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a b s t r a c t 

The state-of-the-art shape descriptors are usually lengthy for gaining high retrieval precision. With the 

rapidly growing number of 3-dimensional models, the retrieval speed becomes a prominent problem in 

shape retrieval. In this paper, by exploiting the capabilities of the dimensionality reduction methods and 

the deep convolutional residual network (ResNet), we developed a method for extracting short shape 

descriptors (with just 2 real numbers, named 2- descriptors ) from lengthy descriptors, while keeping or 

even improving the retrieval precision of the original lengthy descriptors. Specifically, an attraction and 

repulsion model is devised to strengthen the direct dimensionality reduction results. In this way, the 

dimensionality reduction results turn into desirable labels for the ResNet. Moreover, to extract the 2- 

descriptors using ResNet, we transformed it as a classification problem. For this purpose, the range of 

each component of the dimensionality reduction results (including two components in total) is uniformly 

divided into n intervals corresponding to n classes. Experiments on 3D shape retrieval show that our 

method not only accelerates the retrieval speed greatly but also improves the retrieval precisions of the 

original shape descriptors. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

3D shape retrieval is a crucial topic in computer vision and pat-

tern recognition, which aims to retrieve the most relevant shapes

to the query shape, based on the shape descriptors. In the field of

shape retrieval, there are two competing ingredients: retrieval ac-

curacy and retrieval speed. While high retrieval accuracy requires

long shape descriptors, quick retrieval speed needs short descrip-

tors. The state-of-the-art studies on shape retrieval mainly focus on

improving accuracy, thus producing lots of lengthy shape descrip-

tors, sometimes with high dimensions [1–3] . Although the accura-

cies of the retrieval algorithms based on these lengthy descriptors

are acceptable, the retrieval speeds are usually very slow in huge

shape database. More seriously, when the traditional index struc-

tures are employed for the fast query, the space and time require-

ments grow exponentially in the dimension [4] . Although there

are indexing methods that avoid the curse of dimensionality [5] ,

they do not support the exact search, and the dimension is also

an important factor especially when facing a huge shape database.

Therefore, due to the rapidly growing number of 3D shapes, it has
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ecome an urgent task to develop high-speed shape retrieval algo-

ithms for the huge shape database, while keeping high retrieval

ccuracy. 

In this paper, we develop an effective method for extracting

hort shape descriptors from lengthy or high dimensional de-

criptors, while keeping or even improving the retrieval accuracy.

pecifically, given a shape database with classification, the descrip-

ors of the shapes in the database consist of a point set in a high

imensional space. First, as a high dimensional data set, the set of

hape descriptors are projected to a 2-dimensional plane using the

imensionality reduction (DR) methods. Moreover, an attraction

nd repulsion model is devised to reinforce the classification results

n the plane, by enlarging the inter-class margin and reducing

he intra-class variance. Then, taking the original shape descrip-

ors as input, a deep convolutional residual network (ResNet) is

onstructed and trained. To improve the fitting precision of the

esNet, each component of the projected 2-dimensional shape

escriptors is transformed into a vector, and taken as a label. Using

he ResNet, a short shape descriptor with just two real numbers,

amed 2-descriptor , can be extracted from lengthy or high dimen-

ional shape descriptors. In our implementation, the shapeDNA

one-dimensional lengthy descriptor) and the Fourier shape de-

criptor (three-dimensional descriptor) are taken as the original

hape descriptors, respectively, and two kinds of ResNets are

https://doi.org/10.1016/j.cag.2019.04.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2019.04.002&domain=pdf
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evised. It is shown by experiments that, the 2-descriptor gener-

ted by our method not only accelerated the retrieval speed signif-

cantly, but the retrieval precision is also improved as well, com-

ared with the original lengthy or high dimensional descriptors. 

The structure of this paper is as follows. In Section 2 , some re-

ated work is briefly reviewed. In Section 3 , the generation method

f the 2-descriptor is introduced in detail, including the attrac-

ion and repulsion model and the construction and training of the

esNets. Moreover, the implementation details and results are pre-

ented in Section 4 . Finally, Section 5 concludes the paper. 

. Related work 

In this section, we briefly review the related work on 3 dimen-

ional (3D) shape descriptors, dimension reduction (DR) methods,

nd descriptor learning methods by deep networks, respectively. 

.1. 3D shape descriptors 

3D shape descriptors are compact discrete data to describe and

epresent 3D objects, usually represented as vectors or tensors,

hich provide an easy way to analyze and compare shapes. Be-

ause 3D shape descriptors encode geometrical or topological in-

ormation of objects and are easy to process, they play a vital

ole in computer vision and graphics applications, including shape

atching, recognition, and retrieval [6–8] . 

