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a b s t r a c t

Progressive-iteration approximation (PIA) is a new data fitting technique developed recently for blending

curves and surfaces. Taking the given data points as the initial control points, PIA constructs a series of

fitting curves (surfaces) by adjusting the control points iteratively, while the limit curve (surface)

interpolates the data points. More importantly, progressive-iteration approximation has the local

property, that is, the limit curve (surface) can interpolate a subset of data points by just adjusting a part

of corresponding control points, and remaining others unchanged. However, the current PIA format

requires that the number of the control points equals that of the data points, thus making the PIA

technique inappropriate to fitting large scale data points. To overcome this drawback, in this paper, we

develop an extended PIA (EPIA) format, which allows that the number of the control points is less than

that of the given data points. Moreover, since the main computations of EPIA are independent, they can

be performed in parallel efficiently, with storage requirement O(n), where n is the number of the

control points. Therefore, due to its local property and parallel computing capability, the EPIA technique

has great potential in large scale data fitting. Specifically, by the EPIA format, we develop an

incremental data fitting algorithm in this paper. In addition, some examples are demonstrated in

this paper, all implemented by the parallel computing toolbox of Matlab, and run on a PC with a

four-core CPU.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Data fitting is a fundamental tool in solving scientific and
engineering problems found in the real world, which constructs a
curve or patch, or a mathematical function, that has the best fit to
a series of data points, possibly subject to constraints. A desirable
data fitting method should be able to control the fitting precision
for each data point individually. Thus, the data points can be fitted
adaptively, that is, only the data points with dissatisfied precision
need to be dealt with. In this manner, the computation resource
can be saved greatly, especially in fitting large scale data points.
However, traditional methods for data fitting usually solve a
linear system, hence it is impossible to control the fitting preci-
sion for each data point individually.

Moreover, in fitting large scale data points, the incremental
manner is often employed, which starts from an initial fitting
curve. If the precision of the current fitting curve does not meet
the requirement, the number of the control points of the fitting
curve is increased, and the data points are fitted again, improving
the fitting precision. The desirable manner for re-fitting the data
ll rights reserved.

-Hai Yong.
points is able to take advantage of the last fitting result, thus
saving the computational resource. However, when we re-fit the
data points using the conventional method, such as the least
square fitting technique, the last fitting result is totally discarded.

Recently, a new data fitting technique, progressive-iteration

approximation (PIA) is presented. The PIA method is an iterative
procedure, starting by an initial blending curve with control
points and blending basis (it also works for tensor product
surfaces, we omit the surface case for brevity here), and the limit
curve interpolates the given data points. In each iteration, the
main computation is to evaluate the foot points corresponding to
the given data points. The point evaluation in each iteration is
independent completely, so it is suitable to be calculated in
parallel in its nature. Moreover, it has been shown that the PIA
method has the local property, that is, it can control the fitting
precision for each data point separately. In addition, while it
requires Oðn2Þ memory to solve the linear system for data fitting,
where n is the number of unknowns, the PIA method decreases
the storage requirement to O(n).

However, in the classical PIA format, the number of the control
points is equal to that of the data points. It is not feasible when
the number of data points is very large. In this paper, we present
an extended PIA (EPIA) format, where the number of the control
points is less than that of the data points. Together with the local
property and parallel computing capability of PIA, the extended

www.elsevier.com/locate/cag
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PIA is a desirable tool for fitting large scale data. By the EPIA
format, we develop an incremental data fitting algorithm in this
paper, which has the following advantages:
�
 it can control the fitting precision to each data point
individually;

�
 in fitting data points incrementally, the new fitting procedure

starts from the last fitting result.

This paper is organized as follows. In Section 1.1, we review
the related work briefly. Section 2 overviews the classical PIA
method presented previously. In Section 3, we present the
extended PIA method, and show its convergence. Moreover, in
Section 4, we develop the incremental data fitting algorithm by
the EPIA format. Section 5 demonstrates some examples, all
implemented by the parallel computing toolbox of Matlab. Finally,
Section 6 concludes the paper.

1.1. Related work

The progressive-iteration approximation (PIA) is a new techni-
que to seek the curve or patch fitting the data points. The PIA
property of the uniform cubic B-spline curve, first discovered by
Qi et. al. [1] and de Boor [2], respectively, generates a sequence of
curves by adjusting the control points iteratively, and the limit
curve interpolates the given data points. In Ref. [3], Lin et al. show
that the nonuniform cubic B-spline curve and surface also hold
the property. Furthermore, the PIA method is extended to the
blending curve and surface with normalized totally positive
basis [4]. In Ref. [5], the convergence rates of different bases are
compared, and the basis with the fastest convergence rate is
found. Moreover, it is proved that the rational B-spline curve and
surface (NURBS) have the property, too [6]. Recently, Martin et al.
[7] devise an iterative format for fitting, which is actually the
progressive-iteration approximation (PIA) format for the uniform
periodic cubic B-spline. Very recently, Lu [8] devises a weighted
PIA format to speed up the convergence of the PIA method. More
importantly, Lin [9] discovers the local property of the PIA, by
which PIA can control the fitting precision of each data point
individually.

