate the model deformation, by
manipulating the skeleton of the model [8, 9].

To make the mesh deformation more efficient, the regu-
lar lattice in FFD is improved to the coarse cage with shape
closer to the model, thus generating the cage-based defor-
mation techniques [3–5]. Recently, Ju et al. [10] propose a
cage-based deformation method for character animation by
reusing skinning templates, where the coarse cage is con-
structed by piecing the pre-defined templates, guided by the
skeleton of the model. Landreneau and Schaefer make real-
time deformations of large models possible by reducing the
weight set [11].

In Ref. [12], Xian et al. propose a method to generate the
coarse bounding cage by uniform voxelization. This method
first voxelizes the model, then extracts the outer sides of the
feature voxels and optimizes it to produce the coarse cage.
However, since the size of the voxels is uniform, the gen-
erated coarse bounding cage is usually too dense to be em-
ployed in the cage-based deformation.

2 Coarse cage-generation algorithm

In this section, we first list the coarse cage-generation algo-
rithm in Algorithm 1, and explain the main steps in detail in
the following sections. To ensure that the OBBs enclose the
model strictly, they are all enlarged 1.1 times in our imple-
mentation.

2.1 Voxelization and point set generation

To voxelize the model M , we first calculate the initial OBB
O of the model using Principal Component Analysis (PCA)
of the mesh vertices. Next, the initial OBB O is divided into
voxels with a pre-specified voxel size s. In this paper, we
take the minimum length between two mesh vertices in M

as the voxel size s.
After dividing the initial OBB O into voxels, they should

be classified. First, the voxels intersecting the mesh M are
taken as the feature voxels. Second, the other voxels are
categorized as inner voxels or outer voxels by the scan-
conversion algorithm [13]. Finally, the mesh vertices and
the barycenters of the inner voxels constitute the point set
P for calculating the OBBs. Noticeably, the OBB gener-
ation method presented in this paper performs just on the
voxelization representation and the point set P it deduced,
without requiring the mesh connectivity.

Automatic cage generation by improved OBBs for mesh deformation

Algorithm 1: Coarse Cage-Generation Algorithm
1: Voxelize the model M , and generate the point set P ,

consisting of the mesh vertices and barycenters of
the inner voxels (Sect. 2.1);

2: Calculate the OBB of the point set P using the
Principal Component Analysis (PCA), and push the
OBB on a stack;

3: while The stack is not empty do
4: Pop an OBB from the stack;
5: if The OBB does not satisfy the termination con-

dition (Sect. 2.3) then
6: Slice the point set containing in the OBB into

two parts using the improved OBB slicing rule
(Sect. 2.2), construct two OBBs for them, and
push the two OBBs to the stack;

7: end if
8: end while
9: Register the adjacent OBBs (Sect. 2.4);

10: Merge the OBBs into a whole entity using the
boolean union operation (Sect. 2.4);

11: Extract the outer surface of the whole entity as the
coarse cage bounding the model (Sect. 2.4).

It should be noted that an open model should be repaired
to be closed in advance. Then, the above method can be ap-
plied to the repaired model to generate the inner voxels and
the point set P . For the mesh repair methods, please refer to
the survey paper Ref. [14].

The reason for performing PCA on the point set P , not
the mesh vertices itself, is that the PCA result on the point
set P is much closer to the original model than that on the
mesh vertices, as illustrated in Fig. 2.

After the initial OBB O containing the mesh M is gen-
erated, we construct the global Cartesian coordinate system,
by taking the barycenter of the OBB as the origin, and the
three directional edges of the OBB as axes. Then, the coor-
dinates of the points in the point set P are transformed into
the new coordinate system.

In most cases, the OBB generated by PCA is smaller than
the AABB (Axis Aligned Bounding Box). However, in some
cases, the size of AABB is smaller than that of the OBB. In
our implementation, we choose the smaller one of AABB
and OBB as the bounding box.

2.2 Improved OBB slicing rule

In the original OBB construction method [6], each OBB is
split by a plane which is perpendicular to the longest edge,
and passes through the barycenter of the point set contained
in the OBB. This simple rule does not take the shape of the
model, which the OBB contains, into consideration. Visu-
ally, a geometric model is naturally segmented at the place

Fig. 2 Comparison of PCA results on the point set P and the mesh
vertices. (a) PCA result on the point set P . (b) PCA result on the mesh
vertices

Fig. 3 Comparison of OBB slicing rules. (a) The model and its OBB;
(b) result by the original OBB slicing rule [6]; (c) result by the im-
proved OBB slicing rule developed in this paper

where its shape changes the most. Mimicking this practical
rule, in this section, we present a carefully designed OBB
slicing rule, which makes the splitting plane lie at the place
with the greatest change in shape (see Fig. 3).

