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Gregory Solid Construction for Polyhedral Volume

Parameterization by Sparse Optimization

HU Chuan-feng1 LIN Hong-wei1,2,∗

Abstract. In isogeometric analysis, it is frequently required to handle the geometric models

enclosed by four-sided or non-four-sided boundary patches, such as trimmed surfaces. In this

paper, we develop a Gregory solid based method to parameterize those models. First, we ex-

tend the Gregory patch representation to the trivariate Gregory solid representation. Second,

the trivariate Gregory solid representation is employed to interpolate the boundary patches of a

geometric model, thus generating the polyhedral volume parametrization. To improve the regu-

larity of the polyhedral volume parametrization, we formulate the construction of the trivariate

Gregory solid as a sparse optimization problem, where the optimization objective function is a

linear combination of some terms, including a sparse term aiming to reduce the negative Jaco-

bian area of the Gregory solid. Then, the alternating direction method of multipliers (ADMM)

is used to solve the sparse optimization problem. Lots of experimental examples illustrated in

this paper demonstrate the effectiveness and efficiency of the developed method.

§1 Introduction

Isogeometric analysis [1] is an important numerical analysis technique that offers the possibil-

ity of integrating computer aided design (CAD) and finite element analysis. While isogeometric

analysis requires volumetric representations in some cases, CAD models are usually defined by

boundary representations. Therefore, to handle the CAD models defined by boundary rep-

resentations, they should be transformed into trivariate volumetric representations. However,

the transformation of boundary representations into volumetric representations is not trivial,

especially when the boundary patches are non-four-sided, (e.g. trimmed surfaces), and the

boundary representation model is homeomorphic to a polyhedron, other than hexahedron.
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In this paper, we develop a Gregory solid based method to construct the polyhedral volume

parametrization of CAD models enclosed by boundary patches, four-sided or non-four-sided.

Firstly, the polyhedral parametric domain of the CAD model is constructed, and then split

into several hexahedral sub-domains. Secondly, a trivariate Gregory solid mapping from the

polyhedral parametric domain to the CAD model is developed to interpolate the boundary

patches of the CAD model, thus producing the polyhedral volume parametrization of the CAD

model. It is well known that, the volume parametrization that is valid for the isogeometric

analysis cannot contain self-intersections or folds, i.e., the mapping should be regular. If the

Jacobian [2] of the mapping does not change sign, it is regular. In this paper, the regularity of the

Gregory solid mapping is improved by solving a sparse optimization problem which minimizes

the negative Jocabian area of the Gregory solid. Finally, the alternating direction method of

multipliers [3] (ADMM) method is employed to solve the sparse optimization problem.

This paper is organized as follows: In Section 1.1, we review the related work on Gre-

gory patches, generalized barycentric coordinates, and volumetric parametrization. Section 2

presents the Gregory solid representations. Section 3 develops the optimization problem for

improving the parametrization quality. After some experimental results are demonstrated in

Section 4, Section 5 concludes this paper.

1.1 Related Work

Triangular mesh parametrization is a commonly employed technique in curve and surface

fitting [4], texture mapping [5], remeshing [6], and so on. A triangular mesh parametrization

constructs a bijective mapping from the mesh in three dimension to a planar domain. Ac-

cording to the requirements of applications, the frequently used mapping methods in mesh

parametrization includes discrete harmonic mapping [4], discrete equiareal mappings [7], and

discrete conformal mapping [8]. For more details on triangular mesh parametrization methods

and their applications, please refer to [9,10].

In the field of trivariate solid modeling, the discrete volume parametrization is usually

determined by solving a partial differential equation [11,12] using the finite element method.

Lin et al. [13] developed the explicit parametric equations that maps the vertices of a tetrahedral

mesh into a parameter domain, thus making the discrete volume parametrization as intuitive

and easy to implement as the triangular mesh parametrization methods. In the isogeometric

analysis, the three-dimensional physical domains are usually modeled by trivariate B-spline

solids, T-spline solids, and subdivision solids, etc., which are generally constructed by filling

the CAD models with boundary representation. Wang et al. [14] proposed a method that

constructs a T-spline solid from boundary triangulations with arbitrary genus topology by the

polycube mapping. In 2013, Xu et al. [15] presented a method to obtain analysis-suitable

trivariate NURBS and improve the mesh quality. Zhang et al. [16] developed an approach

for volumetric T-spline construction that considers boundary layers. In 2014, an optimization-

based approach was developed to generate the B-spline solid with positive Jacobian values from

boundary-represented model with six boundary surfaces [17]. In 2015, Lin et al. [13] presented
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a discrete volume parametrization method for tetrahedral mesh models with six boundary

surfaces, and an iterative fitting algorithm for constructing a B-spline solid. In 2018, Lin et

al. [18] proposed a method to construct a trivariate B-spline solid by pillow operation and

geometric iterative fitting.