While the PIA format depends on the parametric distance
between the data points and the corresponding foot points on the
curve with the same parameters, Maekawa et al. invent an
iterative fitting format, called interpolation by geometric algorithm

[10,11], which is similar to PIA format, but relies on geometric
distance between the data points and their closest points on
the curve. Lin [12] shows the convergence of the interpolation
by geometric algorithm. Moreover, the geometric interpolation
algorithm [10] is extended to approximate the vertices of a
triangular mesh using Loop subdivision surface [13]. On the other
hand, the squared distance minimization method [14,15] is also
an iterative data fitting algorithm.

Furthermore, the PIA format has been extended to subdivision
surface fitting, named progressive interpolation (PI). Cheng et al.
design the PI format of subdivision fitting for Loop subdivision
surface [16,17], and prove its convergence. Fan et al. develop the
PI format of Doo–Sabin subdivision surface fitting [18]. The PI
format for Catmull–Clark subdivision surface fitting is proposed in
Ref. [19].
2. Overview of the classical progressive-iteration
approximation

The classical PIA method begins with an initial blending curve
or patch with normalized totally positive basis, and generates a
sequence of curves or patches by adjusting the control points
iteratively.

Specifically, given an ordered data point set

fP0,P1, . . . ,Png,

each point is assigned a parameter ti,i¼ 0,1, . . . ,n, where
t0ot1o � � �otn. Taking these data points as the initial control
points, that is, P0

i ¼ Pi,i¼ 0,1, . . . ,n, the initial blending curve P0
ðtÞ

can be constructed as

P0
ðtÞ ¼

Xn

i ¼ 0

P0
i BiðtÞ, ð1Þ

where fBiðtÞ; i¼ 0,1, . . . ,ng is the normalized totally positive
blending basis.

Suppose the kth curve Pk
ðtÞ has been generated. By computing

the foot points Pk
ðtiÞ on the kth curve Pk

ðtÞ, constructing the
difference vectors Dk

i ¼ Pi�Pk
ðtiÞ, and moving the control points

along the corresponding difference vectors, that is, Pkþ1
i ¼

Pk
i þDk

i ,i¼ 0,1, . . . ,n, we get the next curve Pkþ1
ðtÞ,

Pkþ1
ðtÞ ¼

Xn

i ¼ 0

Pkþ1
i BiðtÞ: ð2Þ

In this way, a sequence of curves, fPk
ðtÞ; k¼ 0,1, . . .g, are

generated. It has been proved in Refs. [3,4] that the limit curve
of the sequence interpolates the data points, i.e., limk-1Pk

ðtiÞ ¼

Pi,i¼ 0,1, . . . ,n, if the blending basis fBiðtÞ; i¼ 0,1, . . . ,ng is
normalized totally positive, and its collocation matrix on t0,t1, . . . ,tn

is nonsingular.
Similarly, PIA can also be employed to fit a patch to a data

array. Readers can refer to Refs. [3,4] for more details.
More importantly, the PIA technique has the local property.

That is, if only a subset of the control points are adjusted
iteratively, and the others remain unchanged, the limit curve will
interpolate the subset of data points, corresponding to the
adjusted control points [9]. The local property of the PIA implies
that, the fitting precision of each data point can be controlled
separately. As a result, the data points can be fitted adaptively [9].

It can be seen from the generation of the curve sequence
fPk
ðtÞ,k¼ 0,1, . . .g that, in each iteration, the computation of the

foot points, the construction of the difference vectors, and the
movement of the control points are fully independent, so it is well
suited to be implemented by parallel computing.
3. The extended PIA format and its convergence

As stated above, in the classical PIA, the number of the control
points of the blending curve or patch is equal to that of the given
data points. It is not feasible in fitting a large number of data
points. Therefore, in this paper, we develop an extended PIA
(EPIA) format, and show its convergence, where the number of
the control points is less than that of the data points.

3.1. The extended PIA for curve fitting

Given a data point sequence,

fPj; j¼ 0,1, . . . ,ng, ð3Þ

after parametrization, each data point Pj is assigned a parameter
tj,j¼ 0,1, . . . ,n with tjotjþ1.

Suppose the initial curve is

C0
ðtÞ ¼

Xl

i ¼ 0

C0
i BiðtÞ, ð4Þ

where C0
i , i¼ 0,1, . . . ,l, are the initial control points selected from

the data points, and BiðtÞ,i¼ 0,1, . . . ,l, are the normalized totally
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positive blending basis [20,21]. The selection of the initial control
points C0

i ,i¼ 0,1, . . . ,l, and the knot construction of the initial
curve C0

ðtÞ will be explained in Section 4.
Furthermore, the data points (3) are classified into lþ1 groups,

Gi,i¼ 0,1, . . . ,l, each of which corresponds to a control point of the
initial curve (4), that is,

Gi ¼ fPj,jA Iig, i¼ 0,1, . . . ,l, ð5Þ

where Ii is the index set of the data points in Gi. Note that, the
parameters of the data points with indices in Ii should be less than
that of the data points with indices in Iiþ1,i¼ 0,1, . . . ,l�1, i.e.,

ti0 oti1 o � � �otil where i0A I0, . . . ,ilA Il: ð6Þ

Details on the classification of the data points (3) will be
elucidated in Section 4.