To this end, we first construct the local Cartesian coordi-
nate system by taking the left-lower corner of the OBB as
the origin, and the longest, the second longest, the shortest
edges as x, y, z axes, respectively.

Next, define the minimum cross section area function
f (x), where the cross section is the intersection between the
model M and the splitting plane at x. If the cross section at
x has only one connected part, f (x) is defined as the area of
the part; otherwise, if it has two or more separated parts sx

i ,
i = 1,2, . . . , k, f (x) is taken as the minimum area of these
parts (see Fig. 4). That is,

f (x) = min
i

{
area

(
sx
i

)
, i = 1,2, . . . , k

}
.

As illustrated in Fig. 4(c), after calculating the data points
{(xj , f (xj)), j = 1,2, . . . , n} on the area function f (x),
they are fitted by a piece of cubic uniform B-spline curve,
which is taken as the area function f (x). Figure 4(c) demon-
strates the area function f (x) of the model in Fig. 4(a), gen-
erated by B-spline curve fitting as aforementioned.

Evidently, the OBB of the model should be sliced at the
place with the greatest change in shape. According to the ge-
ometric meaning of the function f (x), the shape change of
the model can be reflected by the graph of the function f (x).
The biggest jump in the graph corresponds to the greatest
shape change of the model. Therefore, if the biggest jump

C. Xian et al.

of f (x) occurs at x = x0, we will split the OBB, and the
model it contains, at x = x0, by a plane perpendicular to the
x axis and passing at x = x0.

To locate the place of the biggest jump, we first com-
pute the interlaced local minimum and maximum points
of f (x). Suppose one of the local minimum point is xmin,
and the local maximum point near to it is xmax. Then, the
jump value at xmin is Jxmin = f (xmax) − f (xmin). By simple
comparison, the biggest jump can be located, supposing it is
Jxb

min
= f (xb

max) − f (xb
min). Then, the current OBB will be

sliced into two sub-OBBs at x = xb
min.

The OBB slicing rule developed in this section chooses
the longest axis as the first candidate. If it fails, the second
longest is chosen, and finally the shortest one. It should be
pointed out that if the shape of the model varies smoothly,
the cross section area function f may have no jump. In this
case, we employ the original slicing rule presented in [6] to
split the OBB, that is, splitting the OBB at the barycenter of
the point set the OBB contains.

In our implementation, we calculate the minimum cross
section area function f based on the voxelization of the
model. Specifically, to calculate the area function f (x) at
x = x0, we just need to count the number of the inner and
feature voxels that intersect the plane x = x0, and take the
number as the area value f (x0).

Afterwards, the two OBBs of the point sets in the two
sub-OBBs are constructed using PCA, respectively, and
pushed to the OBB stack.

2.3 Termination condition

In the coarse cage-generation algorithm, to determine whether
an OBB is required to be split, we depend on the termination
condition, which concerns the following factors.

Shape of the model As mentioned in Sect. 2.2, the cross
section area function f (x) reflects the shape variety of the
model. The parameter T1 will be closer to 1 if the mesh is
smoother, where

T1 = minf (x)

maxf (x)
. (1)

Then, if T1 is greater than a threshold, it means that the shape
of the mesh contained in the OBB varies very little, so the
OBB is not required to be split further. Otherwise, the OBB
should be split.

Shape of the OBB However, if the model is very regular,
such as a long cuboid, T1 will equal 1 at the beginning.
Hence, we also need to consider the shape of the OBB. Sup-
pose lmax and lmin are the length of the longest and shortest

Fig. 4 Improved OBB slicing rule. (a) The cow model and the place
with the greatest change in shape. (b) The voxelization of the cow
model. (c) The minimum cross section area function f (x) generated
by B-spline curve fitting

edges of the candidate OBB, respectively. The other param-
eter for the terminal condition is,

T2 = lmin

lmax
. (2)

If T2 approaches 1, we will terminate the splitting of the
OBB.

In conclusion, the termination condition for the OBB
splitting is,

T1 > η, and T2 > ς, (3)

where η and ς are thresholds specified by users.

2.4 OBB registration and mesh generation

After all the OBBs cannot be split anymore, the binary
OBB tree of the model is constructed. However, if we con-
struct the coarse cage by combining the current OBBs using
boolean union operation, the generated coarse cage is very
uneven, and the distances between the mesh vertices of the
coarse cage to the model it contains varies widely. To make
the coarse cage smoother, we register and merge the adja-
cent OBBs with similar orientation and size before the OBB
union, and improve the mesh quality of the coarse cage after
the OBB union (see Sect. 2.5).