To parameterize the mesh vertices of a mesh model with complicated shape for mesh de-

formation, the generalized barycentric coordinates were developed. In 2002, Meyer et al. [19]

presented an easy computation method of a generalized form of barycentric coordinates for ir-

regular, convex n-sided polygons, not only for triangles. Moreover, the mean-value coordinates

[20] was developed for both convex and concave polygons, and generalized to 3D polyhedral do-

mains [21]. In 2007, Joshi et al.[22] introduced the harmonic coordinates based on the solutions

of the Laplace’s equation, which can work on convex and concave polyhedrons. Because this

method does not have a closed form solution, the boundary conditions and the solutions must

be defined for every particular case. In 2008, Lipman et al.[23] presented the Green coordinates

based on the solution of the Green’s function, which can produce a conformal mapping in 2D

and a quasi-conformal mapping in 3D. Note that, nearly all of the generalized barycentric coor-

dinates methods require that the input models are solid. However, the input models handled in

this paper are hollowed, enclosed by boundary patches. Therefore, the generalized barycentric

coordinates methods cannot be directly used to parameterize the hollowed models handled in

this paper.

In this paper, we developed the representation of the trivariate Gregory solid, and employed

it to fill the models enclosed by boundary patches, thus generating the polyhedral volume

parametrization of the input models. The Gregory patch [24,25] arose from the Gregory’s

method [26], which produces the 8 inner control points from four boundary edges and four

corner points, one pair per corner. And then, the four pairs of inner control points are blended

so that the generated patch interpolates the boundary straight line segments. Similarly, a

triangular Gregory patch can be constructed using the method proposed in [27]. Moreover,

Wang et al. [28] defined the Gregory patch as a mapping from an n-sided parametric domain

with straight line boundaries to an n-sided parametric domain of a trimmed surface, and non-

self-overlapping structured grids can be generated on it, as well as the trimmed surface.

§2 Gregory Solid Representation

Suppose we are given a physical domain, i.e., a curved and hollowed polyhedron H enclosed

by boundary patches. The boundary patches can be any type of parametric surfaces, e.g.,

parameterized triangular meshes, trimmed surfaces, and so on. In this paper, we develop a

Gregory solid representation, and use it to fill the hollowed polyhedron H, thus generating the

polyhedral volume parametrization of the polyhedral physical domain. It should be pointed out

that, the construction of the Gregory solid requires that each corner of the given polyhedron

is adjacent to just three boundary patches. So, in the following, the given polyhedral physical

domain H is supposed to satisfy the requirement.
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Figure 1: The definition of a Gregory corner interpolator.

2.1 Gregory corner interpolator

The Gregory corner interpolator is defined at each corner of the given polyhedral physical

domain H. Suppose P (u), Q(v), and R(w), (0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤ 1) are three

boundary curves adjacent to a corner C of H (refer to Fig. 1). Whatever the type of the

boundary patches adjacent to the corner C is, we now rewrite them in the form of parametric

patches, i.e.,

Stop(u, v), Slft(u,w), and Srgt(v, w), (0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤ 1)

which interpolate the three boundary curves (Fig. 1),

Slft(u, 0) = Stop(u, 0) = P (u), Stop(0, v) = Srgt(v, 0) = Q(v), Srgt(0, w) = Slft(0, w) = R(w).

Moreover, we assign the cubic B-spline vector functions P̄ lft(u), P̄ rgt(u) on the boundary

curve P (u), the vector functions Q̄lft(v), Q̄rgt(v) on the boundary curve Q(v), and the vector

functions R̄lft(w), R̄rgt(w) on the boundary curve R(w), respectively. The vector functions

should satisfy the compatibility conditions,

R̄rgt(0) = Q̄lft(0), P̄ rgt(0) = R̄lft(0), Q̄rgt(0) = P̄ lft(0).

