
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Computer-Aided Design 39 (2007) 1134–1142
www.elsevier.com/locate/cad

Adaptive patch-based mesh fitting for reverse engineering

Hongwei Lin∗, Wei Chen, Hujun Bao

State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310027, China

Received 13 May 2007; accepted 1 October 2007

Abstract

In this paper, we propose a novel adaptive mesh fitting algorithm that fits a triangular model with G1 smoothly stitching bi-quintic Bézier
patches. Our algorithm first segments the input mesh into a set of quadrilateral patches, whose boundaries form a quadrangle mesh. For each
boundary of each quadrilateral patch, we construct a normal curve and a boundary-fitting curve, which fit the normal and position of its boundary
vertices respectively. By interpolating the normal and boundary-fitting curves of each quadrilateral patch with a Bézier patch, an initial G1

smoothly stitching Bézier patches is generated. We perform this patch-based fitting scheme in an adaptive fashion by recursively subdividing the
underlying quadrilateral into four sub-patches. The experimental results show that our algorithm achieves precision-ensured Bézier patches with
G1 continuity and meets the requirements of reverse engineering.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Reverse engineering; Adaptive fitting; Fitting error; G1 continuity; Bézier patch; Triangular mesh

1. Introduction

In reverse engineering, the reconstructed triangular mesh
from a point cloud contains many vertices and needs to be
fitted with a smooth surface, e.g., smooth parametric patches.
The triangular mesh is first segmented into a sequence of
quadrilateral patches (see Fig. 1(a)), each of which is a
triangular mesh with four boundaries. A set of Bézier (B-
spline) patches are then built to fit the mesh vertices of these
quadrilateral patches with two requirements, i.e., the fitting
error of each patch and the G1 continuity between each pair
of neighboring patches. Satisfying these two requirements
simultaneously can be achieved with an adaptive fitting scheme.
That is, if the fitting error of one Bézier (B-spline) patch is
beyond a given tolerance, its corresponding quadrilateral patch
must be subdivided into four patches, which are further fitted
with four smoothly stitched Bézier (B-spline) patches. This
procedure proceeds until the fitting error of each Bézier (B-
spline) patch reaches a given tolerance.

The continuous stitching problem among neighboring
patches arises in interpolating a quadrangle curve mesh (see

∗ Corresponding author. Tel.: +86 571 88206681x518; fax: +86 571
88206680.

E-mail address: hwlin@cad.zju.edu.cn (H. Lin).

Fig. 1(b)) with parametric patches. Normally, the quadrangle
curve mesh is manually generated by users, for instance, during
designing a car body or ship hull. It consists of a set of
smooth curves, and has fewer vertices than the reconstructed
triangular mesh in reverse engineering. Here, the Bézier (B-
spline) patches that interpolate these smooth curves are only
required to be G1 continuously stitched. Adaptive fitting is
unnecessary in this case. Therefore, we will present the related
work in Section 1.1 mainly on the continuity problem.

In fact, there has been much work which cares about the
fitting error, but results in surfaces with weak continuity. For
instance, Milroy et al. [1] proposed a B-spline surface fitting
approach that leads to an uncomfortable visual appearance
due to the lack of smoothness. Eck and Hoppe [2] developed
an automatic method for fitting irregular meshes using bi-
cubic Bézier patches. Its resulting surface has ε–G1 continuity.
Although the algorithm proposed by Krishnamurthy and
Levoy [3] can fit B-spline surfaces with arbitrary topology,
there is little discussion on the continuity of the resulting B-
spline surfaces. Shi and Wang [4] introduced a local scheme for
constructing convergent G1 (not true G1) smooth bi-cubic B-
spline patches with interior single knots over a given arbitrary
quadrangular partition of a polygonal model. Note that all
these methods are incapable of adaptive fitting, and their fitting
error cannot be guaranteed. However, in reverse engineering,

0010-4485/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2007.10.002



Author's personal copy

H. Lin et al. / Computer-Aided Design 39 (2007) 1134–1142 1135

precision-ensured fitting is important to the downstream CAD
applications.

Till now, all work with adaptive fitting capability either
makes use of triangular Bézier–Bernstein patches [5,6], or
employs T-spline surfaces [7]. Whereas the quadrilateral Bézier
patch is more preferred because it satisfies the NURBS
standard, and is more popular than the triangular patch and T-
spline in reverse engineering.

In this paper, a new patch-by-patch scheme is proposed
to construct G1 continuously stitching Bézier patches for
the purpose of adaptively fitting the mesh vertices of
the quadrilateral patches with precision-ensured results. We
compute the normal vectors at the mesh vertices of the
triangular mesh by averaging the normal vectors of their
adjacent triangular patches. Along each boundary of each
quadrilateral patch, the normal vectors form a fence which
encloses and separates each quadrilateral patch (see Fig. 1(c)).
This is different from the quadrangle curve mesh (Fig. 1(b)).
We also generate a normal curve for each boundary by fitting
the normal vectors with a quadratic Bézier curve. The normal
curves make it possible to construct G1 continuously stitching
Bézier patches in a patchwise way. The key to the feasibility of
the patch-by-patch scheme lies in that each fitting Bézier patch
interpolates the normal curves on its four boundaries. Thus,
adjacent Bézier patches share the same normal vectors on the
common boundary, and they are tangent plane continuous (that
is, G1 continuous) along the boundary [8].