The pseudocode of the OBB registration and merging
procedure is presented in Algorithm 2, and the details are
explained in the following.

Automatic cage generation by improved OBBs for mesh deformation

Fig. 5 OBB registration and
merging. (a) The two adjacent
OBBs; FA0A1A2A3 and
FB0B1B2B3 are the two adjacent
faces of the adjacent OBBs.
(b) The plane P . (c) The
projecting points and their
oriented bounding box on the
plane P . (d) The merged object

Algorithm 2: OBB Registration and Merging (Refer to
Fig. 5)

1: Construct the plane P between the two adjacent
OBBs;

2: Project the vertices Ai,Bi, i = 0,1,2,3 of the faces
F0 and F1 to the plane P , denoting the projecting
points as A′

i ,B
′
i , i = 0,1,2,3;

3: Generate the OBB Fb of the projecting points
A′

i ,B
′
i , i = 0,1,2,3 on the plane P ;

4: Register the vertices of the faces F0 and F1 to that
of Fb , respectively, thus getting the registration be-
tween the vertices of F0 and F1;

5: Merge the OBBs O0 and O1 by linking the corre-
sponding vertices.

As shown in Fig. 5(a), O0 and O1 are two adjacent OBBs,
with adjacent faces F0 = FA0A1A2A3 and F1 = FB0B1B2B3 .
Suppose the normals of F0 and F1 are nF0 and nF1 , and
their areas are s0 and s1 (s0 ≤ s1), respectively. In our im-
plementation, if,

– s0
s1

> 0.6,

– the angle between nF0 and nF1 is greater than 2
3π , and,

– the sub-models contained in the two adjacent OBBs are
connected,

the two adjacent OBBs O0 and O1 should be registered and
merged.

Denote the centers of Fi as Ci, i = 0,1, respectively. To
register the two OBBs O0 and O1, we construct a plane P ,

which passes the point C0+C1
2 , and is perpendicular to the

line C0C1 (see Fig. 5(b)). Afterwards, the points Aj ,Bj

are projected to the plane P , generating the projecting
points A′

j ,B
′
j , j = 0,1,2,3 (Fig. 5(c)). Furthermore, the 2-

dimensional OBB Fb = FP0P1P2P3 bounding these project-
ing points is constructed on the plane P .

The bounding box Fb is taken as the context for register-
ing the two OBBs O0 and O1. They are registered by search-
ing the correspondence between the vertices of Fb and F0,
and that between Fb and F1.

In the following, we only present the method for register-
ing Fb and F0. The registration between Fb and F1 is sim-
ilar. Suppose the normalized outward normals of the four
side faces of the OBB O0 are n0

i , i = 0,1,2,3, respectively,
and the normalized outward normals of the four edges of Fb

are ni , i = 0,1,2,3 (Fig. 5(c)), respectively. Clearly, there
are four possible correspondences between the vertices of
Fb and F0. We choose the correspondence that makes the
sum of the inner products between the corresponding nor-
mals maximal as the registration between Fb and F0, i.e.,

max
j=0,1,2,3

3∑

i=0

ni · n0
((j+i) mod 4).

After registering the two OBBs O0 and O1, they are
merged into one entity by linking the corresponding ver-
tices. Suppose the vertex Ai of F0 corresponds to the ver-
tex Pi of Fb, i = 0,1,2,3; on the other hand, in the OBB
O0, the vertex Ai connects the vertex Di, i = 0,1,2,3
(Fig. 5(b)). Then, we link Pi and Di, i = 0,1,2,3 (Fig. 5(d)).
Similarly, for the OBB Q1, we also link the vertex Pi , which

C. Xian et al.

corresponds to the vertex Bi , and the vertex Ei , which con-
nects the vertex Bi in the OBB O1, forming four lines
PiEi, i = 0,1,2,3 (Fig. 5(d)). In this way, the two OBB
O0 and O1 are merged into one entity (Fig. 5(d)).

Finally, an intersection test is performed to check whether
the merged object intersects the model it contains, or with
the other OBBs. If so, the current OBB merging is invalid
and discarded; if not, the merged object is retained.

Until now, we have merged the adjacent OBBs with sim-
ilar orientation and size, if the merged object intersects with
neither the model, nor the other OBBs. However, in general,
there still remain some OBBs, which cannot be merged, ei-
ther because their orientation or size is greatly different from
its adjacent OBBs, or because the merged object intersects
with the model or other OBBs. Therefore, the boolean union
operation is employed to combine these non-merged OBBs
and the merging entities into a whole entity, whose outer
faces constitute the initial coarse cage. In our implementa-
tion, we employ CGAL [15] to perform the boolean union
operation.