According to different levels in shape representation, 3D shape

escriptors can be divided into two categories: global descriptors

nd local descriptors, which are surveyed in the following, respec-

ively. 

The global shape descriptors catch the information of the en-

ire shape, and are generally invariant with respect to isometric

ransformation. An important topic on global shape descriptors fo-

uses on describing shapes with only one real number, thus gener-

ting the scale shape descriptors, including eccentricity [9] , rectilin-

arity [10] , and convexity [11,12] , etc. Although the study on scale

hape descriptors is significant in theory, their retrieval accuracy

s restricted. To improve the retrieval accuracy, recent work prefers

engthy shape descriptors, such as, light-field descriptor [13] , graph

ased descriptor (Reeb Graph) [14] , spectrum based descriptors

shapeDNA) [15] , SD-GDM [1] , and medial axis spectrum [16] , etc.

lthough the retrieval accuracy is improved by these lengthy global

hape descriptors, the retrieval speed is very slow, especially in the

uge shape database. 

On the other hand, local shape descriptors capture important

eometric information on local regions of 3D shapes, and are fre-

uently employed in local shape analysis such as partial shape re-

rieval [17,18] , and shape correspondence [19,20] . Representative

ork on local shape descriptors includes spin images [21] , intrin-

ic shape signatures [22] , heat kernel signature [6] , wave kernel

ignature [19] , etc. Usually, the local shape descriptors have more

omplicated structure and longer length than those of the global

hape descriptors, and strategies like partial aggregation and bag

f features [7,23] can be used to combine them together. 

.2. Dimensionality reduction methods 

In our method, the lengthy shape descriptors in high dimen-

ional space are projected onto a plane using the DR methods. The

asic motivation of DR is to reduce the complexity of data and ex-

ract more compact and representative information. With the in-

reasing complexity and high dimension of data, DR has become

 basic operation across a variety of fields, e.g., feature extraction,

ata visualization and high-dimensional nearest neighbor query. 

Some classical DR methods regard the data point set to be on

 manifold in a high dimensional space and devote to preserve
he relative distances in local neighborhoods. The key ingredient in

hese DR methods is the way of local neighborhood construction

nd low-dimensional embedding. For example, Isomap [24] ex-

ends the classical multidimensional scaling (MDS) [25] , and the

airwise geodesic distances between points are strived to be kept.

n LLE [26] , the linear structure in the local neighborhood of each

ata point is tried to be preserved. Laplacian Eigenmaps [27] tries

o minimize the low-dimensional distance between nearby data

oints. TSNE [28] tries to keep the distribution of data instead of

istance. Moreover, the objective of LTSA [29] is to hold the local

oordinate representation. 

However, the direct DR results are not discriminative enough

or the ResNet learning. Therefore, we develop an attractive and

epulsion model to enlarge the inter-class margin and reduce the

ntra-class variance. In this way, the discrimination of the DR

esults are improved, and the ResNet learning process is better

uided. 

.3. Descriptor learning via deep networks 

With the success of deep learning architecture in the area of

omputer vision, especially the pretty good results of recognition

hallenge on imageNet [30] , there has been a significant trend to

earn descriptors according to different tasks or objectives by deep

etworks. For 3D objects, there are mainly two kinds of methods

o extract features through the deep learning architecture, which

re elucidated in the following. 

The first kind of methods directly process the representation

ata of 3D objects, which are represented as collections of multi-

iew images or voxels. In this way, the classical CNNs can be em-

loyed. Exploiting the rendered views, Su et al. [31] developed the

ulti-view CNN to combine input views of an object through a

iew pooling layer. Moreover, Huang et al. [32] extended the view-

ased method to per-point representation. The multi-view image

ased methods are highly informative, but they are not concise,

nd sensitive to isometric geometric transformations. Also, by the

ulti-view image based methods, the size of data is significantly

ncreased. On the other hand, Wu et al. [33] proposed the 3D

hapeNets, a convolutional deep belief network, which regards a

D shape as a distributions of binary variables on a 3D voxel grid.

hese methods can take the latest advancements in image process-

ng. However, 2D views ignore the global 3D geometry information,

nd the voxel-based representations are generally coarse to ensure

 satisfied computational cost. 