In general, they are generated by approximating the tangent vector functions of the boundary

patches at the boundary curves, i.e.,

• P̄ lft(u) approximates dSlft(u,w)
dw

∣∣∣∣
w=0

, and P̄ rgt(u) approximates dStop(u,v)
dv

∣∣∣∣
v=0

;

• Q̄lft(v) approximates dStop(u,v)
du

∣∣∣∣
u=0

, and Q̄rgt(v) approximates dSrgt(v,w)
dw

∣∣∣∣
w=0

;

• R̄lft(w) approximates dSrgt(v,w)
dv

∣∣∣∣
v=0

, and R̄rgt(w) approximates dSlft(u,w)
du

∣∣∣∣
u=0

.

Then, we construct three bi-cubic B-spline vector functions T top(u, v), T lft(u,w), and T rgt(v, w),

that interpolate the vector functions defined above. Specifically,
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• T lft(u,w) interpolates R̄lft(w) and P̄ rgt(u);

• T top(u, v) interpolates P̄ lft(u) and Q̄rgt(v);

• T rgt(v, w) interpolates Q̄lft(v) and R̄rgt(w).

The bi-cubic B-spline vector functions T top(u, v), T lft(u,w), and T rgt(v, w) can be written as,

T top(u, v) =

nu∑
i=0

nv∑
j=0

Ni,p(u)Nj,q(v)X
top
ij ,

T lft(u,w) =

nu∑
i=0

nw∑
k=0

Ni,p(u)Nk,r(w)X
lft
ik ,

T rgt(v, w) =

nv∑
j=0

nw∑
k=0

Nj,q(v)Nk,r(w)X
rgt
jk ,

(1)

where Xtop
ij , X lft

ik and Xrgt
jk , i = 0, 1, ..., nu, j = 0, 1, ..., nv, k = 0, 1, ..., nw are control points,

and Ni,p(u), Nj,q(v), Nk,r(w) are the basis of B-splines of degree p in the u, degree q in the v

and degree r in the w. In these control points, only the control points of the vector functions

P̄ lft(u), P̄ rgt(u), Q̄lft(v), Q̄rgt(v), R̄lft(w), and R̄rgt(w)

are known, and the other control points are unknown. They will be taken as variables in

the optimization procedure stated in Section 3, and determined by solving the optimization

problem.

Remark 1 (Construction of the initial patches). In solving the optimization problem developed

in Section 3, the initial patches of T top(u, v), T lft(u,w), and T rgt(v, w) are required. Take

the construction of the initial representation of T top(u, v) as an example. As stated above,

T top(u, v) should interpolate the two curves P̄ lft(u) and Q̄rgt(v), which are two boundary curves

of T top(u, v). In order to produce the other two boundary curves of T top(u, v), we first construct

a corner,

Cp =
P̄ lft(1) + Q̄rgt(1)

2
+ 2

(
P̄ lft(1) + Q̄rgt(1)

2
− P̄ lft(0)

)
,

and then, connect the two corners P̄ lft(1) and Cp, and the two corners Q̄rgt(1) and Cp, thus
generating two line segments as the other two boundary curves of T top(u, v). In this way, we get

four boundary curves, and a bilinear patch can be generated by bilinear interpolation to the four

boundary curves. Moreover, by degree elevation, the bilinear patch becomes a bi-cubic B-spline

patch, which can be taken as the initial patch of T top(u, v). The initial patches of T lft(u,w)

and T rgt(v, w) can be constructed in the similar manner.

In conclusion, the Gregory corner interpolator with respect to the corner C that interpolates
{Stop(u, v), Slft(u,w), Srgt(v, w), T top(u, v), T lft(u,w), T rgt(v, w)}



HU Chuan-feng, LIN Hong-wei. Gregory Solid Construction for Polyhedral Volume... 345

can be represented as,

R(u, v, w) = [1 w]

[
Stop(u, v)

T top(u, v)

]
+ [1 v]

[
Slft(u,w)

T lft(u,w)

]
+ [1 u]

[
Srgt(v, w)

T rgt(v, w)

]

− [1 u]

[
Slft(0, w) T lft(0, w)

T rgt(0, w)
vT lft

u (0,w)+uT rgt
v (0,w)

u+v

][
1

v

]