Next, supposing the kth curve,

Ck
ðtÞ ¼

Xl

i ¼ 0

Ck
i BiðtÞ, ð7Þ

has been generated, to produce the (kþ1)th curve, we need to
calculate the difference vector for each control point Dk

i . To this end,
we first compute the difference vector for each data point dk

j , which
is from the point Ck

ðtjÞ to the corresponding data point Pj, namely,

dk
j ¼ Pj�Ck

ðtjÞ, j¼ 0,1, . . . ,n, ð8Þ

and organize them into lþ1 groups according to the index sets
Ii,i¼ 0,1, . . . ,l. In this way, we construct the difference vector for

each control point, i.e.,

Dk
i ¼

P
jA Ii

dk
j

9Ii9
, i¼ 0,1, . . . ,l, ð9Þ

where 9Ii9 is the cardinality of the index set Ii.
Moreover, by moving the control point Ck

i along the difference
vector Dk

i , we get the (kþ1)th curve, that is,

Ckþ1
ðtÞ ¼

Xl

i ¼ 0

Ckþ1
i BiðtÞ, ð10Þ

where Ckþ1
i ¼ Ck

i þDk
i ,i¼ 0,1, . . . ,l.

Convergence: As the result of the above iterative procedure, a
curve sequence fCk

ðtÞ,k¼ 0,1, . . .g is generated. To show its
convergence, the difference vectors for the control points are
arranged as

Dk
¼ fDk

0,Dk
1, . . . ,Dk

l g
T: ð11Þ

Thus, the iterative format for the difference vectors (11) is

Dkþ1
¼DDk, ð12Þ

where D¼ I�C, I is the identity matrix, and,

C ¼

1

k0

P
i0 A I0

B0ðti0 Þ
1

k0

P
i0 A I0

B1ðti0 Þ � � �
1

k0

P
i0 A I0

Blðti0 Þ

1

k1

P
i1 A I1

B0ðti1 Þ
1

k1

P
i1 A I1

B1ðti1 Þ � � �
1

k1

P
i1 A I1

Blðti1 Þ

^ ^ � � � ^
1

kl

P
il A Il

B0ðtil Þ
1

kl

P
il A Il

B1ðtil Þ � � �
1

kl

P
il A Il

Blðtil Þ

2
666666666664

3
777777777775

: ð13Þ

Here, ki ¼ 9Ii9 is the cardinality of the index set Ii,i¼ 0,1, . . . ,l.
Evidentally, the 1-norm of the matrix C equals 1, i.e., JCJ1 ¼ 1.

On the other hand, each square minor of matrix C (13), i.e.,

M¼ detðCð½p1,p2, . . . ,pm; q1,q2, . . . ,qm�ÞÞ, ð14Þ
where p1,p2, . . . ,pm are row indices, and q1,q2, . . . ,qm are column
indices, can be represented as the sum of the corresponding
minors of the following matrices:

Cd ¼

1

k0
B0ðti0 Þ

1

k0
B1ðti0 Þ � � �

1

k0
Blðti0 Þ

1

k1
B0ðti1 Þ

1

k1
B1ðti1 Þ � � �

1

k1
Blðti1 Þ

^ ^ � � � ^
1

kl
B0ðtil Þ

1

kl
B1ðtil Þ � � �

1

kl
Blðtil Þ

2
6666666664

3
7777777775

, i0A I0,i1A I1, . . . ,ilA Il:

ð15Þ

with the same indices as M, i.e.,

detðCdð½p1,p2, . . . ,pm;q1,q2, . . . ,qm�ÞÞ: ð16Þ

Since the basis fBiðtÞ,i¼ 0,1, . . . ,ng are normalized totally positive,
and ti0 oti1 o � � �otil (Eq. (6)), each matrix Cd (15) is totally
nonnegative. So, all of its minors are nonnegative. As the sum of
the minors (16) of the matrices Cd (15), any square minor M (14)
of the matrix C (13) is nonnegative, too. Therefore, the matrix C

(13) is a totally nonnegative matrix.
Moreover, if the matrix C (13) is also nonsingular, all of its

eigenvalues liðCÞ,i¼ 0,1, . . . ,l are positive real numbers [20,21].
Coupled with JCJ1 ¼ 1, we have 0oliðCÞr1. As a result, the
eigenvalues of the iterative matrix D (12) satisfy
0rliðDÞ ¼ 1�liðCÞo1, which means that the iterative format
(12) is convergent, that is,

lim
k-1

Dk
i ¼ 0, i¼ 0,1, . . . ,l: ð17Þ

Therefore, the curve sequence fCk
ðtÞ,k¼ 0,1, . . .g is also

convergent, i.e.,

lim
k-1

Ck
ðtÞ ¼ C1ðtÞ:

And then, the difference vector dk
j for each data point converges to

lim
k-1

dk
j ¼ Pj�C1ðtjÞ, j¼ 0,1, . . . ,n:

3.2. The extended PIA for patch fitting

Given a data point array

fPij; i¼ 0,1, . . . ,m,j¼ 0,1, . . . ,ng, ð18Þ

each of them is assigned a parameter ðui,vjÞ. Suppose the initial
patch is chosen as

S0
ðu,vÞ ¼

Xlu

g ¼ 0

Xlv

h ¼ 0

S0
ghBgðuÞBhðvÞ, ð19Þ

where S0
gh are the initial control points, Bg(u) and Bh(v) are

normalized totally positive basis. The selection of the initial
control points S0

gh, and the knot construction of the initial patch
S0
ðu,vÞ will be explained in Section 4.
Assume again that the data points are classified into groups