Different from the first kind of methods, the second kind

f approaches handle the features of the 3D objects. From the

xisting features of 3D objects, more discriminative high-level

hape features are extracted as the shape descriptors, using the

eep network. In Ref. [34] , two low-level local 3D shape descrip-

ors are encoded into geometric bag-of-features, from which the

igh-level descriptors are learned by a deep belief network. Fang

t al. [35] developed the many-to-one encoder to force the input

eat shape descriptors of the same class to be mapped to a pre-

omputed unique target descriptor. Ben-Shabat et al. [36] use the

ontinuous generalization of Fisher vectors to represent 3D point

louds in their convolutional neural network. In [37] , Han et al.

epresent 3D meshes as local function energy distributions, and

earn discriminative hierarchical features by a convolutional deep

elief network. 

. Method 

The goal of our work is to find a high discriminative low-

imensional representation of 3D shapes from existing shape de-

criptors. 
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Fig. 1. The pipeline of our approach on shape retrieval. 
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Mathematically, for each kind of shape descriptor, we aim to

find a function f that takes any descriptor X s extracted from shape

s as input and output a feature Y s = f (X s ) ∈ R d of much lower di-

mensionality as the new representation of shape s . Through this

function, descriptors of 3D shapes can be quickly mapped to low-

dimensional features. 

Our architecture (refer to Fig. 1 ) encompasses three distinct

steps: 

• Different shape descriptors are extracted to represent 3D ob-

jects. In the final step, these high-dimensional descriptors are

taken as the inputs of the ResNet. 
• We reduce the dimensionality of the space of each kind of 3D

shape descriptors to d (in this paper, we select d = 2 ) such that

3D shapes can be represented in low-dimensional space, and

devise an attraction and repulsion model to iteratively optimize

the DR result. Then the result of the attraction and repulsion

model is transformed as the labels of the ResNet for training.

This procedure guarantees high speed retrieval while keeping

an acceptable precision. 
• We then develop ResNet for each kind of shape descriptor to

learn the process of dimensionality reduction. 

3.1. Shape descriptors 

The choice of shape descriptors is one of the most critical fac-

tors that affects the final retrieval performance. Here we select

three standard descriptors as inputs to show our architecture, and

they are different in data format. 

3.1.1. CSD 

The CSD [38] is a combination of seven shape attributes. Each

of the shapes attributes: eccentricity [9] , rectilinearity [10] , convex-

ity [11,12] , compactness [39] and fractal dimension [40] intuitively

describes the attribute of 3D objects in a certain aspect. The de-

scriptor is a seven dimensional vector. 

3.1.2. ShapeDNA 

The ShapeDNA [15] is the first spectral shape signature for non-

rigid shape analysis. It is the normed beginning sequence of the

Laplace spectrum. The work has shown that several geometrical

and topological properties, like area, volume, Euler characteristic

are determined by the spectrum of the Laplacian. Since the spec-

trum is isometric invariant, it can be useful in non-rigid shape

comparison. 

Mathematically, if we have the solutions of the Laplacian eigen-

value problem �u = −λu, the first N smallest non-zero eigenval-
es 0 < λ1 ≤λ2 ≤ ��� ≤λN are taken as the shapeDNA. Here � de-

otes the Laplace–Beltrami operator on the surface. The shapeDNA

escriptor is a high-dimensional vector of numbers. 

.1.3. The Fourier descriptor 

To extract the Fourier descriptor, 3D geometric shapes are rep-

esented as discrete signed distance fields (SDF). The discrete SDF

s a scalar field, where each grid point stores the distance to the

urface of 3D shape, and the negative or positive value indicates

hat the grid point is outside or inside the 3D shape respectively.

he grid size of SDF is 128 × 128 × 128 with two extra cells of

adding in both directions to reduce border artifacts. We then se-

ect the top m spectrum coefficients along each dimension to form

 Fourier descriptor of grid size m × m × m , which is a tensor rep-

esentation. 

.2. Dimensionality reduction to extract low-dimensional feature 

ectors 

There are some considerations that we make to utilize the di-

ensional reduction method. As the examples we have mentioned

n 2.1 , most of the existing shape descriptors, either hand-craft or

earned shape descriptors, are high-dimensional data. In the appli-

ation of shape retrieval, we compare shapes by comparing corre-

ponding shape descriptors. However, traditional index structures

esigned for the fast query are not suitable for high-dimensional

ata [4] . Approximate nearest neighbor search methods [5] speed

p high-dimensional retrieval, but the accuracy is sacrificed and

he dimension is also not to be neglected. 