− [1 v]

[
Stop(u, 0) T top(u, 0)

T lft(u, 0)
vT lft

w (u,0)+wT top
v (u,0)

v+w

][
1

w

]

− [1 w]

[
Srgt(v, 0) T rgt(v, 0)

T top(0, v)
uT rgt

w (v,0)+wT top
u (0,v)

u+w

][
1

u

]
+ Tijkuivjwk,

(2)

where the Einstein’s summation convention is applied in the last term,

u0 = 1, u1 = u, v0 = 1, v1 = v, w0 = 1, w1 = w,

and Tijk is a 3-order tensor with elements,

T000 = Stop(0, 0), T100 = T rgt(0, 0), T010 = T lft(0, 0), T001 = T top(0, 0),

T110 =
vT lft

u (0,0)+uT rgt
v (0,0)

u+v , T011 =
vT lft

w (0,0)+wT top
v (0,0)

v+w , T101 =
uT rgt

w (0,0)+wT top
u (0,0)

u+w ,

T111 =
uv(uT rgt

vw (0,0)+vT lft
uw (0,0))+uw(uT rgt

wv (0,0)+wT top
uv (0,0))+vw(vT lft

wu (0,0)+wT top
vu (0,0))

uv(u+v)+uw(u+w)+vw(v+w) .

Here, T rgt
v (v, w) denotes the first order partial derivative ∂T rgt(v,w)

∂v , T rgt
wv (v, w) denotes the

second order partial derivative ∂2T rgt(v,w)
∂w∂v , and so on. It is easy to be validated that, the

Gregory corner interpolator (2) interpolates the three boundary patches adjacent to the corner

C, i.e.,
R(u, v, 0) = Stop(u, v), R(u, 0, w) = Slft(u,w), and R(0, v, w) = Srgt(v, w),

and its partial derivatives satisfy,

∂R(u, v, w)

∂w

∣∣∣∣
w=0

= T top(u, v),
∂R(u, v, w)

∂v

∣∣∣∣
v=0

= T lft(u,w),
∂R(u, v, w)

∂u

∣∣∣∣
u=0

= T rgt(v, w).

As stated above, the Gregory corner interpolator (2) is defined at each corner of the given

polyhedral physical domain H. The Gregory solid representation is the weighted sum of the

Gregory corner interpolators at all of the corners of H, which will be presented in Section 2.3.

2.2 Parametric domain

Before constructing the Gregory solid G that interpolates the boundary patches of the poly-

hedral physical domain H, its parametric domain PG should be firstly specified. The parametric

domain PG is a polyhedron in the ξ − η − δ parametric space (refer to Fig. 2), which is deter-

mined by the number of the boundary patches of the physical domain H. For example, if H
has four boundary patches, the parametric domain PG of the Gregory solid is a tetrahedron.

In Fig. 2, a pentagonal prism parametric domain is illustrated, and the corresponding physical

domain H has seven boundary patches. In our implementation, the edges of the parametric
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Figure 2: The calculation of the parameter values (ul, vl, wl) of the point p with respect to the corner
cl of the pentagonal prism parametric domain PG .

domain PG (a polyhedron) are unit length.

Given a point p = (ξ, η, δ) ∈ PG , it has parameter values in each Gregory corner interpola-

tor (2). So, the parameter values for the point p = (ξ, η, δ) should be defined with respect to

each corner of PG . Refer to Fig. 2, the parameter values (ul, vl, wl) of the point p = (ξ, η, δ)

with respect to the corner cl is constructed according to the following manner. Consider the

tetrahedron cl − cicjck. On one hand, denote the distances from the point p = (ξ, η, δ) to the

planes determined by the triangular faces △clcick, △clcicj , and △clcjck are dlik, dlij , dljk,

respectively. On the other hand, denote the distances from the point p = (ξ, η, δ) to the three

corners ci, cj , and ck are di, dj , and dk, respectively. The parameter values (ul, vl, wl) of the

point p = (ξ, η, δ) with respect to the corner cl is defined as,

(ul, vl, wl) =

(
dljk

dljk + di
,

dlik
dlik + dj

,
dlij

dlij + dk

)
.