More importantly, the patch-by-patch scheme makes the
adaptive fitting feasible, because the G1 continuity of the patch
stitching on the T-conjunctions which are caused by recursive
subdivision, can be achieved by interpolating the normal curve
on each boundary of every sub-quadrilateral patch. Surely, the
fitting error is improved in an adaptive fashion.

The rest of this paper is organized as follows. In Section 1.1,
we briefly review the related work. The overview of our
approach is presented in Section 2. In Section 3, we introduce
how to construct the normal curve mesh and boundary-fitting
curve mesh. We present our patch-by-patch scheme, and show
how to construct initial Bézier patches over the quadrilateral
patches in Section 4. The adaptive fitting approach is described
in Section 5. The experimental results are given in Section 6.
Finally, we conclude the whole paper in Section 7.

1.1. Related work

Here, we briefly review the related work on interpolating a
quadrangle curve mesh using G1 smoothly stitching parametric
patches. In general, these methods pay more attention on
continuously stitching, and neglect the capability of ensuring
the fitting error. They can be roughly classified into two
categories according to the patch type: Bézier patch and B-
spline patch.

One pioneering work using Bézier patch was proposed
by van Wijk [9] for generating a smooth surface over a
non-rectangular mesh with bi-cubic patches. Shirman and
Séquin [10,11] employed five bi-cubic patches to interpolate
each quadrilateral in a mesh of cubic curves. Peters [12]

Fig. 1. (a) A triangular mesh is segmented into a set of quadrilateral patches.
(b) The quadrangle curve mesh formed by the boundaries of the quadrilateral
patches. (c) The normal curves enclose and separate all quadrilateral patches
like a fence.

proposed a local ε–G1 continuity scheme, to construct a
smooth spline surface using bi-quadratic and bi-cubic Bézier
patches. Later, Peters [13] constructed a G1 smooth bi-quartic
Bézier surface over a refined network of quadrilateral sub-
cells generated by the midpoint mesh refinement technique.
By subdividing each Bézier patch into nine small patches,
Ma and Peng [14] obtained a G1 smooth surface. Reif [15]
generated G1 smooth surfaces using bi-quadratic rectangular
Bézier patches over semi-regular meshes. Ye and Nowacki [16]
employed G1 smooth bi-quintic Bézier patches to interpolate
rectangular cubic curve meshes. Ye [17] also extended this
method for constructing G2 Bézier surfaces by interpolating a
given G2 quintic curve meshes.

In terms of B-spline patches, Peters [18] constructed G1

smooth bi-cubic B-spline patches with interior double knots
generated by Catmull-Clark subdivision. Shi and Wang [19]
developed a local processing scheme for constructing G1

smooth bi-cubic B-spline surfaces with at least two pairs of
interior double knots. Further, Shi et al. [20] improved this
method to construct G1 smooth bi-quartic B-spline patches
with one pair of interior double knots. More recently, Shi et al.
[21] proposed to constructs G1 smooth B-spline surfaces with
single interior knots over arbitrary topology. Another work by
Kruth and Kerstens [22] incorporates positional, tangential or
curvature continuity conditions with non-uniform rational B-
splines in the CAD modeling of free-form surfaces.

2. Overview

Suppose that there is an oriented triangular mesh M . The
normal vector at each vertex is computed by normalizing
the average of the normal vectors of its adjacent triangular
faces. The triangular mesh M is segmented into a set of
quadrilateral patches, which are triangular mesh patches with
four boundaries (Fig. 2(a)). The boundaries of all patches
compose a quadrangle curve mesh Q (see Fig. 1(b)).

The adaptive mesh fitting approach includes the following
steps:

1. Fit the normal vectors at the mesh vertices on each boundary
of the quadrangle curve mesh Q with a quadratic Bézier
curve, called a normal curve (see Fig. 2(b)).

2. Fit the mesh vertices on each boundary of the quadrangle
curve mesh Q with a quintic Bézier curve, called a



Author's personal copy

1136 H. Lin et al. / Computer-Aided Design 39 (2007) 1134–1142

Fig. 2. (a) The quadrilateral patches. (b) The normal curve mesh. (c) The boundary-fitting curve mesh. (d) The initial G1 continuously stitched Bézier patches that
fit the quadrilateral patches of (a). (e) The final curve mesh with the adaptive fitting scheme. (f) The final result with the given fitting precision 2.1 × 104.

boundary-fitting curve, which is perpendicular to the normal
curve on the boundary (see Fig. 2(c)).

3. Fit each quadrilateral patch with a bi-quintic Bézier patch
in a patchwise fashion, by interpolating the boundary-fitting
curves and the normal curves on four boundaries. Adjacent
Bézier patches have the same normal vectors on their
common boundary, and they are G1 continuity along the
boundary [8] (Fig. 2(d)).

4. Perform fitting adaptively till the fitting error is below a
given tolerance. That is, if the fitting error of one Bézier
patch is larger than the given tolerance, the corresponding
quadrilateral patch is subdivided into four quadrilateral
patches. A set of new normal curves and boundary-fitting
curves are computed on the newly generated boundaries and
the fitting is carried out on the new quadrilateral patches
recursively (Fig. 2(e) and (f)).