Ggh ¼ fPij; ði,jÞA Ighg, g ¼ 0,1, . . . ,lu,h¼ 0,1, . . . ,lv,

where Igh is the index set of the data points in the group Ggh. Each
of the groups corresponds to an initial control point. The classi-
fication of the data points is based on the parameters of the data
points. If

Pi1 ,j1 AGg,h1
, Pi2 ,j2

AGgþ1,h2
,
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their parameters ðui1 ,vj1
Þ, ðui2 ,vj2

Þ should satisfy ui1 oui2 ; on the
other hand, if

Pi3 ,j3
AGg1 ,h, Pi4 ,j4

AGg2 ,hþ1,

their parameters ðui3 ,vj3
Þ, ðui4 ,vj4

Þ should satisfy vj3
ovj4

. The data
point classification will be interpreted in Section 4 in detail.

Suppose the kth patch,

Sk
ðu,vÞ ¼

Xlu

g ¼ 0

Xlv

h ¼ 0

Sk
ghBgðuÞBhðvÞ, ð20Þ

has been generated. Similar to the EPIA for curve fitting (Section
3.1), we first calculate the difference vector dk

ij for each data point,
i.e.,

dk
ij ¼ Pij�Sk

ðui,vjÞ, i¼ 0,1, . . . ,m, j¼ 0,1, . . . ,n, ð21Þ

and organize them into groups according to the index sets
Igh,g ¼ 0,1, . . . ,lu,h¼ 0,1, . . . ,lv. Then, the difference vector Dk

gh for
each control point is constructed as

Dk
gh ¼

P
ði,jÞA Igh

dk
ij

9Igh9
, g ¼ 0,1, . . . ,lu, h¼ 0,1, . . . ,lv, ð22Þ

where 9Igh9 is the cardinality of the index set Igh. By moving the
control point Sk

gh along the difference vector Dk
gh, we get the

ðkþ1Þth patch, that is,

Skþ1
ðu,vÞ ¼

Xlu

g ¼ 0

Xlv

h ¼ 0

Skþ1
gh BgðuÞBhðvÞ, ð23Þ

where Skþ1
gh ¼ Sk

ghþDk
gh,g ¼ 0,1, . . . ,lu,h¼ 0,1, . . . ,lv.

In this way, a sequence of patches fSk
ðu,vÞ; k¼ 0,1, . . . ,g is

generated. To show its convergence, we arrange the difference
vectors for the control points in a one-dimensional array,

Dk
¼ fDk

00,Dk
01, . . . ,Dk

0,lv
,Dk

10, . . . ,Dk
1,lv

, . . . ,Dk
lu ,0, . . . ,Dk

lu ,lv
gT: ð24Þ

The iterative format for fDk; k¼ 0,1, . . .g is

Dkþ1
¼ ðI�CsÞDk, k¼ 0,1, . . . ,

where I is the identity matrix, and the matrix Cs is the Kronecker
product of two totally nonnegative matrices with1-norm equal to
1, one for the parameter u, the other one for the parameter v.
Both are similar to Eq. (13). Since the eigenvalues of the Kronecker
product of two matrices are the products of the eigenvalues of the
two matrices [22], the eigenvalues of the matrix Cs satisfy
0olðCsÞr1, if it is nonsingular. Therefore, 0rlðI�CsÞo1, and
the EPIA iterative format (24) for the patch fitting is convergent.
Fig. 1. Calculation of the u parameters for the data array.
4. The incremental data fitting method by the EPIA format

In this section, an incremental data fitting method is devel-
oped using the EPIA format. For clarity, we first list the main steps
of the incremental data fitting algorithm in Algorithm 1, where
there are two fitting errors, ed for the data points, defined as

ed ¼max
j
fJdk

j Jg ðrefer Eq: (8ÞÞ for curve

or

ed ¼max
ij
fJdk

ijJg ðEq: (21ÞÞ for patch, ð25Þ

and ec for the control points, defined as

ec ¼max
i
fJDk

i Jg ðEq: (9ÞÞ for curve
or

ec ¼max
gh
fJDk

ghJg ðEq: (22ÞÞ for patch: ð26Þ

Algorithm 1. Incremental data fitting algorithm by the EPIA.
1
 Parametrize the given data points;

2
 Construct the initial control points and knots;

3
 Classify the data points into groups, each of which

corresponds to a control point;

4
 Check the validation of the initial control points;

5
 k¼0;

6
 while The fitting error ed is not reached do

7
 Calculate the foot points and difference vectors on the

kth curve (patch);

8
 Generate the new control points for the (kþ1)th curve

(patch);

9
 if ec is less than a pre-defined threshold tc or the current ed

is larger than the last ed then

10
 Insert a new knot, and divide the corresponding

groups;

11
 end

12
 k¼kþ1;

13
 end
The details on the incremental data fitting algorithm by the
EPIA format are elucidated as follows.

Data point parametrization: On one hand, the data point
sequence (3) are parametrized by the normalized accumulated
chord length method, assigning a parameter tj,j¼ 0,1, . . . ,n to
each data point.