It can be easily checked that,

• if the point p is at the corner cl, we have (ul, vl, wl) = (0, 0, 0);

• if the point p is at the corner ci, we have (ul, vl, wl) = (0, 0, 1);

• if the point p is at the corner cj , we have (ul, vl, wl) = (1, 0, 0);

• if the point p is at the corner ck, we have (ul, vl, wl) = (0, 1, 0);

• if the point p is in the line clci, we have ul = vl = 0;

• if the point p is in the line clcj , we have vl = wl = 0;

• if the point p is in the line clck, we have ul = wl = 0;
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• if the point p is on the plane determined by △clcick, we have ul = 0;

• if the point p is on the plane determined by △clcicj , we have vl = 0;

• if the point p is on the plane determined by △clcjck, we have wl = 0.

2.3 Gregory solid representation

Given a polyhedral physical domain H with n corners. In this section, we will develop

the representation of the Gregory solid G that fills the physical domain H, and interpolates

its boundary patches at the same time. Accordingly, the parametric domain PG of G also

has n corners cl, l = 0, 1, · · · , n − 1. Moreover, suppose it has m faces fi, i = 0, 1, · · · ,m.

For a point p = (ξ, η, δ) ∈ PG , denoting d(p, fi) as the distance from the point p to the face

fi, i = 0, 1, · · · ,m, the weight function Wl(p) for the corner cl, l = 0, 1, · · · , n−1 can be defined

as,

Wl(p) =

∏
fi is not adjacent to cl

d2(p, fi)∑n−1
j=0

∏
fi is not adjacent to cj

d2(p, fi)
, p ∈ PG . (3)

Then, the Gregory solid G(p) : PG → H can be defined as the weighted sum of the n corner

interpolator functions,

G(p) =
n−1∑
l=0

Wl(p)Rl(ul(p), vl(p), wl(p)), (4)

where Rl(ul(p), vl(p), wl(p)) is the Gregory corner interpolator (2) to the lth corner cl, l =

0, 1, · · · , n− 1.

It should be pointed out that, Wl(p) = 1 if p is at the corner cl, andWl(p) is zero if p is on the

faces not adjacent to the corner cl. Therefore, the Gregory solid G(p) interpolates the boundary
patches of the physical domain H. Specifically, if p1 is on a face of the parametric domain PG ,

then there is a point q1 on a corresponding boundary patch of H such that G(p1) = q1. On

the contrary, if there is a point q2 on a boundary patch of H, then there exists a point p2 on a

corresponding face of PG such that G(p2) = q2.

2.4 Parametric grid generation

Now, we have constructed a Gregory solid G(p), p ∈ PG which fills the polyhedral physical

domain H, and interpolates its boundary patches. The Gregory solid G(p) can be considered

as a mapping from its parametric domain PG to the physical domain H, i.e., G(p) : PG → H.
Then, the parametric grid in the physical domain H can be generated by the Gregory solid

mapping.

Suppose the parametric domain PG has n corners. In order to produce the parametric

grid, the parametric domain PG is first segmented into n hexahedra using the dual operation

(Algorithm 1), each hexahedron for a corner (Fig. 3(b)). Then, each hexahedron is uniformly

discretized into a M × N × L grid (Fig. 3(c)). For conformity, on the common face of two

adjacent hexahedra, the discretization is taken the same manner, resulting in the same grid.
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(a) (b) (c) (d)

Figure 3: Parametric grid generation. (a) Dual operation for a corner. (b) Parametric domain after
dual operation. (c) Parametric domain discretization (separated). (d) Parametric grid in the physical
domain (separated).

Finally, the grids in the parametric domain PG is mapped into the physical domain H by the

Gregory mapping G(p) : PG → H, thus generating the parametric grid in the physical domain

(Fig. 3(d)).

Algorithm 1 Dual operation (refer to Fig. 3)

1: Calculate the middle point of every edge of the polyhedral parametric domain PG ;
2: Calculate the barycenter of every face of PG ;
3: Calculate the barycenter of PG ;
4: Construct a hexahedron for each corner cl of PG , by linking the eight points, i.e., the middle

points of the three edges adjacent to cl, the barycenters of the three faces adjacent to cl,
the barycenter of PG , and the corner cl (refer to Fig. 3(a), and 3(b)).

§3 Optimization

In this section, we develop a sparse optimization model to improve the algebraic quality,

i.e., the quality of the parametrization, of the Gregory solid constructed in Section 2. In order

to employ the sparse optimization technique, the formulation of the objective function is based

on the parametric grid generated using the method developed in Section 2.4.