The procedure of the adaptive mesh fitting is illustrated
in Fig. 2. Fig. 2(a) depicts the quadrilateral patches, whose
boundaries form the quadrangle curve mesh Q. Fig. 2(b) shows
the normal curve mesh. For the purposes of display, each
normal curve is sampled into a list of normal vectors, and placed
on the corresponding boundary. Fig. 2(c) shows the boundary-
fitting curve mesh. The initial G1 continuously stitching Bézier
patches after the first fitting is shown in Fig. 2(d). After
recursively fitting, we get a complete curve mesh (Fig. 2(e)),
and G1 smoothly stitching Bézier patches (Fig. 2(f)) with the
fitting error 2.1 × 10−4.

It should be pointed out that mesh fitting requires to
segment the mesh into pure quadrilateral patches, whose
boundaries should pass the feature edges. This is indeed
a strict requirement. Although recent advances [23] make
it amenable to segment the mesh into pure quadrilateral

patches, the boundaries of the resultant patches fail to pass
the feature edges. For more details on segmentation, please
refer to [23]. Our method is semi-automatic and yields the
desirable segmentation. It produces a boundary between two
user-selected corners, and the boundary passes the feature edges
while making the total length as short as possible.

3. The normal and boundary-fitting curves

The boundaries of the quadrilateral patches segmented from
M compose a quadrangle curve mesh Q. Each boundary of Q
links two corners p0 and pm of Q. We denote the normalized
normal vectors at p0 and pm as n0 and nm . Suppose the
boundary consists of a list of vertices {p0, p1, . . . , pm}, which
have been parameterized with the normalized accumulated
chord length method, i.e., the parameter of p0 is 0, and the
parameter of pm is 1.0. The corresponding normalized normal
vectors are denoted as {n0, n1, . . . , nm}.

3.1. The construction of the normal curve

We fit the normalized normal vectors along each boundary
with a quadratic Bézier curve N(t) =

∑2
i=0 Ni B2

i (t), t ∈

[0, 1]. The resultant normal curve has three control vectors, N0,
N1, and N2, which can be solved by:

min
m∑

j=0

∥∥∥∥∥ 2∑
i=0

Ni B2
i (t j ) − n j

∥∥∥∥∥
2

, (1)

with two additional linear constraints:

(1.1) The curve interpolates n0 and nm at its two corners, so
that N0 = n0, and N2 = nm .



Author's personal copy

H. Lin et al. / Computer-Aided Design 39 (2007) 1134–1142 1137

(1.2) Three control vectors N0, N1, and N2 are linear
independent, namely, the 3 × 3 determinant formed by
them is nonzero.

When n0 and nm are colinear, the constraint (1.2) no longer
holds. In this case, we make a slight disturbance to one of them.

Note that the normal curve can be constructed in a piecewise
way. In addition, the degree of the normal curve influences the
degree of the boundary-fitting curve presented in Section 3.2.
The lower the degree of the normal curve is, the lower that of
the boundary-fitting curve.

3.2. The construction of the boundary-fitting curve

The boundary-fitting curve, C(t) =
∑5

i=0 Ci B5
i (t), is

constructed after computing the normal curve mesh, by fitting
the mesh vertices on each boundary of Q, with the following
least-square optimization:

min
m∑

j=0

∥∥∥∥∥ 5∑
i=0

Ci B5
i (t j ) − p j

∥∥∥∥∥
2

. (2)

Besides, there are three additional linear constraints:

(2.1) The curve interpolates the two corners of the boundary.
(2.2) The curve is perpendicular to the normal curve on the

boundary.
(2.3) The twist constraint at corners (also called twist

compatibility conditions).

The constraint (2.2) means that the dot product between the
normal curve and the derivative of the boundary-fitting curve
equals zero:

N(t) · C′(t) =

6∑
k=0

5B6
k (t)(
6
k

) ∑
i+ j=k

(
4
i

) (
2
j

)
(Ci+1 − Ci )

· N j = 0, t ∈ [0, 1]. (3)

Here,
(

i
j

)
is the coefficient of the binomial. Due to the linear

independence of the Bernstein basis, it is identical to:∑
i+ j=k

(
4
i

) (
2
j

)
(Ci+1 − Ci ) · N j = 0, k = 0, 1, . . . , 6. (4)

The twist constraint (2.3) is introduced to solve the vertex
enclosure problem [24] which will lead to the tangent constraint
and the twist constraint. Because the tangent constraint is
contained in the constraint (2.2) (see Eq. (4)), we only need
to handle the twist constraint. We will explain the derivation of
the twist constraint in Section 4.2. For more details for the twist
vector, please refer to ([25], pp. 247–248).

The twist constraint is given at each corner of Q. All corners
fall into two categories: the open corners and the closed corners.
The former lies on the border of Q, and the latter lies inside the
mesh. As illustrated in Fig. 3(a), the closed corner C is adjacent
to n pieces of normal curves and n pieces of boundary-fitting
curves. Suppose {Ni

1, Ci
1, i = 0, 1, . . . , n − 1} are the control

points of the normal and boundary-fitting curves respectively,

Fig. 3. (a) A closed corner C . (b) An open corner O .

and are the nearest ones to C. Then, the twist constraint at the
closed corner C is defined as:

(Ci
1 − C) · N(i+1)mod n

1 = (C(i+1)mod n
1 − C) · Ni

1,

i = 0, 1, . . . , n − 1, (5)

where ((i + 1) mod n) means the result of (i + 1) modulo n.
There are n equations in Eq. (5), each of which corresponds
to one angle formed by consecutive boundary-fitting curves.
Likewise, at the open corner O, which is adjacent to n pieces
of normal curves and n pieces of boundary-fitting curves, the
twist constraint contains n − 1 equations (Fig. 3(b)):

(Ci
1 − O) · Ni+1

1 = (Ci+1
1 − O) · Ni

1, i = 0, 1, . . . , n − 2.