2.5 Mesh improvement

Generated by union of OBBs, the mesh of the initial coarse
cage contains many cap triangles, needle triangles, and high
valence vertices. Thus, a post-processing is required to im-
prove the mesh quality of the coarse cage. Notably, in the
improvement of the mesh quality, we need to ensure the im-
proved cage intersects neither with the model, nor with the
other OBBs.

In our implementation, we define a cap triangle as one
with an angle larger than 8

9π , and a needle triangle as one

Fig. 6 Eliminate the cap triangle. (a) The cap triangle (in yellow) in a
model. (b) Split the cap triangle and its adjacent triangle

with the ratio between its shortest and longest edge less than
0.2. Additionally, a vertex is called a high valence vertex if
its valence is greater than 8.

To improve the mesh of the cage, we first deal with the
cap triangles (Fig. 6). Suppose �ABC is a cap triangle, and
�ABD is its adjacent triangle. The largest angle of �ABC is
∠C, and AB is the edge subtending ∠C. To eliminate the cap
triangle, we split the triangles �ABC and �ABD by linking
two edges DO and CO , where O is the middle point of the
edge AB . The new triangles �ACO and �BCO are taken
as two needle triangles, handled in the next step. Note that
splitting the triangles does not change the shape of the cage,
so it is ensured that the cage does not intersect the original
model.

Next, we search the needle triangles in the new cage and
clean them up by vertex merging (Fig. 7). Suppose �ABC
is a needle triangle, and ∠A is its smallest angle. To remove
the needle triangle, there are two options for merging. One
moves the vertex B to C, where B is the merged vertex, and
C is the fixed vertex. The other moves C to B , where C is
the merged vertex, and B is the fixed vertex. Moreover, to
guarantee the cage after vertex merging does not intersect
the model, we need to perform further testing. That is, if
the fixed point lies outside all the newly generated triangles,
then the new cage does not intersect the mesh, the vertex
merging is valid, and the needle triangle can be removed.
Otherwise, if the fixed point lies inside the newly generated
triangles, the merging is invalid. If the two merging options
are both invalid, the needle triangle cannot be removed. This
way, we guarantee that the cage after improvement does not
intersect the model. Noticeably, to keep the OBB structure,
we do not merge the two vertices which belong to the same
OBB.

Finally, the high valence vertices are identified in the new
cage and handled. To do so, we sort the angles adjacent to
the high valence vertices in ascending order, and deal with
just the angles less than 20 degree in order. As illustrated in
Fig. 8, an angle ∠A has two edges e1 and e2, correspond-
ing to two pairs of adjacent triangles. We flip each edge in
each pair of triangles, and compute the smallest angle of the
newly generated pair of triangles, denoted by α1 and α2, re-
spectively. Then, we identify the bigger one between α1 and

Fig. 7 Merge the needle triangles. (a) �ABC is a needle triangle
and B,C need to merge. (b) Moving C to B is the valid merging. In
this case, the newly generated faces (in blue) are outside the origi-
nal coarse cage, guaranteeing that the new faces do not intersect the

model it contains. (c) Moving C to B is the invalid merging. In this
case, the newly generated faces (in blue) are inside the original coarse
cage, so it is possible for the new faces to intersect the model it contains

Automatic cage generation by improved OBBs for mesh deformation

Fig. 8 Edge flip for high valence vertex. (a) A high valence vertex.
(b) Flip one pair of triangles, and the minimum angle is α1. (c) Flip the
other pair of triangles with minimum angle α2

α2, and suppose it is α1. If α1 is bigger than ∠A, we leave
the flip of edge e1, and cancel the flip of e2. Otherwise, both
flips are invalid and canceled. Similarly, to ensure the new
cage after edge flip does not intersect the model, we only
flip the concave edges.

It is ensured in each of the above three operations that
the newly generated mesh faces do not intersect the model.
Moreover, we also need to check whether the newly gener-
ated mesh faces intersect the other mesh faces of the coarse
cage after each of the three operations. If so, the operation
is invalid, and the result is discarded.

3 Discussion

In this section, we discuss some issues related to the coarse
cage-generation algorithm presented in this paper.