On the other hand, to parametrize the data array (18), we first
employ the normalized accumulated chord length method to
parametrize each column,

fP0j,P1j, . . . ,Pmjg, j¼ 0,1, . . . ,n,

generating the parameter sequence (see Fig. 1),

fuj
0,uj

1, . . . ,uj
mg, j¼ 0,1, . . . ,n:

Then, the parameters in each row are averaged, i.e.,
ui ¼ ð1=ðnþ1ÞÞ

Pn
j ¼ 0 uj

i, producing the row parameter sequence,

fu0,u1, . . . ,umg: ð27Þ

Similarly, we can calculate the column parameter sequence,

fv0,v1, . . . ,vng: ð28Þ

Thus, the parameter of the data points Pij is ðui,vjÞ,i¼
0,1, . . . ,m,j¼ 0,1, . . . ,n:

Initial control point selection: The data point sequence (3) is
called digital curve in computer vision community, where there
are lots of methods presented for calculating the discrete curva-
ture at each data point, and detecting the dominant points of the
point sequence. In this paper, we employ the method developed
in Ref. [23] to calculate the discrete curvatures at the points, and
detect the dominant points of the point sequence (3). As proposed
in Ref. [23], we first smooth the point sequence by the Gauss filter
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with adaptive window size, and then calculate the discrete
curvature using the following formula, i.e.,

kj ¼
JDPj �D2PjJ

JDPjJ
3

, j¼ 0,1, . . . ,n, ð29Þ

where DPj and D2Pj are the first and second order difference
of the point sequence (3) at the point Pj. They constitute the
curvature sequence

K ¼ fk0,k1, . . . ,kng: ð30Þ

And then, the data points with local maximum curvatures are
selected as the dominant points of the data point sequence (3)
[23].

Thus, we take the selected dominant points as the initial
control points, denoted as

fC0
i ¼ Pji

,i¼ 0,1, . . . ,lg, ð31Þ

where kji�1okji okjiþ1,i¼ 1,2, . . . ,l�1. In addition, we also take
the head point and tail point as the initial control points, i.e.,
Pj0
¼ P0,Pjl

¼ Pn:

On the other hand, to choose the initial control points from the
data array (18) for patch fitting, we first calculate the curvature
for each data point Pij along each row using Eq. (29) by the
method proposed in Ref. [23]. Then, each data point gets a
curvature kr

ij. Next, we compute the curvature for each data point
along each column, and each point gets another curvature kc

ij.
Finally, the total curvature for each data point Pij is defined as
(Fig. 1)

kij ¼ ðk
r
ijÞ

2
þðkc

ijÞ
2, i¼ 0,1, . . . ,m, j¼ 0,1, . . . ,n:

Similar to the generation of the row parameter sequence (27)
and column parameter sequence (28), the total curvatures in each
row are averaged, generating the row curvature sequence,

Krow ¼ fk
r
0,kr

1, . . . ,kr
mg where kr

i ¼

Pn
j ¼ 0 kij

nþ1
; ð32Þ

the total curvatures in each column are averaged, producing the
column curvature sequence,

Kcol ¼ fk
c
0,kc

1, . . . ,kc
ng where kc

j ¼

Pm
i ¼ 0 kij

mþ1
: ð33Þ

Similar to the curve case, the indices of the local maximum
curvatures in Krow, together with the head and tail indices,
constitute the row indices of the initial control points, i.e.,

fi0,i1, . . . ,ilu g, ð34Þ

where i0 ¼ 0,ilu ¼m; the indices of the local maximum curvatures
in kcol, together with the head and tail indices, constitute the
column indices of the initial control points, i.e.,

fj0,j1, . . . ,jlv g, ð35Þ

where j0 ¼ 0,jlv ¼ n. Thus, the initial control points for the initial
patch are

fS0
gh ¼ Pig ,jh

,g ¼ 0,1, . . . ,lu,h¼ 0,1, . . . ,lvg: ð36Þ

Knot construction: In our implementation, we employ the
averaging technique presented in Ref. [24] to construct the knot
sequence. As stated above, the initial control points (31) of the
initial B-spline curve have the parameter sequence,

tj0
¼ t0,tj1

,tj2
, . . . ,tjl�1

,tjl
¼ tn: ð37Þ

Then, the knot sequence ft jg for the initial B-spline curve with
degree p (order pþ1) are taken as

t0 ¼ t1 ¼ � � � ¼ tp ¼ t0, t lþ1 ¼ t lþ2 ¼ � � � ¼ t lþp ¼ tn,
tkþp ¼
1

p

Xkþp�1

i ¼ k

tji , k¼ 1,2, . . . ,l�p: ð38Þ

In the patch fitting case, corresponding to the row indices (34)
and the column indices (35), the initial control points of the initial
B-spline patch has the row parameter sequence,

ui0 ¼ u0,ui1 ,ui2 , . . . ,uilu�1
,uilu
¼ um ð39Þ

and the column parameter sequence,

vj0
¼ v0,vj1

,vj2
, . . . ,vjlv�1

,vjlv
¼ vn: ð40Þ

So, the knots for the initial B-spline patch with degree (p, q) (order
ðpþ1,qþ1Þ) are taken as

u0 ¼ u1 ¼ � � � ¼ up ¼ u0,

uluþ1 ¼ uluþ2 ¼ � � � ¼ ulu þp ¼ um,

uku þp ¼
1

p

Xkuþp�1

k ¼ ku

uik , ku ¼ 1,2, . . . ,lu�p; ð41Þ

v0 ¼ v1 ¼ � � � ¼ vq ¼ v0,

vlv þ1 ¼ vlvþ2 ¼ � � � ¼ vlv þq ¼ vn,

vkvþq ¼
1

q

Xkv þq�1

k ¼ kv

vjk , kv ¼ 1,2, . . . ,lv�q: ð42Þ

As mentioned in Ref. [24], such knot selection manner is
efficient for the B-spline fitting.