(6)

The twist constraint (5) or (6) makes the consecutive
boundary-fitting curves correlative, and hence the boundary-
fitting curve mesh has to be constructed globally. If the fitting
error of the boundary-fitting curves is large or beyond a pre-
defined threshold, the quadrangle mesh should be subdivided.
The boundaries of the new quadrangle mesh are fitted again to
improve the fitting error. Another way to improve the fitting
error is to raise the degrees of the normal curve and the
boundary-fitting curve.

It is well known that a linear system of equations is
consistent if and only if both of its coefficient matrix and its
augment matrix have the same rank. Suppose the quadrangle
mesh Q has l pieces of boundaries, we will show in Appendix A
that the coefficient matrix of the linear system which contains l
groups of (2.1)–(2.3) is of full rank.

3.3. The initial values

To compute the boundary-fitting curve, appropriate initial
values are required for the least square fitting with the linear
constraints. We first fit the mesh vertices at each boundary using
a quintic Bézier curve, solely with constraint (2.1). The control
points of the fitted curve are employed as the initial values to
solve the fitting problems with the linear constraints (2.1)–(2.3).
With this scheme, reasonable boundary fitting curves can be
easily computed as shown in Fig. 4. However, in the case
that the initial values violate the constraints, the constrained
optimization problem (2) is solved directly without the initial
values.

4. Patch-by-patch fitting

Before performing the fitting, the vertices of each quadri-
lateral patch {pi j } are parameterized by the parameterization



Author's personal copy

1138 H. Lin et al. / Computer-Aided Design 39 (2007) 1134–1142

Fig. 4. (a) The curve mesh computed by solving the least square fitting
problem (2) with the constraint (2.1). (b) The boundary fitting-curve mesh
computed by using the control points of (a) as the initial values.

Fig. 5. With the pair-by-pair scheme, the control points of two adjacent Bézier
patches must be determined simultaneously.

Fig. 6. With our patch-by-patch approach, Bézier patches can be constructed
individually, each of which interpolates a shared boundary-fitting curve and
normal curve.

method proposed in [26], which produces two groups of nearly
orthogonal iso-parameter lines.

4.1. The patch-by-patch scheme

To construct G1 smoothly stitching Bézier (B-spline)
patches over a quadrangle curve mesh, previous methods
determine the control points of two adjacent Bézier (B-spline)
patches simultaneously (Fig. 5). This is because traditional
G1 continuous condition between Bézier (B-spline) patches is
developed in a pairwise way. We call this way a pair-by-pair
scheme.

Note that two adjacent smooth patches are G1 continuous, or
equivalently, tangent plane continuous, if and only if they have
the same boundary curve, and the same normal vectors on the
boundary [8]. In other words, if two smooth patches interpolate
both the same boundary curve and the same normal vector
curve, they are G1 continuous along the common boundary (see
Fig. 6). Based on this investigation, we propose a new patch-
by-patch scheme for constructing G1 smoothly stitching Bézier
patches. Our key idea is to individually construct a Bézier patch

Fig. 7. Sketch of a quadrilateral patch and the normal curves and boundary-
fitting curves on its four boundaries.

which interpolates both the boundary-fitting curves and the
normal curves on its four boundaries. Because two adjacent
Bézier patches have the same normal vectors along their
common boundary, they are G1 continuous along the boundary.

4.2. Patch-based fitting

Suppose we have four normal curves and four boundary-
fitting curves on the four boundaries of the quadrilateral patch
Q0, as illustrated in Fig. 7:

Nk(t) =

2∑
i=0

Nk
i B2

i (t),

Ck(t) =

5∑
i=0

Ck
i B5

i (t), k = 0, 1, 2, 3, t ∈ [0, 1].

(7)

We construct a bi-quintic Bézier patch over the quadrilateral
patch Q0 = {pi j }:

P0(u, v) =

5∑
i=0

5∑
j=0

Pi j B5
i (u)B5

j (v), (8)

by solving a least square fitting problem:

min
∑

i j

∥∥P0(ui , v j ) − pi j
∥∥2

, (9)

with the following linear constraints:

(3.1) The patch interpolates four boundary fitting curves.
(3.2) The patch interpolates four normal curves.

To satisfy the constraint (3.1), we only need to set the control
points of four boundary-fitting curves to be the corresponding
boundary control points of P0.