Based on the above discussion, we think that reducing the

imension of shape descriptors before retrieval is necessary, es-

ecially in the era of rapid data growth. Ideally, the points ob-

ained through DR should ensure that similar objects are close to

ach other, and shapes belong to different categories are far apart.

herefore, we design an attraction and repulsion model to optimize

he results of DR, and propose a learning based schema to obtain

ell behaved 2D points. The learning process is guided by a valid

D representation from iterative optimization of the result of man-

fold learning method, which keeps the relative position of points

n local neighborhoods before and after DR. After that, a deep neu-

al network is applied to learn the mapping from shape descriptors

o their corresponding 2D points. 

.3. Attraction and repulsion model 

Existing manifold learning methods like Isomap [24] ,

LE [26] generally have good performance on high-dimension
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Fig. 2. The result of the attraction and repulsion process. The initial state( iter 0 ) is the result of Isomap on the Fourier shape descriptors. Points in different color belong to 

different classes. 
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atasets with desirable low-dimensional embedding structures. 

hen facing complex problems, there may exist overlapping

nstances in the low-dimensional subspace. A bright idea to solve

he overlapping is to dispart features belong to different categories

nd keep relative intra-class distance at the same time, as shown

n Fig. 2 . 

Thus, to train the best feature vectors such that the low di-

ensional representation of geometrically and semantically similar

hapes are close to each other, we propose an attraction and re-

ulsion post-process to iteratively adjust the result of dimensional

eduction work in order to guide deep learning in the next section.

In detail, suppose the 3D descriptors for training are classified

ccording to the shape categories, the capacity of the i th class is

 i , p i 
j 
, j = 1 , 2 , . . . , n i denotes the j th low-dimensional feature vec-

or of 3D objects that belongs to class i , and C i denotes the i th class

enter. The adjustment process is an iterative process, and each it-

ration encompasses two steps: 

• The repulsion process. This process aims to improve the dis-

crimination among feature vectors belong to different classes.

For each class i , the class center C i = 

∑ 

j p 
i 
j 

n i 
is first calcu-

lated as the mean of the features. Then a transfer vector v P 
i 

=∑ 

j w 

j 
i 
(C j − C i ) is calculated, which is regarded as the resultant 

of repulsive forces that all the other classes apply on class i .
Here w 

j 
i 

is the weight that determines the magnitude of each

force, and we set 

w 

j 
i 
= 

{ 

1 √ 

2 πσ
e 

−‖ C j −C i ‖ 2 
2 σ2 C j is the k NN of C i , 

0 otherwise, 
(1) 

which means that the magnitude of the force that acts on class

i is negatively correlated with the corresponding distance be-

tween classes, and the effects of distant classes (not in the k

nearest neighbor of class i ) are ignored. Points which belong to

class i are then updated by the same transfer vector v P 
i 
. 

• The attraction process. This process aims to reduce the vari-

ation of each class. The points p i 
j 
, j = 1 , . . . , n i in each class

i move toward the class center C i with a displacement vec-

tor v A 
i 

= min { e −len/ 2 , 1 − e −len/ 2 } (C i − p 
j 
i 
) , where len denotes the

maximum distance between class centers. 

In this paper, the iteration is terminated if the maximum num-

er of iterations is reached, or the coefficient of variation (the ratio

f variance to mean of data points) no longer increase. Fig. 2 shows

he performance of our adjustment process using the result of

somap as the initial state. It can be seen that the adjustment of

he dimensionality reduction process gradually improves the data

verlapping and successfully enlarges the inter-class margin while

educing the intra-class variance. 
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Fig. 3. The structure of the ResNet to process the Fourier descriptor (left), the CSD 

and shapeDNA (middle). The right subfigure shows the structure of block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

p

a  

w  

n  

a  

t  

t

 

f  

s  

w  

l  

o

4

4

 

s  

P  

o  

I  

s  

m  

o  

c  

s

 

o  

m  

i  

o  

a

4

 

d  

m  

c  

s  

i  

e

 

W  

s  

d  

i  

o  

f

 

r  

e  

t  

o  

w  

f  

t  

i  

r

3.4. Dimensionality reduction training 

This procedure aims to find the function that maps a high di-

mensional shape descriptor to a low-dimensional representation

while keeping good recognition power. Since the shape descriptors

we select in Section 3.1 to represent 3D objects are in different for-

mats, we developed networks in different structures for the train-

ing procedure. 

We use the architecture of the ResNet [41] to train the dimen-

sionality reduction mapping. Residual learning techniques have ex-

hibit improved performance in computer vision problems [41,42] .