It should be pointed out that, in B-spline fitting, the knot
construction method based on the dominant points in the point
sequence is first developed in Ref. [25], where the inflection
points are taken as the dominant points. Moreover, Park et al.
suggest that the data points with local maximum curvatures can
be taken as the dominant points, and present the corresponding
knot placement methods for B-spline curve fitting [26], and
B-spline patch fitting [27], respectively. The knot construction
method in this paper is similar to the method in Refs. [26,27].

Data point classification: The data points should be classified
into groups, each of which corresponds to a control point. For this
purpose, we need to prepare a fence F.

In the curve fitting case, the fence

F ¼ ff0,f1,f2, . . . ,fl,flþ1g ð43Þ

is constructed based on the curvature sequence (30), the para-
meters, and the index set of the initial control points (31).

Specifically, the fence F (43) consists of a series of boundary

markers fi,i¼ 0,1, . . . ,lþ1, where f0 ¼ t0,flþ1 ¼ tn. The boundary
marker fi is a parameter value in the interval ðtji�1

,tji
Þ, where tji�1

and tji
are the parameters of the data points Pji�1

and Pji ,
respectively. The marker fi is determined as follows. Suppose
the curvatures between kji�1

and kji in Eq. (30) are

ks ¼ kji�1
,ksþ1,ksþ2, . . . ,ke ¼ kji

,

and the parameters of the points between Pji�1
and Pji

are

ts ¼ tji�1
,tsþ1,tsþ2, . . . ,te ¼ tji

:

We first normalize them as

ki ¼
ki�kmin

kmax�kmin
, t i ¼

ti�ts

te�ts
, i¼ s,sþ1, . . . ,e�1,e,

where kmin and kmax are the minimum and maximum of the
curvatures ki,i¼ s,sþ1, . . . ,e�1,e. Then, define,

ls,w ¼
Xw�1

j ¼ s

ekj t j:
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Finally, we select a curvature kw which minimizes the difference
of ls,w and lw,e, that is,

min
w

9ls,w�lw,e9, ð44Þ

where sowoe. Thus, the corresponding parameter tw is selected
as fi, i.e., fi ¼ tw. In addition, if the index ji is adjacent to ji�1, i.e.,
ji�1 ¼ ji�1, we define

fi ¼
tji�1þtji

2
:

In this way, the data points whose parameters tj satisfy
firtjo fiþ1,i¼ 0,1, . . . ,l can be classified into the ith group Gi,
corresponding to the ith control point. Differently slightly, the
parameters of the data points in the last group Gl should satisfy
flrtjr flþ1.

On the other hand, in the patch case, the aforementioned
method is applied, respectively, on the row curvature sequence
Krow (32) based on the row indices (34) of the initial control
points, generating the row fence,

Frow ¼ ff
u
g ,g ¼ 0,1, . . . ,luþ1g, ð45Þ

and on the column curvature sequence Kcol (33) based on the
column indices (35), producing the column fence,

Fcol ¼ ff
v
h ,h¼ 0,1, . . . ,lvþ1g: ð46Þ

Similarly, the data points whose parameters ðui,vjÞ satisfy
f u
g ruio f u

gþ1, and f v
h rvjo f v

hþ1 are classified into the group Ggh,
corresponding to the control point with index (g, h). Specifically,
in the last column, the parameters of the data points fulfill
flv rvjr flv þ1; in the last row, they satisfy flu ruir fluþ1.

Finally, the local property of PIA allows the users to select
some data points to interpolate. If one data point is chosen to
interpolate, the group containing the data point will retain just
itself, while other data points in the group are distributed into its
nearby groups in order. In Fig. 2, the 43 data points are fitted by a
cubic B-spline curve with 13 control points, where one data point
(in blue) is selected to interpolate.

Difference vector construction: In the curve fitting case, the
difference vector for each data point and the difference vector for
each control point are defined in Eqs. (8) and (9), respectively.

Similarly, in the patch fitting case, Eqs. (21) and (22) are the
difference vectors for data point and control point, respectively.

Validation check: To ensure the decrease of the norm of the
difference vector Dk

i (9) for the control point leads to the
reduction of that of the difference vector dk

j (8) for the data point,
the difference vector dk

j in the group Gi must take positive effect in
generating the difference vector Dk

i . The positive effect concerns
two ingredients, the direction and length of the difference vector
dk

j in the group Gi. Specifically, the smaller the angle between dk
j

and Dk
i , the better; the closer the length of the vector dk

j to that of
Fig. 2. By the EPIA format, the fitting curve can interpolate a specified data point

(in blue solid dot). The data points are represented by the red circle; the control

polygon is in blue; the cubic B-spline curve is in red. (a) The initial control polygon

and curve. (b) After 10 iterations. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
Dk
i , the better. To measure the above two ingredients, we employ

the following condition:

J
P

Pj AGi
dk

j JP
Pj AGi

Jdk
j J

4Z, ð47Þ

where Z is a pre-defined threshold. If all of the difference vectors
dk

j in the group Gi satisfy Eq. (47), we say that the corresponding
control point Ck

i is valid; otherwise, it is invalid. In general, the
larger value of Z requires more control points and groups to meet
the condition (47), which will be demonstrated in Section 5. If not
specified, we take Z¼ 0:6 in this paper.