However, it is not straightforward to meet the constraint
(3.2). Remember that the boundary- fitting curve, e.g., C0(u)

in Fig. 7, is perpendicular to the normal curve, e.g., N0(u). This
means that the dot product between the u-directional partial-
derivative vector curve at the top boundary {v = 0, 0 ≤

u ≤ 1} and the normal curve N0(u) equals zero. According to
the constraint (3.2), the dot product between the v-directional
partial-derivative vector curve at the top boundary and the
normal curve N0(u) should be zero too. Based on the linear
independence of the Bernstein basis, it yields:∑
i+ j=k

(
5
i

) (
2
j

)
(Pi1 − Pi0) · N0

j = 0, k = 1, 2, . . . , 6. (10)



Author's personal copy

H. Lin et al. / Computer-Aided Design 39 (2007) 1134–1142 1139

Similarly, we have:

∑
i+ j=k

(
5
i

) (
2
j

)
(Pi5 − Pi4) · N2

j = 0, k = 1, 2, . . . , 6; (11)

∑
i+ j=k

(
5
i

) (
2
j

)
(P1i − P0i ) · N3

j = 0, k = 1, 2, . . . , 6; (12)

∑
i+ j=k

(
5
i

) (
2
j

)
(P5i − P4i ) · N1

j = 0, k = 1, 2, . . . , 6. (13)

To deduce the twist constraint (2.3) introduced in
Section 3.2, we let k = 1 in Eqs. (10) and (12), yielding:

5(P11 − P10) · N0
0 + 2(P01 − P00) · N0

1 = 0,

and 5(P11 − P01) · N3
0 + 2(P10 − P00) · N3

1 = 0. (14)

According to the constraint (3.1), the boundary control
vectors P00, P10, and P01 are known. Two equations in (14)
have the same unknown twist vector P11 and have the same
coefficients 5N0

0 = 5N3
0 (see Fig. 7). Because these two

equations belong to a linear system, their constant items must
be identical to make the linear system compatible, resulting in:

2(P01 − P00) · N0
1 − 5P10 · N0

0

= 2(P10 − P00) · N3
1 − 5P01 · N3

0. (15)

Note that (P10−P00) · N0
0 = (P01−P00) · N3

0 = 0. By adding
5P00 · N0

0 and 5P00 · N3
0 to both sides of Eq. (15), it becomes:

(P01 − P00) · N0
1 = (P10 − P00) · N3

1. (16)

Eq. (16) implies that two equations in (14) are identical.
Thus we only keep one of them in the linear constraint system.
As illustrated in Fig. 7, Eq. (16) corresponds to the angle
formed by the boundary fitting curves C0(u) and C3(v). By
constructing equations corresponding to other angles adjacent
to P00 in a similar way, we can get the twist constraint (2.3) at
P00, as described in Section 3.2 (see Fig. 3 and Eqs. (5) and
(6)).

There are four pairs of identical equations in Eqs. (10)–(13)
for the twist constraint (2.3), that is, Eq. (10) with k = 1 and
Eq. (12) with k = 1, Eq. (10) with k = 6 and Eq. (13) with
k = 1, Eq. (11) with k = 1 and Eq. (12) with k = 6, and
Eq. (11) with k = 6 and Eq. (13) with k = 6. In each pair,
only one equation is kept in the linear constraint system (3.2).
In Appendix B, we will show that the coefficient matrix for the
linear constraint system (3.1) and (3.2) is of full rank, and the
linear system is compatible.

As stated in Section 3.3, the initial values are important to
solve the least square fitting problem with the linear constraints.
By solving the fitting problem (9) with the sole constraint (3.1),
we get a bi-quintic patch. The control points of the patch are
taken as the initial value. However, if the initial value violates
the constraints, it is discarded. The fitting problem (9) is solved
directly without the initial value.

Fig. 8. (a). The bi-quintic Bézier patch P associated with the quadrilateral
patch T . (b) T is subdivided into four patches. Ni and Ci , i = 0, 1, 2, 3, are the
normal and boundary-fitting curves, respectively.

5. Adaptive fitting

In reverse engineering, the fitting error is of essential
importance. Normally, fitting triangular mesh within given
tolerance requires that the fitting method has adaptive fitting
capability. Our patch-by-patch fitting scheme allows us to
perform adaptive fitting till the fitting error of every Bézier
patch meets the tolerance requirement.

Suppose that the fitting error of a bi-quintic Bézier patch
P , associated with a quadrilateral patch T , is larger than the
pre-defined tolerance, as shown in Fig. 8(a). P interpolates
four boundary-fitting curves Ci , i = 0, 1, 2, 3 and four normal
curves Ni , i = 0, 1, 2, 3. To perform adaptive fitting on T ,
we first uniformly subdivide each boundary fitting curve and
each normal curve into four curves with the de Casteljau
algorithm [27]. It is apparent that each new boundary fitting
curve is orthogonal to the corresponding new normal curve,
because only the algebraic representation is changed, without
touching their geometric positions.

We denote the middle points of four boundary fitting curves
Ci as Vi , and the middle points of four normal curves Ni as
Ni (i = 0, 1, 2, 3) (see Fig. 8(b)). By connecting two pairs of
points, V0 and V2, V1 and V3 with two lines, and projecting
them onto the quadrilateral patch T , we generate two projecting
curves on the patch. The two projecting curves intersect at
the center corner V4 with the normal vector N4, and can be
subdivided into four curves. Meanwhile, they also segment T
into four quadrilateral patches (see Fig. 8(b) and Fig. 2(e)).