The basic idea of the residual network is to insert a shortcut con-

nection that skip one or more layers. The shortcut connection is

selected as the identity mapping and it turns the output of stack

layers into the input plus a residual item. By optimizing the resid-

ual mappings, the network address the possible degradation prob-

lem result from superimposed layers. 

The input and output of the network are pre-computed high-

dimensional descriptors and high-recognition low-dimensional

points, respectively, and the training procedure is the least squares

fitting problem. Since the ResNet is more appropriate for classi-

fication rather than fitting, we transform the regression problem

into multiple classification problems. Because the output dimen-

sion is d = 2 , two classification networks are devised to train the

mappings for the two dimension, i.e., the x and y coordinates, re-

spectively, and labels are obtained from the output data. For the

first dimension, the range of x -coordinates are uniformly divided

into M intervals (left-open and right-closed). Then, we record the

value of interval length �x and the minimal value of x -coordinates

min x , and train a classification network of M classes according to

the x -coordinates. If the x -coordinate lies in the i th interval, we set

its class label of x as label x = i and it is represented as standard

softmax variables in the net. The same process applies to y . 

For the test data, the 2-descriptor ( x ′ , y ′ ) is extracted from

the inverse of the above process, i.e., x ′ = label x ′ · �x + min x , y ′ =
label y ′ · �y + min y . In this way, we get better fitting precision than

directly training the regression problem. 

As indicated in Fig. 3 left, our network for the Fourier de-

scriptor consists of one convolutional layer, one max-pooling layer

followed by four blocks, one average pooling layer and one fully

connected layer with softmax. The convolution layers mostly have

3 × 3 filters, and the number of filters follows the rules in [41] .

Fig. 3 right shows the building block, which is the stack of three

convolution layers with a shortcut connection skipping them. For
he j th dimension of the target value, the objective function of the

roposed network is the cross entropy function: 

rgmin W,b 

( 

−
∑ 

i 

Y i j · log 2 h (s i , W, b) 

) 

, (2)

here W is the weight matrix of the multiple-hidden-layer neural

etwork, b is the bias matrix, s i represents the i th training sample

nd Y i 
j 

in vector format is the j th coordinate of the corresponding

arget value, h ( s i , W , b ) in general is a non-linear mapping from

he input s i to the output. 

For the CSD and shapeDNA, the two descriptors are in vector

ormat. The network is designed to be similar to the network de-

igned for the Fourier descriptor. Fig. 3 middle shows their net-

ork structure. The only difference is that there is no max-pooling

ayer after the first convolution layer, and all the operations are

ne dimensional. 

. Implementation, results and discussions 

.1. Datasets 

We carry out several experiments for shape retrieval to as-

ess the performance of our dimensionality reduction method. The

rinceton ModelNet dataset is a collection of 3D CAD models for

bjects which contains 127,915 3D models from 662 categories.

n our implementation, modelNet40, a clean and well annotated

ubset of modelNet, is employed to evaluate the effect of our DR

ethod on the Fourier descriptor and CSD. ModelNet40 is provided

n the ModelNet website [43] with 12311 shapes from 40 common

ategories. In our experiments, we use the same training and test

plit of ModelNet40 as in [33] . 

For the shapeDNA descriptor, we conduct related experiments

n the Shrec’15 database. Shrec’15 contains 1200 watertight

eshes that are derived from 50 original models. Each of the orig-

nal model and 23 deformed versions of it constitute one category

f this database. We randomly choose 1/3 models as the test set,

nd the remaining are used for training. 

.2. Implementation details 

Before experimentation, we need to pre-process the raw

ata. When computing shapeDNA, the spectrum of non-manifold

eshes maybe completely wrong. To solve this, one way is to

onvert these non-manifold meshes into the SDF zero-value iso-

urface or to compute shapeDNA on manifold datasets. And that

s why we chose Shrec’15 instead of ModelNet to conduct related

xperiments. 

In the initial DR stage, there are also things to be considered.

hen we apply traditional DR methods on the original shape de-

criptors, we choose cosine distance for shapeDNA, and Euclidean

istance for CSD and Fourier descriptor. Also, several outliers of the

nitial DR result are deleted first to better guide deep learning. In

ur experiments, outliers should be removed only when we per-

orm Isomap and MDS on the CSD. 