In the patch fitting case, the validation check for each control
point is the same as that in the curve fitting case as stated above.

In our implementation, we only check the validation after the
initial control point construction.

Knot insertion: As aforementioned, each control point C0
i

corresponds to a data point group Gi, where the parameters of
the data points lie in the interval ½fi,fiþ1Þ.

In the validation check, if the initial control point C0
i is invalid,

the two boundary markers fi and fiþ1 are inserted into the
corresponding parameter sequence (37), if they are not in the
parameter sequence (37) previously. Next, the new knot sequence
is generated by the formula (38).

Afterwards, the fence F (43) is updated as follows. First, we
delete the markers fi and fiþ1 from F; then, insert four new
markers into F by the minimum difference rule (44), each in the
interval

ðtji�1
,fiÞ, ðfi,tji

Þ, ðtji ,fiþ1Þ and ðfiþ1,tjiþ 1
Þ,

respectively. Finally, the groups fGig should also be updated
correspondingly.

In the iterations, if the fitting error ec for the control point is
less than a pre-defined threshold tc, or the fitting error ed in the
current iteration is greater than ed in the last iteration, we search
a data point Pk, which satisfies
(1)
 the fitting error JdkJ (8) to the data point Pk is the
biggest, and,
(2)
 its corresponding parameter tk is not in the parameter
sequence (37);
then, insert its parameter tk into the parameter sequence (37);
finally, generate the new knot sequence by the formula (38). On
the other hand, we also insert tk to the current curve, and get the
new control points of the refined curve [24]. The new control
points and the new knot sequence produce the new curve for the
next iteration.

After that, the fence F (43) and the groups fGig should also be
updated correspondingly. Suppose the inserted parameter tk lies
in between tji

and tjiþ 1
. Then, the two boundary markers between

tji
and tk, between tk and tjiþ 1

, respectively, should be calculated
by the minimum difference rule (44), and the data points with
parameters between tji

and tjiþ 1
should be classified again based

on the new boundary markers.
In the patch fitting case, the parameter insertion and knot

adjustment, new patch generation, fence and data point group
update are similar to the curve case.

After each knot insertion, the number of the control points will
increase, and so on. When the number of the control points equals
that of the data points, the extended PIA becomes the classical
PIA, which guarantees the convergence of the incremental data
fitting algorithm by the EPIA format (Algorithm 1).

Last but not the least, the EPIA format can be implemented in
parallel totally, thus improving the computational efficiency
greatly.



Fig. 5. The data array for fitting.
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5. Results and discussion

The incremental data fitting algorithm by EPIA format (Algo-
rithm 1) has been implemented in parallel by the parallel

computing toolbox in Matlab, and run on the PC with 3.25 G
memory, and four core 2.83 G core 2 Quad CPU. Some empirical
results are presented in Figs. 2–6.

As stated above, one of the advantages of the data fitting
method by EPIA is that, it can control the fitting precision to each
data point individually. For example, we can let the fitting curve
interpolate a specified data point Pj. To this end, the specified
data point should be taken as an initial control point C0

i , and its
corresponding data point group Gi should contain just the data
point Pj itself. Fig. 2 shows such an example, where a cubic
B-spline curve with 13 control points is employed to fit 43 data
points, and the data point in blue is selected to interpolate.
Fig. 2(a) is the initial control points and initial curve, where the
fitting precision to the data point in blue is 0.1265. After 10
iterations, the fitting precision to the blue point improves to
0.0097 (Fig. 2(b)).

As another advantage of the incremental data fitting algorithm
by the EPIA format, the new fitting procedure can start from the
last fitting result after knot adjustment. Fig. 3(a) is a data point
sequence with 269 points, which are extracted from a font image.
Fig. 3(b) is the initial control polygon (with 37 control points) and
initial cubic B-spline curve generated by the method developed in
Section 4. After 15 iterations (Fig. 3(c)), a new knot is inserted in
Fig. 3. The incremental data fitting method by the EPIA format starts the new fitting pro

and the control polygon is in blue. (a) The data points. (b) Initial curve. (c) After 15 itera

final fitting curve after 70 iterations. (For interpretation of the references to color in th

Fig. 4. When Z¼ 0:9 (Eq. (47)), 83 control points are required to satisfy the validation

curve has 92 control points, with fitting precision ed ¼ 0:003494. (a) Initial curve. (b) A
the B-spline curve (Fig. 3(d)). The incremental data fitting algo-
rithm by EPIA starts the new fitting procedure just from the
refined B-spline curve (Fig. 3(d)) after knot adjustment. However,
if we employ the least square fitting technique here, the new
fitting procedure should start from scratch, re-fitting all of the
data points by solving a linear system. Fig. 3(e) and (f) is the
fitting results after 50 and 70 iterations, respectively. Fig. 3(g) is
the final fitting curve with 66 control points after 70 iterations.