Thereafter, the normal curves on the newly generated
four curves are constructed by the algorithm presented in
Section 3.1, by interpolating N0 and N4, N1 and N4, N2 and
N4, N3 and N4, respectively. And the boundary-fitting curves
are constructed with the method introduced in Section 3.2, by
interpolating V0 and V4, V1 and V4, V2 and V4, V3 and V4,
respectively. In addition, four bi-quintic Bézier patches fitting
four new quadrilateral patches are generated individually using
our patch-by-patch scheme. In this way, not only the fitting
error is improved, but also the new generated patches are G1

smoothly stitched.
It should be pointed out that, in the quadrangle mesh,

if one boundary is adjacent to one of its siblings and a
descending quadrilateral patch, the normal curve and boundary-
fitting curve along the boundary must be kept unchanged.
However, if both of its adjacent quadrilateral are subdivided,
the normal curve and boundary-fitting curve would be re-
computed, which improves the fitting error. Accordingly, the



Author's personal copy

1140 H. Lin et al. / Computer-Aided Design 39 (2007) 1134–1142

Fig. 9. (a) The input Tooth model with segmented quadrilateral patches. (b)
The final fitted quadrilateral patches with boundary-fitting curves, where five
quadrilateral patches are subdivided. (c) The fitted Bézier patches from one
view; (d) from another view.

Fig. 10. (a) The input Shoe model and the initial quadrilateral patches. (b) The
fitted Bézier patches. (c) The fitted Bézier patches with boundary-fitting curves.

four adjacent quadrilaterals should be re-fitted for improving
the precision as well.

We perform the adaptive fitting recursively till the fitting
error of every fitting patch achieves the pre-defined tolerance.
Finally, the triangular mesh is fitted with a G1 smooth surface
with the pre-defined fitting error.

6. Results

We have implemented the proposed approach with Visual
C++ 6.0 by C++ and Matlab mixed programming, on a PC with
2.0 GHz CPU and 512 MB memory. That is, C++ program
calls Matlab function lsqlin, which solves the optimization
problem. We have tested several practical examples to validate
the efficiency and effectiveness of our method. It should be

Fig. 11. (a) The input Eight model and the initial quadrilateral patches. (b) The
fitted Bézier patches. (c) The fitted Bézier patches with boundary-fitting curves.

pointed out that the quality of the triangular mesh affects the
fitting result. Higher quality mesh leads to the better fitting
result.

The first example is a Head model shown in Fig. 2.
Beginning from an initial patch subdivision with 20 pieces, our
adaptive fitting approach achieves a G1 continuous surface with
given fitting error. The quadrilateral patches near the nose part
are subdivided into a sequence of small quadrilateral patches.

Other examples are illustrated in Figs. 9–11. In Fig. 9,
the Tooth model is subdivided into 26 pieces of quadrilateral
patches. Because the top of the dataset contains fine details,
five quadrilateral patches are further divided and fitted.
On the other hand, the Shoe and Eight models shown in
Figs. 10 and 11 are smooth, and no subdivision occurs in
the final results. Specifically, the Eight model is topologically
complex with genus 2 and is segmented into 18 pieces of
quadrilateral patches. We summarize the model configuration,
timing statistics and fitting error in Table 1. The fourth and fifth
columns list the patch numbers of the initial segmentation and
the fitting results. The times spent on curve mesh construction
and patch fitting are separately reported in the sixth and seventh
columns. The last column lists the sizes of the bounding box of
all models.

7. Conclusions

In this paper, we propose an adaptive fitting approach for
a triangular mesh with arbitrary topology. We introduce a
new patch-by-patch scheme to construct G1 smoothly stitching
bi-quintic Bézier patches by exploiting the normal curves
and boundary fitting curves along the patch boundaries. This
scheme facilitates the adaptive fitting for the purpose of
improving the fitting error. Consequently, our results are not
only G1 smoothly stitching, but also capable of satisfying the
user-defined fitting error. This capability makes our approach
quite useful for reverse engineering.

Acknowledgements

This work is supported by 973 program of China
(no. 2004CB719400) and NSF of China (nos. 60503057,
60503056).



Author's personal copy

H. Lin et al. / Computer-Aided Design 39 (2007) 1134–1142 1141

Table 1
Experimental configurations and results

Model #Vertices #Face #Input patches #Final patches Curve mesh Patch fitting Fitting error Bounding box (L × W × H )

Head 7579 15092 20 29 2 s 5 s 2.1 × 10−4 0.62 × 0.83 × 1.00
Tooth 7610 15216 26 41 2 s 5 s 5.2 × 10−4 1.00 × 0.81 × 0.98
Shoe 4569 9134 28 28 1 s 3 s 9.5 × 10−5 1.00 × 0.45 × 0.50
Eight 931 1866 18 18 1 s 2 s 1.6 × 10−4 1.00 × 0.48 × 0.20

Appendix A. The consistence of linear constraint system in
boundary-curve fitting

Suppose the quadrangle mesh Q has l pieces of boundaries,
the linear constraint system contains l groups of conditions
(2.1)–(2.3). For simplicity, we integrate each constraint (2.1)
into the corresponding (2.2) and (2.3), yielding the following
coefficient matrix of the linear system:

A1

. . .

Ai

. . .

Al

B1

. . .

Bi

. . .