In addition, before the attraction and repulsion process, the

ange of data should be scaled to a proper size. The weight of

ach repulsive force and its magnitude is determined by the dis-

ance between class centers. As shown in Fig. 4 , the magnitude

f repulsive force increases at the early stage and then decreases

ith distance increasing. If the distance between class centers is

ar enough, the magnitude of the repulsive force will be too small

o have enough influence on the position of 2D points. Thus, the

nitial state of the iterative dimensional reduction needs a small

ange, which we generally choose to be not wider than [ −2 , 2] . 
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Fig. 4. The influence of σ and center distance on the actual repulsive forces. 

Table 1 

Parameters of the attraction and repulsion process. 

CSD Fourier ShapeDNA 

DR Isomap MDS Laplacian tSNE Isomap MDS Laplacian tSNE Isomap MDS Laplacian tSNE 

σ 0.2 0.1 0.18 0.038 0.1 0.1 0.1 0.1 0.2 0.15 0.25 0.2 

k 15 12 15 10 10 12 12 12 12 18 12 18 

scale 1 1 100 1/150 1 1 100 0.01 500 100 80 1/60 

 

r  

σ  

a  

t  

d  

r  

t  

r

 

o  

c  

o  

e  

d

 

S  

g  

s  

c

 

a  

t  

m  

s

 

d  

t  

t  

t  

r  

s  

c  

m

4

 

e  

F  

u  

i  

a  

a  

d  

o  

c  

b  

F  

p  

w  

d  

T  

F

Fig. 4 shows the influence of the parameter σ in Eq. (1) on the

epulsive forces. It is clear that the curves corresponding to a larger

will have larger inflection point and wider scope of valid vari-

ble d . Since the distance between class centers mainly influences

he weight w and magnitude of each repulsive force w · d, we used

ifferent model parameters for each experiment. We list these pa-

ameters in Table 1 , including the parameter σ in the weight,

he number of nearest neighbor k and the scale of original DR

esults. 

For the most part, small σ is an appropriate choice. On the

ne hand, to dispart 2D points belongs to different classes, closer

lasses supposed to have more influence on each other. On the

ther hand, it is not uncommon that in some experiments, sev-

ral class centers are very close to each other (with class center

istance d < 0.1), in this case, it is better to consider smaller σ . 

The choice of M , the number of intervals mentioned in

ection 3.4 , is very crucial, M should be large enough to distin-

uish data from different classes. Moreover, oversizing M may split

everal classes into multiple smaller sets. In our experiments, the

hoice M = 100 is suitable in most cases. 

In the experiments, we also test the time consumption of our

rchitecture in the training and test phase. Before training, the

ime consuming of the attraction and repulsion model is deter-

ined by the size of datasets and the number of iterations, and we

how the time cost of its initialization and iterations in Table 2 . 

As for the training process, it takes 53 min 28 s for the Fourier

escriptor, 16 min 36 s for CSD and 20min10s for the shapeDNA
o train 30,0 0 0 steps. In the test stage, we input shape descrip-

ors of one shape into the ResNet, and record the time of running

he trained model many times. As an average of 10,0 0 0 times, it

espectively costs 8.5 ms, 8.6 ms and 6.7 ms for the three de-

criptors CSD, shapeDNA and Fourier descriptor to generate their

orresponding 2-descriptors. This shows the high efficiency of our

ethod. 

.3. Retrieval precision and retrieval speed 

In the experiment, we first evaluate the performance of the

xtracted 2-descriptors from 3D shape retrieval experiments. In

ig. 5 , the precision-recall curves of descriptors are shown to eval-

ate their retrieval precision. Here, Isomap is chosen as the initial-

zation of DR to produce the 2-descriptors. Experiments about CSD

nd Fourier descriptor are performed on modelNet40, and those

bout shapeDNA are performed on Shrec’15. For convenience, we

enote the 2-descriptor generated from descriptor A by DR meth-

ds B with the attraction and repulsion model as A-B . From the

omparison, 2-descriptors CSD-Isomap and Fourier-Isomap have

etter performance than the original shape descriptors CSD and

ourier descriptor, and only the 2-descriptors shapeDNA-Isomap

erforms a little bit worse than the original shapeDNA. In Fig. 6 ,

e compare the original descriptors with their corresponding 2-

escriptors generated by Isomap on an example of shape retrieval.

he retrieval behavior also supports the above conclusion from

ig. 5 . 
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Fig. 5. The PR curve of the original shape descriptors and their corresponding 2-descriptors. 

Fig. 6. The retrieval behavior of descriptors and their corresponding 2-descriptor generated by Isomap. The blue ones indicate the query shape, and yellow ones are the 

corresponding query results. The method from top to bottom in each row is: shapeDNA, shapeDNA-Isomap, Fourier, Fourier-Isomap, CSD, CSD-Isomap (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.). 
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Table 2 

The time cost of the attraction and repulsion process in the training phase. 