It is well known that, a trivariate solid is valid in isogeometric analysis if its Jacobian is pos-

itive at any point. Note that the parametric grid in the physical domain H is a hexahedral mesh

(Fig. 3(d)), and the Jacobian of a hexahedral mesh is defined for each vertex of each hexahe-

dron. Specifically, give the sth(s = 0, 1, · · · ,K) hexahedron of the hexahedral mesh with vertices

Ph = (xh, yh, zh), h = 0, 1, · · · , 7, and suppose Pi = (xi, yi, zi), Pj = (xj , yj , zj), Pk(xk, yk, zk),

are the three vertices adjacent to the vertex Ph = (xh, yh, zh). The order of the vertices of

the tetrahedron Ph − PiPjPk is arranged in some specified orientation (clockwise or counter-

clockwise), so that the majority of Jacobians are positive. The scaled Jacobian at the vertex
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Ph, h = 0, 1, · · · , 7 of the sth hexahedron is defined as[2],

Js
h = det


xi−xh∥∥∥−−−→PiPh

∥∥∥
2

xj−xh∥∥∥−−−→PjPh

∥∥∥
2

xk−xh∥∥∥−−−→PkPh

∥∥∥
2

yi−yh∥∥∥−−−→PiPh

∥∥∥
2

yj−yh∥∥∥−−−→PjPh

∥∥∥
2

yk−yh∥∥∥−−−→PkPh

∥∥∥
2

zi−zh∥∥∥−−−→PiPh

∥∥∥
2

zj−zh∥∥∥−−−→PjPh

∥∥∥
2

zk−zh∥∥∥−−−→PkPh

∥∥∥
2

 , h = 0, 1, · · · , 7, s = 0, 1, · · · ,K,

where ∥·∥2 is the 2-norm of a vector. Thus, the scaled Jacobians for the parametric grid of the

physical domain H can be organized in a vector Jac,

Jac = [J0
0 , J

0
1 , · · · , J0

7 , · · · , JK
0 , JK

1 , · · · , JK
7 ]. (5)

Moreover, by defining two functions,

pos(Js
h) =

Js
h, Js

h ≥ 0,

0 Js
h < 0,

and neg(Js
h) =

0, Js
h > 0,

Js
h Js

h ≤ 0,

the Jacobian vector Jac (5) can be decomposed into two parts, i.e.,

Jac = Jac+ + Jac−,

where,

Jac+ = [pos(J0
0 ), pos(J

0
1 ), · · · , pos(J0

7 ), · · · , pos(JK
0 ), pos(JK

1 ), · · · , pos(JK
7 )] (6)

contains the positive and zero elements of the vector Jac (5), and

Jac− = [neg(J0
0 ), neg(J

0
1 ), · · · , neg(J0

7 ), · · · , neg(JK
0 ), neg(JK

1 ), · · · , neg(JK
7 )] (7)

contains the negative and zero elements of the vector Jac (5).

On one hand, to improve the validity of the Gregory solid, two objective functions are

required. First, the less the number of the vertices with negative Jacobian, the better the

validity, which is formulated as the sparse optimization objective function,

Esparse =
∥∥Jac−∥∥

0
, (8)

where ∥Jac−∥0 is the 0-norm of Jac−, that is, the number of nonzero elements of the vector

Jac−. Second, the larger the sum of the positive Jacobians, the better the validity, which is

modelled as the following objective function (refer to (5)),

Epositive =
∑
Js
h≥0

1

Js
h + ϵ

. (9)

Experiments show that ϵ = 10−5 can lead to desirable results.

On the other hand, to improve the smoothness of the parametric grid of the physical domain

H, the Laplace smoothing function is taken as an objective function,

Esmooth =
∑
i

∥∥∥∥∥∥Pi −
1

#N(Pi)

∑
Pj∈N(Pi)

Pj

∥∥∥∥∥∥
2

2

, (10)

where Pi is a vertex of the parametric grid, N(Pi) denotes the set of one-ring adjacent vertices

to Pi, and #N(Pi) is the number of the one-ring adjacent vertices to Pi.