Bl



, (17)

Here, Ai is a 7 × 12 matrix, and Bi is a 4 × 12 matrix,

Ai
=



Ni
0

Ni
1 − 2Ni

0 2Ni
0

Ni
2 − 8Ni

1 8Ni
1 − 6Ni

0 6Ni
0

−Ni
2 Ni

2 − 3Ni
1 3Ni

1 − Ni
0 Ni

0

−6Ni
2 6Ni

2 − 8Ni
1 8Ni

1 − Ni
0

−2Ni
2 2Ni

2 − Ni
1

−Ni
2


,

Bi
=


Nai

1
E0 E0 E0

−Nbi
1

E0 E0 E0
E0 E0 E0 Nci

1
E0 E0 E0 −Ndi

1

 ,

(18)

where Ni
j = (x i

j , yi
j , zi

j ) (i = 1, 2, . . . , l, j = 0, 1, 2) denotes

the j-th control point of the i-th normal curve, and E0 = (0, 0, 0)

is a null vector.
The matrix (17) can be separated into two sub-matrices. The

top one is quasi-diagonal and corresponds to the constraint
(2.2). Each block Ai is a coefficient matrix for Eq. (4),
where the two end control points are known by integrating
the constraint (2.1). The bottom sub-matrix corresponds to the
constraint (2.3).

Suppose the matrix (17) has k = m + n row vectors {ri , i =

0, 1, . . . , m + n}, of which m vectors belong to the top sub-
matrix, and n vectors lie in the bottom sub-matrix. Suppose that

there are also k {ai , i = 1, 2, . . . , k} real numbers, such that:

k∑
i=1

ai ri =

m∑
i=1

ai ri +

k∑
i=m+1

ai ri = 0. (19)

Because the top sub-matrix is quasi-diagonal, we first
consider its first block, which consists of seven row vectors.
Note that non-zero entries from the fourth column to the ninth
column in the matrix (17) only lie in the first block, or say,
from the second row to the fifth row. Therefore, the system of
Eq. (19) contains the following equations:{

2a2N0
0 + a3(8N0

1 − 6N0
0) + a4(N0

2 − 3N0
1) − 6a5N0

2 = 0,

6a3N0
0 + a4(3N0

1 − N0
0) + a5(6N0

2 − 8N0
1) − 2a6N0

2 = 0.

(20)

It is equivalent to:{
(2a2 − 6a3)N0

0 + (8a3 − 3a4)N0
1 + (a4 − 6a5)N0

2 = 0,

(6a3 − a4)N0
0 + (3a4 − 8a5)N0

1 + (6a5 − 2a6)N0
2 = 0.

(21)

Because the control vectors of the normal curve {N0
0, N0

1, N0
2}

are independent according to the constraint (1.2) in Section 3.1,
the coefficients of Eqs. (21) are all zero. It implies that a2 =

a3 = · · · = a6 = 0.
Similarly, it can be proved that the corresponding

coefficients of other blocks are all zero, that is, a7i+2 = a7i+3 =

· · · = a7i+6 = 0, (i = 1, 2, . . . , l − 1).
The remaining vectors in Eq. (19), and accordingly, the

corresponding entries in the matrix (17), can be re-organized
into a quasi-diagonal matrix by applying an elementary
transformation. Each block corresponds to the constraint (2.3)
at a corner. For example, the block corresponding to the
constraints in Eq. (5) at the corner C (see Fig. 3(a)) is,

N0
N0

. . .

N0
N0

N1
1 −N0

1
N2

1 −N1
1

. . .
. . .

Nn−1
1 −Nn−2

1

−Nn−1
1 N0

1


, (22)

where N0
0 = N1

0 = · · · = Nn−1
0 = N0 are the normal

vectors at the corner C (see Fig. 3(a)). In addition, because



Author's personal copy

1142 H. Lin et al. / Computer-Aided Design 39 (2007) 1134–1142

the control vectors of a normal curve are independent, the set
of vectors {N0, N1

1, Nn−1
1 }, {N0, N0

1, N2
1}, . . . , {N0, Nn−2

1 , N0
1}

are independent. Therefore, the matrix (22) is of full rank.
Similarly, all blocks in the remaining quasi-diagonal matrix are
of full rank, and hence the remaining vectors in Eq. (19) are
independent. This implies that the remaining coefficients of Eq.
(19) are all zero. In conclusion, the coefficients in Eq. (19) are
all zero, and the matrix (17) is of full rank.

Appendix B. The consistence of linear constraint system in
patch fitting

Now we show that the coefficient matrix of the linear
constraint system (3.1) and (3.2) is of full rank. Without loss
of generality, four equations are removed from the system of
equations (10)–(13), that is, Eq. (10) when k = 1, Eq. (11)
when k = 6, Eq. (12) when k = 6, and Eq. (13) when k = 1.

After integrating the constraint (3.1) into (3.2), the boundary
control points of the Bézier patch are known, leading to the
coefficient matrix of the linear system:

A1

B2

B3

A4

 . (23)

Here,

Ai
=


10Ni

1 10Ni
0

Ni
2 4Ni

1 2Ni
0

2Ni
2 4Ni

1 Ni
0

10Ni
2 10Ni

1
5Ni

2

 ,

B j
=


5N j

0
10N j

1 10N j
0

N j
2 4N j

1 2N j
0

2N j
2 4N j

1 N j
0

10N j
2 10N j

1

 ,

i = 0, 3, j = 1, 2.