Time Isomap|iterations MDS|iterations Laplacian|iterations tSNE|iterations 

Fourier 731.20 s|5.36 s 12.90 s|3.12 s 28.57 s|4.56 s 2273.77 s|3.88 s 

CSD 759.46 s|4.63 s 0.36 s|4.62 s 14.58 s|3.82 s 2266.56 s|5.34 s 

shapeDNA 0.65 s|0.04 s 0.06 s|0.04 s 0.10 s|0.04 s 12.08 s|0.04 s 
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Fig. 7. The PR curve of the Fourier descriptor and its corresponding 2-descriptors and 3-descriptors. 

Table 3 

Retrieval time (average of 10,0 0 0 times 10-NN queries, unit: ms). 

CSD shapeDNA Fourier 

2D retrieval retrieval 2D retrieval retrieval 2D retrieval retrieval 

Time 0.005 18.4 0.005 143.5 0.005 3053 
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It is worth noting that our framework that generates 2-

escriptors can be extended to generate higher dimensional short

escriptors, for example, 3-descriptor (short descriptor with just 3

eal numbers). However, the attraction and repulsion model has

uccessfully separated DR results (see Fig. 2 ), which makes the

rained dimensionality reduction mapping able to keep the met-

ic of descriptor space. As shown in Fig. 7 , 2-descriptors and their

orresponding 3-descriptors have similar retrieval performance.

o, the increase in dimension does not lead to higher discrim-

natory ability. Here, we use different parameters σ and k for

-descriptors, the parameter pairs ( σ , k ) for Fourier-Isomap-3D,

ourier-MDS-3D, Fourier-Laplacian-3D and Fourier-tSNE-3D are re-

pectively (0.3,15), (0.1,12), (0.3,15) and (0.25,10). 

We evaluate the retrieval time comparing the 2-descriptors

ith the three original descriptors in different formats. Results are

isted in Table 3 . In the experiment, we use the kd-tree as in-

ex structure for descriptor query and conduct an approximate

uery for high dimensional descriptors through an open source li-

rary called FLANN (Fast Library for Approximate Nearest Neigh-

ors) [44] . The data in Table 3 are evaluated as the mean of 10,0 0 0

imes 10-NN queries on the whole dataset ModelNet40. The results

how that our 2-descriptor accelerates the retrieval speed greatly

elative to high-dimensional shape descriptors. 
s  
The above experiments show the advantage of our 2-

escriptors, that is to say, our trained DR methods successfully

eep the retrieval ability of original shape descriptor while reduc-

ng the time consumption at the same time. 

.4. Influence of different DR methods 

It is clear that the original descriptor and DR method influence

he retrieval precision. Since our architecture mainly focus on the

mprovement of a fast query of high dimensional descriptors, we

ill now evaluate the effect of different DR methods on the recog-

ition ability of shape descriptors, and compare the retrieval be-

avior of shape descriptors and their corresponding 2-descriptors

sing the four scores, NN, 1-Tier, 2-Tier, DCG. 

We list their scores in Tables 4 and 5 . Four kinds of DR meth-

ds: MDS [25] , Isomap [24] , Laplacian [27] and tSNE [28] are

sed to evaluate the effect of different DR methods. It is clear

hat nearly all 2-descriptors have improvements on the sore FT, ST

nd DCG of original descriptors. The 2-descriptors extracted from

he Fourier descriptor especially show significant improvement,

hich indicates that the convolution structure is more suitable

or our proposed Fourier descriptor than others. For the CSD and

hapeDNA, they do not have well improvements like the Fourier
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Table 4 

Retrieval performance on the ModelNet40 test dataset. 

Methods NN(%) FT(%) ST(%) DCG(%) 

CSD 46.8 21.3 31.6 62.0 

CSD-Isomap 35.9 30.2 36.7 63.6 

CSD-MDS 34.6 29.2 35.7 63.0 

CSD-Laplacian 28.3 29.5 35.7 63.3 

CSD-tSNE 31.2 29.8 35.6 63.3 

CSD-IsoKRR 27.8 22.6 35.4 61.2 

CSD-S-LE 29.3 19.5 29.7 58.7 

CSD-LDA 23.5 18.6 30.8 58.7 

Fourier 61.1 24.1 32.6 64.2 

Fourier-Isomap 53.3 46.3 52.7 73.5 

Fourier-MDS 50.3 43.7 50.7 72.1 

Fourier-Laplacian 51.3 48.1 53.4 74.3 

Fourier-tSNE 54.8 45.8 51.3 72.9 

Fourier-IsoKRR 27.1 19.3 29.6 58.1 

Fourier-S-LE 41.1 25.3 34.7 63.0 

Fourier-LDA 23.0 12.2 20.5 55.8 

Table 5 

Retrieval performance on the shrec15 test dataset. 