3.1 Computation of the OBBs for spherical and cylindrical
shapes

First, the orientation of an OBB is unstable for spherical or
cylindrical shapes, due to the use of PCA. In fact, in de-
termining the orientation of the OBB containing a spherical
shape, the three eigenvalues of the PCA matrix are the same.
Similarly, in determining the orientation of the OBB enclos-
ing a cylindrical shape, two eigenvalues of the PCA matrix
are the same. When we first encounter these cases, i.e., two
or three eigenvalues which are the same, we save the ori-
entation of the OBB. After the model the OBB contains is
divided into sub-parts, and two or three eigenvalues of the
PCA matrix for calculating the OBB of the sub-part are still
equal to each other, we make the orientation of the OBB for
the sub-part consistent with that of its parent OBB.

3.2 Comparison to the original OBB slicing rule

The OBB slicing rule is the key to the OBB generation.
The original OBB slicing rule [6] splits an OBB by a plane,
which is perpendicular to the longest edge, and passes the
barycenter of the point set contained in the OBB. As stated

Fig. 9 Comparison between the original and improved slicing rules.
(a) OBBs generated by the original slicing rule [6]; (b) OBBs gener-
ated by the improved slicing rule developed in this paper

above, this simple slicing rule does not take into considera-
tion the shape of the model which the OBB contains. In con-
trast, the improved OBB slicing rule presented in this paper
takes advantage of the shape change of the model contained
in the OBB. It splits the OBB at the place with the greatest
shape change (see Fig. 3), imitating human beings’ recog-
nition procedure. Therefore, the OBBs generated by the im-
proved slicing rule is more “natural” than that generated by
the original rule. Figure 9(a) shows the OBBs generated by
the original slicing rule, and Fig. 9(b) shows the OBBs by
the improved slicing rule developed in this paper.

3.3 Handling point clouds

As stated in Sect. 2.1, the improved OBB generation algo-
rithm presented in this paper performs just on the voxeliza-
tion representation of the original model and the point set
P it deduced, without requiring the mesh connectivity. So,
the improved OBB generation algorithm can handle even
a point cloud model, which has no connectivity informa-
tion. In Fig. 10, the OBBs (Fig. 10(a)) and coarse cage
(Fig. 10(b)) of a point cloud model are generated by the im-
proved OBB generation algorithm. In the generation of the
OBBs bounding the point cloud, the feature voxels are taken
as the voxels that contain the data points.

3.4 Robustness to the model transformation

Since the minimum cross section area function f (x) is de-
fined as the minimum area of the disconnected parts, and the
minimum area changes a little during a slight rigid transfor-
mation of the model, the OBBs generated by the improved

C. Xian et al.

Fig. 10 The OBBs and coarse cage generation for the point cloud
of the Octopus model. (a) The point cloud and OBBs of the Octopus
model; (b) the coarse cage of the point cloud

slicing rule is robust to the model transformation. In other
words, the generated OBBs by the improved slicing rule will
move along with the transformed model. Figure 11 demon-
strates the OBBs and coarse cages of the woman model be-
fore and after model transformation.

3.5 Influence of the parameters in the termination
condition

The coarse cage-generation algorithm is nearly fully auto-
matic, except that the users are required to input the two
parameters η and ς for the termination condition (See 2.3).
As pointed out in Sect. 2.3, both the parameters have clear
geometric meanings, so they are easy to be understood and
determined. The parameter ς controls the shape the OBBs,
while η regulates the shape of the sub-models contained
in the OBBs. Based on our experience, the coarse cage-
generation algorithm can produce an acceptable result in
most cases by setting η = 0.75, and ς = 0.5.

Furthermore, it can lead to hierarchical cages by choos-
ing different values of these parameters. Specifically, two
hierarchical cages are illustrated in Fig. 12, with η = 0.75,
ς = 0.3 in Figs. 12(a) and 12(b), and η = 0.8, ς = 0.6 in
Figs. 12(c) and 12(d), respectively.

3.6 Comparison with the method in Ref. [12]

Moreover, in Fig. 13, we compare the method developed in
this paper with that in [12]. As aforementioned, because the
voxels employed in the method in [12] are both uniform
in size, and parallel to the coordinate frame, the generated
coarse cage is usually too dense to be used in mesh deforma-
tion. In this example, Figs. 13(a) and 13(b) are the cage gen-
erated by the method in Ref. [12], displayed from two views.
Figure 13(c) are the OBBs bounding the dino model, and
Fig. 13(d) is the coarse cage generated by the method devel-
oped in this paper. Evidently, though the cage in Fig. 13(a)
is denser than the one in Fig. 13(d), it fails to separate the

Fig. 11 The OBBs and coarse cage move along with the transformed
model. (a, c) The OBBs of the woman model before and after transfor-
mation; (b, d) The coarse cages of the woman model before and after
transformation

legs, while the cage in Fig. 13(d) does. On the other hand,
though the coarse cage with higher resolution in Fig. 13(b)
can separate the two legs, it is too dense to be employed in
mesh deformation.