Figs. 3 and 4 compare the effects of the threshold Z (47) in the
validation check (see Section 4). In Fig. 3, Z¼ 0:6, and the number
of the initial control points is 37 (Fig. 3(b)). After 70 iterations, the
fitting cubic B-spline curve has 66 control points, with fitting
precision ed ¼ 0:003501 (Fig. 3(f)). In Fig. 4, Z¼ 0:9, and the
cedure from the last fitting result after knot adjustment. The fitting curve is in red,

tions. (d) After knot insertion. (e) After 50 iterations. (f) After 70 iterations. (g) The

is figure legend, the reader is referred to the web version of this article.)

condition, with initial fitting precision ed ¼ 0:07398. After 40 iterations, the fitting

fter 10 iterations. (c) After 20 iterations. (d) After 40 iterations.



Fig. 6. Fit a data array (Fig. 5) by the incremental data fitting algorithm by EPIA (Algorithm 1), and the method in Ref. [27], respectively. (a) The initial patch of EPIA. (b) The

patch after 100 iterations of EPIA. (c) Zebra on the patch in (b). (d) The initial patch of the method in Ref. [27]. (e) The patch after 100 iterations of the method in [27]

(f) Zebra on the patch in (e).

Table 1
The empirical data on the examples in Figs. 3 and 4.

Z¼ 0:6 (Fig. 3) Z¼ 0:9 (Fig. 4)

#ite. #control points ed #ite. #control points ed

0 37 0.074793 0 83 0.073984

15 42 0.016525 10 85 0.014109

50 59 0.005326 20 87 0.009085

70 66 0.003501 40 92 0.003494

#ite.: the iteration times.

#control points.: the number of the control points.

ed: the fitting precision (25).

Table 2
The empirical data on the example in Fig. 6.

Method Initial patch After 100 iterations Time

#ctrl ed #ctrl ed

EPIA 31�66 0.053347 68�90 0.002576 4.6903

Method in [27] 20�31 0.021707 87�67 0.002743 10.7226

#ctrl: the number of the control points.

ed: the fitting precision (25).

time: the time cost by 100 iterations, in seconds.

Table 3
The bounding boxes of the models in Figs. 2–6.

Model Bounding box

Model in Fig. 2 ½1:5786,6:3836� � ½1:0252,8:8742�

g-Model in Figs. 3 and 4 ½0:1313,0:9454� � ½0:0786,0:9172�

Model in Fig. 6 ½0:0129,0:6164� � ½0:0048,0:6983� � ½0:0382,0:9587�
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number of the initial control points is 83 (Fig. 4(a)). After 40
iterations, the cubic B-spline curve has 92 control points, with
fitting precision ed ¼ 0:003494 (Fig. 4(d)). It shows that, the larger
the Z is, the more control points are required to satisfy the
validation condition (47), and the generated initial curve is more
faithful to the shape of the data point sequence. The empirical
data on the examples in Figs. 3 and 4 are listed in Table 1.

Fig. 6 presents an example where the data array with
121�161 data points (Fig. 5) is fitted by the incremental data
fitting algorithm by EPIA (Algorithm 1) and the method presented
in Ref. [27], respectively. With the EPIA method, the initial
bi-cubic B-spline patch (Fig. 6(a)) has 31�66 control points, with
fitting precision ed ¼ 0:053347. After 100 iterations, the number
of the control points increases to 68�90, and the fitting precision
improves to ed ¼ 0:002576 (Fig. 6(b)). With the method in Ref.
[27], the initial bi-cubic B-spline patch (Fig. 6(c)) has 20� 31
control points, with fitting precision ed ¼ 0:021707. After 100
iterations, the number of the control points increases to 87�67,
and the fitting precision improves to ed ¼ 0:002743. Note that,
with the EPIA method, the control points of the initial B-spline
patch (Fig. 6(a)) are directly chosen from the original data points,
while with the method in Ref. [27], the initial patch (Fig. 6(c)) is
generated by the least square fitting, so the fitting precision of
patch in Fig. 6(c) is less than that of the patch in Fig. 6(a). For
comparison of the patch quality, the zebra on the two patches
generated by the two methods are illustrated in Fig. 6(e) and (f),
respectively. Moreover, the empirical data of this example are
summarized in Table 2. It should be pointed out that, the time
cost by the EPIA method can be made faster, if more parallel tasks
can be invoked.

Finally, to measure the fitting precision, we list in Table 3 the
bounding boxes of the three data models in Figs. 2–6.
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6. Conclusion

In this paper, we develop an extended progressive-iteration
approximation format (EPIA), where the number of the control
points is less than that of the data points, and show its convergence.
Moreover, we propose an incremental data fitting algorithm by the
extended PIA format. The EPIA format performs iteratively by foot
point computation, difference vector construction, and new control
point generation, till the fitting precision is reached. Since the
number of control points is less than that of the data points in
the EPIA, it is possible to fit the large scale data points. Furthermore,
the three main operations in each iteration of EPIA are all indepen-
dent itself, so they can be carried out in parallel, thus improving the
computational efficiency greatly. Additionally, the storage require-
ment of EPIA deceases from Oðn2Þ to O(n), where n is the number of
the control points. By the EPIA format, the incremental data fitting
algorithm can control the fitting precision to each data point
individually, and the new data fitting procedure can start from the
last fitting result after knot adjustment. Moreover, after getting the
parameters of the unorganized point set, the EPIA method can be
employed to fit the unorganized points after minor modifications.
Finally, some examples are illustrated in this paper, which are all
implemented by the parallel computing toolbox in Matlab, and run on
a PC with a four-core CPU.
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