Consequently, the whole objective function E is taken as a linear combination of the three
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aforementioned objective functions,

E = Esmooth + µEpositive + νEsparse,

where the weights µ > 0 and ν > 0 are utilized to balance the three items. Returning to

the Gregory solid representation (4), we can see that the variables that can be adjusted for

improving the parametric quality are the control points of the three bi-cubic B-spline vector

functions T top(u, v), T lft(u,w), and T rgt(v, w) (1). Denoting the set of these control points as

X, the whole optimization problem can be formulated as,

min
X

∑
i

∥∥∥∥∥∥Pi −
1

#N(Pi)

∑
Pj∈N(Pi)

Pj

∥∥∥∥∥∥
2

2

+ µ
∑
Js
h≥0

1

Js
h + ϵ

+ ν
∥∥Jac−∥∥

0
. (11)

In fact, for the convenience of the optimization problem (11) to be solved by the alternating

direction method of multipliers (ADMM)[3], the 0−norm of the sparse item is replaced by the

1−norm, and the optimization problem is changed to,

min
X,Y,Z

∑
i

∥∥∥∥∥∥Pi(X)− 1

#N(Pi)

∑
Pj∈N(Pi)

Pj(X)

∥∥∥∥∥∥
2

2

+ µ
∑
Js
h≥0

1

Js
h(Y ) + ϵ

+ ν
∥∥Jac−(Z)

∥∥
1

s.t. X = Y = Z.

(12)

Then, we can develop the format of ADMM for solving the above optimization problem (12),

Xt+1 ← argmin
X

∑
i

∥∥∥∥∥∥Pi(X)− 1

#N(Pi)

∑
Pj∈N(Pi)

Pj(X)

∥∥∥∥∥∥
2

2

+
ρ

2

∥∥∥∥∥
[
X

X

]
−

[
Y t

Zt

]
+

[
U t
Y

U t
Z

]∥∥∥∥∥
2

2

 ,

(13)

Y t+1 ← argmin
Y

µ
∑
Js
h≥0

1

Js
h(Y ) + ϵ

+
ρ

2
∥Xt+1 − Y + U t

Y ∥22

 , (14)

Zt+1 ← argmin
Z

(
ν
∥∥Jac−(Z)

∥∥
1
+

ρ

2

∥∥Xt+1 − Z + U t
Z

∥∥2
2

)
, (15)

U t+1 ← U t + ρ

([
Xt+1

Xt+1

]
−

[
Y t+1

Zt+1

])
, (16)

t = 0, 1, 2, · · · (17)

where the factor ρ is a penalty parameter, and ρ = 1 is a desirable selection for fast convergence.

The initial values X0 = Y 0 = Z0 are constructed by the method presented in Remark 1, and

we set U0 = 0. In the ADMM format developed above, each individual updating step is a

small optimization itself, and can be solved efficiently. Specifically, in our implementation, the

gradient descent method [29] is employed to solve the first optimization problem (13), and the

sub-gradient descent method [29] is adopted to solve the second (14) and the third optimization

problem (15).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4: The input mesh models, Duck(a), Ball joint(b), Tooth(c), Head(d), and Moai(e); their
separated parametrization domain: tetrahedron (f), pentahedron (triangular prism) (g), hexahedron
(h), heptahedron (pentagonal prism)(i), and heptahedron (pentagonal prism)(j).

§4 Results and discussions

In this section, some experimental results are illustrated to demonstrate the effectiveness

and efficiency of the Gregory solid construction and optimization algorithm developed above.

All of the experimental examples are run on a PC with 3.60GHz CPU i7-4790 and 16G memory.

As stated in Section 2, the input to our algorithm is a polyhedral hollowed physical domain H,
where each corner is adjacent to just three boundary patches. Although the boundary patches

can be any type of parametric surfaces, in our experiments, triangular meshes are taken as

the boundary patches. Moreover, we employ the conformal parametrization method [4] to

calculate their parametrization. Thus, the triangular meshes become parametric surfaces with

their parametrization.