Moreover, the scaled minimum, average and maxi-
mum distances between the cage and the model contained
by it in Fig. 13(b) are, 0.013,0.053,0.029, respectively,
while these data for the cage and model in Fig. 13(d) are
0.003,0.058,0.028, respectively. The scaled distance means
the real distance over the diagonal length of the initial OBB
containing the model.

Automatic cage generation by improved OBBs for mesh deformation

3.7 Limitations

One of the limitations of the coarse cage-generation method
is that the generated coarse cage relies on the initial vox-
elization of the given model M , which is hard to be deter-
mined reasonably. The voxelization is one of the key ingre-
dients in the coarse cage-generation method, which has a
great impact on determining the slicing position. Currently,
the voxel size is chosen as the minimum distance between
two mesh vertices empirically. A more reasonable method
for determining the resolution will be developed in the fu-
ture.

Another limitation of our method is about the twisting be-
tween adjacent OBBs. When the shape is close to a sphere or
cylinder, the 2nd and 3rd axes of PCA can be rather unsta-

Fig. 12 Horse and its hierarchical cages. (a) The OBBs with η = 0.75
and ς = 0.3; (b) the coarse cage with η = 0.75 and ς = 0.3; (c) the
OBBs with η = 0.8 and ς = 0.6; (d) the coarse cage with η = 0.8 and
ς = 0.6

ble. Also, the orientation of the parent OBB may not always
be the one suitable for the children OBB. Hence, twisting
can still happen even with the remedy proposed in Sect. 3.1.
Ideally, some rotation of the 2nd and 3rd axes of adjacent
OBBs should be applied in a post-process to ensure a low-
twist at their junction.

Additionally, our method cannot deal with open mod-
els directly. To handle an open model, it should be closed
firstly, and then voxelization can be performed on the closed
model.

4 Results and applications

The automatic coarse cage-generation algorithm developed
in this paper is implemented with VC++ 2008 and OpenGL,
and runs on a PC with Core 2TM 2.6 GHZ CPU and 4 GB
memory in a single thread. Some empirical examples are
illustrated in this section, and Table 1 presents the empiri-
cal data. In all of the examples, except that in Fig. 17, the
thresholds for the termination condition (3) are chosen as
η = 0.75, ς = 0.5.

Figure 9 and Fig. 14 illustrate the procedure for gen-
erating the coarse cage for the model homer. Figure 9(b)
demonstrates the OBBs bounding the model homer. Fig-
ure 14(a) shows the OBBs after registration and merging.
After merging the OBBs by the union operation, the ini-
tial coarse cage is generated in Fig. 14(b). Furthermore, the
mesh quality of the coarse cage is improved in Fig. 14(c).
From Fig. 14, it can be seen that the two close legs are
separated successfully using the automatic coarse cage-
generation method.

Figure 15 and Fig. 16 demonstrate the capability for
the coarse cage-generation algorithm to handle models with
complex shapes. Figure 15(a) and Fig. 16(a) are the OBBs
containing the models; Fig. 15(b) and Fig. 16(b) are the
coarse cages of the shark and dancer models, which capture
the salient features of the two models faithfully.

Fig. 13 Comparison between
the method in Ref. [12] and the
method developed in this paper.
(a) The coarse cage generated
by the method in [12] using a
low resolution, where the legs of
dino cannot be separated.
(b) The legs of dino can be
separated using a higher
resolution, but the cage has too
many vertices (#vertices: 599)
to be used in the model
deformation. (c) The OBBs.
(d) The coarse cage generated
by the method in this paper

C. Xian et al.

Fig. 14 Coarse cage generation for the homer model. (a) The OBBs
after registration; (b) the initial coarse cage by uniting all OBBs and
triangulating the outer face; (c) the coarse cage after mesh quality im-
provement

Fig. 15 Shark and its cage. (a) The OBBs. (b) The coarse cage

Moreover, Fig. 1 presents the generation of the coarse
cage of the Octopus model which has a complex shape by
the method developed in this paper. Note that it is very hard
to produce the coarse cage of the Octopus model by hand,
while it is generated successfully by our method. Figure 1(a)
is the Octopus model. Figure 1(b) and 1(c) are the OBBs
before and after registration and merging. Finally, Fig. 1(d)
shows the coarse cage generated by our method automati-
cally.