(24)

And {Ni
0, Ni

1, Ni
2, i = 0, 1, 2, 3} are the control points of four

normal curves on the boundaries of the Bézier patch. The
matrix (23) is also a quasi-diagonal matrix and each block
corresponds to a coefficient matrix of the systems in Eqs. (10)–
(13), respectively.

Because {Ni
0, Ni

1, Ni
2, i = 0, 1, 2, 3} are linear independent,

each block in the matrix (23) is of full rank, and thus the matrix
(23) is of full rank.

References

[1] Milroy MJ, Bradley C, Vickera GW, Weir DJ. G1 continuity of B-spline
surface patches in reverse engineering. Computer Aided Design 1995;27:
471–8.

[2] Eck M, Hoppe H. Automatic reconstruction of B-spline surfaces of
arbitrary topological type. In: ACM Computer Graphics, SIGGRAPH.

1996. p. 325–34.
[3] Krishnamurthy V, Levoy M. Fitting smooth surfaces to dense polygon

meshes. In: ACM Computer Graphics, SIGGRAPH. 1996. p. 313–24.
[4] Shi X, Wang T, Wu P, Liu F. Reconstruction of convergent G1 smooth

B-spline surfaces. Computer Aided Geometric Design 2004;21:893–913.
[5] Gonzalez-Ochoa C, Peters J. Localized-hierarchy surface splines (LeSS).

In: Proceedings of the 1999 Symposium on Interactive 3D Graphics.
Atlanta (Georgia, United States): ACM Press; 1999. p. 7–15.

[6] Alex Y, Stefanie H, Georges-Pierre B. Smooth adaptive fitting of 3D
models using hierarchical triangular splines. In: International conference
on shape modeling and applications. MIT Boston: IEEE Computer
Society Press; 2005. p. 13–22.

[7] Sederberg TW, Cardon DL, Finnigan GT, North NS, Zheng J, Lyche T. T-
spline simplification and local refinement. ACM Transactions on Graphics
2004;23:276–83.

[8] Farin G. Curves and surfaces for computer aided geometric design. 4th
ed. San Diego: Academic Press; 2000. p. 308.

[9] van Wijk J. Bicubic patches for approximating non-rectangular control-
point meshes. Computer Aided Geometric Design 1986;3:1–13.

[10] Shirman L, Séquin C. Local surface interpolation with Bézier patches.
Computer Aided Geometric Design 1987;4:279–95.

[11] Shirman L, Séquin C. Local surface interpolation with Bézier patches:
Errata and improvements. Computer Aided Geometric Design 1991;8:
217–22.

[12] Peter J. Constructing C1 surface of arbitrary topology using biquadratic
and bicubic aplines. In: Sapidis N, editor. Designing fair curves and
surfaces. SIAM; 1994. p. 277–93.

[13] Peter J. Biquartic C1-surface splines over irregular meshes. Computer-
Aided Design 1995;27:895–903.

[14] Ma L, Peng Q. Smoothing of free-form surfaces with Bézier patches.
Computer Aided Geometric Design 1995;12:231–49.

[15] Reif U. Biquadratic G-spline surfaces. Computer Aided Geometric
Design 1995;12:193–205.

[16] Ye X, Nowacki H. G1 interpolation of rectangular cubic curve meshes
using biquintic Bézier patches. In: Mullineux G, editor. The sixth IMA
conference on mathematics of surfaces. UK, Brunel University: Oxford
University Press; 1994. p. 429–52.

[17] Ye X. Curvature continuous interpolation of curve meshes. Computer
Aided Geometric Design 1997;14:169–90.

[18] Peter J. Patching Catmull–Clark meshes. In: ACM Computer Graphics,
SIGGRAPH. 2000. p. 255–8.

[19] Shi X, Wang T. G1 continuous conditions of bicubic B-spline surfaces
with interior double knots. Raindrop geomagic research report, also
appeared in NSF SBIR Phase II Project ‘Automation creation of
NURBS patches from triangulated surface’ (Award# 9901627), Report 4,
Appendix 2. 2001.

[20] Shi X, Yu P, Wang T. G1 continuity conditions of biquartic B-spline
surfaces. Journal of Computational and Applied Mathematics 2002;144:
251–62.

[21] Shi X, Wang T, Yu P. A practical construction of G1 smooth bi-quintic
B-spline surfaces over arbitrary topology. Computer-Aided Design 2004;
34:413–24.

[22] Kruth J-P, Kerstens A. Reverse engineering modelling of free-form
surfaces from point clouds subject to boundary conditions. Journal of
Materials Processing Technology 1998;76:120–7.

[23] Dong S, Bremer P-T, Garland M, Pascucci V, Hart JC. Spectral surface
quadrangulation. ACM Transactions on Graphics 2006;25:1057–66.

[24] Peters J. Smooth interpolation of a mesh of curves. Constructive
Approximation 1991;7:221–46.

[25] Farin G. Curves and surfaces for computer aided geometric design, a
practical guide. Academic Press; 1997.

[26] Lin H, Wang G, Liu L, Bao H. Parameterization for fitting triangular mesh.
Progress in Natural Science 2006;16:1214–21.

[27] Lane JM, Reisenfeld RF. A theoretical development for the computer
generation and display of piecewise polynomial surface. IEEE
Transactions on Pattern Analysis and Machine Intelligence 1980;2:35–46.