In Fig. 4, the input polyhedral physical domains and the parametric domains of the corre-

sponding Gregory solids are illustrated. While the input physical domains are demonstrated

in Figs. 4(a)-(e), the parametric domains of the corresponding Gregory solids are presented in

Figs. 4(f)-(j). Specifically, the models illustrated in Fig.4(a)-(e) are Duck, Ball Joint, Tooth,

Head, and Moai, respectively, and their parametric domains are tetrahedron (Fig. 4(f)), penta-

hedron (triangular prism, Fig. 4(g)), hexahedron (Fig. 4(h)), heptahedron (pentagonal prism,

Fig. 4(i)), and heptahedron (pentagonal prism, Fig. 4(j)), respectively. Additionally, for each

input model, the numbers of mesh vertices, triangular faces, and boundary patches are listed

in Table 1. It can be seen that, the numbers of mesh vertices range from 3928 to 15154, and
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the numbers of faces from 7852 to 30304.

Table 1: Statistical data of the Gregory solids generation method developed in this paper.
model #vert.1 #face2 #boundary3 #grid4 avg.J.5 min.J.5 max.J.5 J−/J 6 time7

Duck 10461 20918 4 30× 30× 30 0.8006 -0.5763 0.9995 0.176% 2386.22
Ball joint 10936 21868 5 26× 26× 26 0.8009 -0.1495 0.9991 0.071% 1820.22
Tooth 15154 30304 6 15× 15× 15 0.9362 0.0133 0.9999 0 130.22
Head 3928 7852 7 16× 16× 16 0.8428 -0.4752 0.9997 0.172% 1219.87
Moai 5685 11366 7 18× 18× 18 0.8881 -0.4693 0.9999 0.014% 1180.88

1 Number of vertices of the input triangular mesh model.
2 Number of faces of the input triangular mesh model.
3 Number of boundary patches of the physical domain.
4 Resolution of the discretized grid in each segmented parametric sub-domain.
5 Average, minimal, and maximal scaled Jacobian values.
6 Ratio between the volume of region with negative Jacobian and the volume of the whole model.
7 Running time in seconds.

In Fig. 5(a)-(e), the polyhedral volume parametric mesh generated by the Gregory solid

mapping are illustrated, with their cut-away views (Fig. 5(f)-(j)). The average, minimal, and

maximal scaled Jacobians of these Gregory solids are listed in Table 1. The average scaled

Jacobians of the Gregory solids are all above 0.8. Although there are still some regions with

negative Jacobians in four models, the ratio between the volume of region with negative Jacobian

and the volume of the whole model are below 0.18% (refer to the column of J−/J in Table 1).

Further checking shows that the regions with negative Jacobian concentrate on the regions near

the inappropriately segmented boundary patches, for example, two adjacent boundary patches

are C1 continuous along their common boundary curve.

Moreover, the last column of Table 1 lists the running time of the Gregory solid construction

and optimization algorithm, ranging from 130.22 seconds to 2386.22 seconds. Specially, we can

see that the tooth model has no region with negative Jacobian after optimization and the

running time of optimization is much shorter than others, because of the segmentation of tooth

model and the initial generated hexahedral model is much better than others. There is still

some space for accelerating the algorithm. In Table 2, the weights µ and ν (in the objective

function (11)) employed in generating each Gregory solid are presented. As stated above, the

weights µ and ν are used to balance the values of the three items in the objective function (11).

Because the orders of magnitude of the three items differ in the optimization of each Gregory

solid, the weights µ and ν also differ in each optimization.

Table 2: Weights employed in optimization.
Duck Ball joint Tooth Head Moai

µ 0.000001 0.00001 0.00001 0.000001 0.00002
ν 0.3 0.1 0.01 0.03 0.02
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5: The polyhedral volume parametric mesh in the physical domains Duck (a), Ball joint (b),
Tooth (c), Head (d), and Moai (e), and their cut away views (f), (g), (h), (i), (j).

§5 Conclusion

In this paper, we developed the Gregory solid representation, and employed it to interpolate

the four-sided or non-four-sided boundary patches of a polyhedral physical domain. Moreover,

the algebraic quality of the Gregory solid is improved by solving a sparse optimization problem

using the ADMM method. In this way, the polyhedral volume parametrization of a given phys-

ical domain with four-sided or non-four-sided boundary patches can be generated. Experiments

show that, in the polyhedral volume parametrization produced by the Gregory solid construc-

tion and sparse optimization method, the regions with negative Jacobian are very small (below

0.18%), and they usually concentrate around the boundary curves where two boundary patches

are C1 continuously stitched. As a future work, we will study how to entirely eliminate the

region with negative Jacobian by optimizing the boundary patch segmentation.
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