On the other hand, the shape of the torus model in Fig. 17
is regular, and the improved OBB slicing rule degenerates
to the original rule developed in Ref. [6]. Figure 17(a) is

Fig. 16 Dancer and its cage. (a) The OBBs, (b) the coarse cage

Fig. 17 Torus and its cages. (a) The OBBs, (b) the coarse cage

the OBBs bounding the model; Fig. 17(b) shows the coarse
cage, which approximates the original model very well.

As stated above, the coarse cage can be easily modi-
fied by the user. If the users need to modify the coarse
cage locally, they can just choose the corresponding OBBs,
which are divided further to refine the local mesh (See
Fig. 18).

Finally, we show some deformation examples in Figs. 19,
20, and 21, using the automatically generated coarse cages
by the method developed in this paper, and Green Coordi-
nates [4], where the original models are shown in Figs. 1, 12,
and 14, respectively. In cage-based deformation, the shape
of the cage influences the deformation result greatly. The
closer the cage is to the original model, the better the de-
formation result. Since the coarse cage capture the salient
features of the original models faithfully, the deformation
results are desirable (Figs. 19, 20, and 21).

In conclusion, Table 1 lists the empirical data of the mod-
els and their cages. The second and third columns of Ta-
ble 1 are the numbers of the mesh vertices and the cage ver-
tices, respectively. The fourth column are the numbers of
the OBBs enclosing the original model. The fifth to seventh

Automatic cage generation by improved OBBs for mesh deformation

Fig. 18 Modification of the coarse cage. (a) The teapot model; (b) the
initial OBBs; (c) select the OBB (in yellow) where the mesh need to be
refined; (d) the refined OBBs; (e) the refined coarse cage

Fig. 19 Deformation result of the octopus model, using the coarse
cage generated in Fig. 1

columns list the scaled minimum, average, and maximum
distances between the coarse cage and the model, i.e., the
real distance over the diagonal length of the initial OBB of
the model. Finally, the last column shows the time cost in
generating the coarse cages. From Table 1, we can see that
the number of the vertices of the coarse cage is greatly re-
duced, while it captures the salient features of the model it
contains.

Fig. 20 Two deformation results of the horse model, using the coarse
cage displayed in Fig. 12(d)

Fig. 21 Two deformation results of the homer model, using the coarse
cage displayed in Fig. 14(c)

5 Conclusion

In this paper, we develop an automatic coarse cage construc-
tion method for cage-based deformation. Given a model,
its OBBs is first constructed using the principal compo-
nent analysis and the improved OBB slicing rule. Next, the
OBBs are registered and merged into a whole entity using
the boolean union operation, while its surface is extracted
as the coarse cage. Finally, the mesh quality of the coarse
cage is improved. Using this method, the coarse cage of a
model is constructed usually in a few tens of seconds, thus
saving users’ labor greatly. Moreover, the local modification
of the coarse cage is very easy. If users want to get a finer
mesh at some place of the cage, they just need to choose
the corresponding OBBs and slice them further. By merg-
ing the modified OBBs again, we get the refined cage. As
future work, we want to improve the method to generate the
control mesh for subdivision surface fitting and polycube pa-
rameterization.

Acknowledgements We thank the reviewers for their helpful com-
ments. This paper is supported by Natural Science Foundation of China
(Nos. 60970150, 60736019, 60933008), and Zhejiang Provincial Nat-
ural Science Foundation of China (No. Y1090416).

C. Xian et al.

Table 1 Data on the automatic coarse cage-generation algorithm

Models #Vert. #Cage vert. #OBBs. Min Ave. Max Time (s)

Octopus (Fig. 1) 5059 204 48 0.0008 0.120 0.043 1040.1

Octopus (Fig. 10) 149671 163 28 0.0007 0.115 0.036 1082.3

Woman (Fig. 11) 25172 78 15 0.007 0.130 0.059 332.5

Horse (Fig. 12(b)) 5560 53 7 0.004 0.144 0.070 45.7

Horse (Fig. 12(d)) 5560 111 11 0.002 0.140 0.053 69.1

Dino (Fig. 13) 5903 74 10 0.003 0.058 0.028 76.4

Homer (Fig. 14) 5103 64 12 0.008 0.132 0.069 44.7

Shark (Fig. 15) 4820 80 13 0.004 0.106 0.045 43.8

Dancer (Fig. 16) 2396 43 8 0.001 0.047 0.019 20.0

Torus (Fig. 17) 5566 32 8 0.052 0.063 0.057 21.5

Vert.: the number of the mesh vertices
Cage vert.: the number of the coarse cage vertices
OBBs: the number of the OBBs in the improved OBB tree
Min: the scaled minimum distance between the cage and the model
Ave.: the scaled average distance between the cage and the model
Max: the scaled maximum distance between the cage and the model
Time (s): the cost time in second in generating the coarse cage

References

1. Floater, M.S., Kos, G., Reimers, M.: Mean value coordinates
in 3d. Comput. Aided Geom. Des. 22, 623–631 (2005)

2. Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed
triangular meshes. In: Proceedings of SIGGRAPH 2005, pp. 561–
566 (2005)

3. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic
coordinates for character articulation. ACM Trans. Graph. 26(3)
(2007)

4. Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. ACM
Trans. Graph. 27(3) (2008)

5. Huang, J., Chen, L., Liu, X., Bao, H.: Efficient mesh deformation
using tetrandron control mesh. In: Proceedings of ACM Solid and
Physical Modeling 2008, pp. 241–247 (2008)

6. Gottschalk, S., Lin, M.C., Manocha, D.: Obbtree: A hierarchical
structure for rapid interference detection. In: Proceedings of SIG-
GRAPH 1996, pp. 171–180 (1996)

7. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geo-
metric models. In: Proceedings of SIGGRAPH 1986 (1986)

8. Magnenat-Thalmann, N., Laperriére, R., Thalmann, D.: Joint-
dependent local deformations for hand animation and object
grasping. In: Proceedings on Graphics Interface’88, Edmonton,
Alberta, Canada, pp. 26–33 (1989)

9. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a uni-
fied approach to shape interpolation and skeleton-driven deforma-
tion. In: Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques, pp. 165–172 (2000)

10. Ju, T., Zhou, Q.Y., van de Panne, M., Cohen-Or, D., Neu-
mann, U.: Reusable skinning templates using cage-based defor-
mations. ACM Trans. Graph. 26(5) (2008)

11. Landreneau, E., Schaefer, S.: Poisson-based weight reduction of
animated meshes. Comput. Graph. Forum 28(2), 1–10 (2009)

12. Xian, C., Lin, H., Gao, S.: Automatic generation of coarse bound-
ing cages from dense meshes. In: IEEE International Conference
on Shape Modeling and Applications (SMI) 2009, Beijing, P.R.
China, June (2009)

13. Hearn, D., Baker, M.P.: Computer Graphics, C Version, 2nd edn.
Prentice Hall, Englewood Cliffs (1997)

14. Ju, T.: Fixing geometric errors on polygonal models: a survey. J.
Comput. Sci. Technol. 24(1), 19–29 (2009)

15. CGAL, Computational Geometry Algorithms Library,
http://www.cgal.org

Chuhua Xian is currently a Ph.D.
candidate of State Key Laboratory
of CAD&CG, Zhejiang University,
P.R. China. His research interest
is 3D model deforming, geometry
modeling and CAD/CAE integra-
tion.

Hongwei Lin is an associate pro-
fessor in State Key Laboratory of
CAD&CG, Zhejiang University,
China. He received his BSc from
Department of Applied Mathemat-
ics at Zhejiang University in 1996,
and Ph.D. from Department of Math-
ematics at Zhejiang University in
2004. He worked as a communica-
tion engineer from 1996 to 1999.
His current research interests are in
computer aided geometric design,
computer graphics, and image pro-
cess.

http://www.cgal.org

Automatic cage generation by improved OBBs for mesh deformation

Shuming Gao is a professor of the
State Key Laboratory of CAD&CG,
Zhejiang University. He received
his Ph.D. degree from the Applied
Mathematics Department of Zhe-
jiang University in 1990, and was a
visiting scholar and a visiting pro-
fessor in the Design Automation
Laboratory of Arizona State Uni-
versity, respectively, in 1996 and
2001. His research interests include
product modeling, CAX integra-
tion, collaborative design, virtual
reality in design and manufacturing,
MEMSCAD, etc.

	Automatic cage generation by improved OBBs for mesh deformation
	Abstract
	Introduction
	Related work

	Coarse cage-generation algorithm
	Voxelization and point set generation
	Improved OBB slicing rule
	Termination condition
	Shape of the model
	Shape of the OBB

	OBB registration and mesh generation
	Mesh improvement

	Discussion
	Computation of the OBBs for spherical and cylindrical shapes
	Comparison to the original OBB slicing rule
	Handling point clouds
	Robustness to the model transformation
	Influence of the parameters in the termination condition
	Comparison with the method in Ref. ref:Xian2009
	Limitations

	Results and applications
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