Methods NN(%) FT(%) ST(%) DCG(%) 

shapeDNA 81.3 48.6 60.6 73.9 

shapeDNA-Isomap 66.5 56.5 60.8 71.9 

shapeDNA-MDS 63.2 49.2 53.3 68.0 

shapeDNA-Laplacian 53.0 47.2 57.1 65.8 

shapeDNA-tSNE 66.0 51.2 59.5 70.9 

shapeDNA-IsoKRR 55.5 43.5 53.6 65.5 

shapeDNA-S-LE 58.5 37.9 50.7 63.0 

shapeDNA-LDA 24.0 15.6 23.7 41.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Comparison of the 2-descriptor generated with and without the 

attraction and repulsion model. 

Methods NN(%) FT(%) ST(%) DCG(%) 

Fourier-Isomap-noAR 23.5 15.3 25.2 55.5 

Fourier-Isomap 53.3 46.3 52.7 73.5 

Fourier-MDS-noAR 17.1 12.7 21.7 53.3 

Fourier-MDS 50.3 43.7 50.7 72.1 

Fourier-Laplacian-noAR 21.9 17.9 26.5 56.6 

Fourier-Laplacian 51.3 48.1 53.4 74.3 

Fourier-tSNE-noAR 44.1 23.8 32.4 62.0 

Fourier-tSNE 54.8 45.8 51.3 72.9 
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descriptor. Perhaps because the training is not convergent to a

good minimal value in the learning process, but we can see that

the 2-descriptors still keep the precision while reducing the di-

mension. 

Besides, from Tables 4 , 5 and Fig. 7 , another conclusion is

that 2-descriptors generated by different DR methods of the same

shape descriptor have similar performance on shape retrieval. This

means that our dimensionality reduction architecture is less influ-

enced by the choice of DR methods. It can be seen that with more

high discriminative hand-craft descriptors proposed in the future,

the architecture we introduced is sure to be more meaningful for

high-speed shape query. 

4.5. The importance of the attraction and repulsion model 

In Section 3.3 , we introduce the attraction and repulsion model.

It is clear that the discriminatory ability of the generated 2-

descriptors is determined by hand-crafted shape descriptors and

DR methods. Thus, a good DR result is helpful for training a map-

ping that reduces the dimension of high dimensional descriptors,

while keeping the metric of the space of shape descriptors at

the same time. Because the attraction and repulsion model im-

proves the DR result, it is beneficial to training a good mapping.

For demonstrating the importance of the attraction and repulsion

model, we compare the retrieval performance of 2-descriptors gen-

erated with and without the attraction and repulsion model and

show the results in Table 6 , where the 2-descriptor generated from

descriptor A by DR method B without the attraction and repul-

sion model is denoted by A-B-noAR, and the 2-descriptor gener-

ated from descriptor A by DR methods B with the attraction and

repulsion model as A-B. It is clearly that the retrieval accuracy has

significantly improved by the attraction and repulsion model. 
.6. Comparison to other supervised DR methods 

The proposed method utilizes unsupervised DR methods as the

nitial state of our attraction and repulsion model. Although there

xist supervised DR methods, our methods outperform them on

he retrieval application. 

We conduct retrieval experiments for three supervised DR

ethods IsoKRR [45] , S-LE [46] and LDA [47] , on the datasets men-

ioned above. The out-of-sample mappings are applied for the test

ata after the embedding of the training points are learned. The

etrieval performance of these three methods is listed at the tail of

ables 4 and 5 , from which we can see a clear advantage of our

ethod over them gain. 

The three supervised DR methods have relatively good perfor-

ance on the training set. However, they behave worse on the

est dataset. The reason may be that they only preserve the pair-

ise distance of the training data, and can not extends well to the

hole data manifold. When dealing with out-of-sample sets, they

ave weaker generalization ability than our method. 

. Conclusion 

In this paper, we proposed a new architecture for shape re-

rieval. Our architecture combines the advantages of dimensional-

ty reduction and deep learning. Taking a lengthy shape descrip-

or as input, our method can generate a 2-descriptor with only

wo components effectively and efficiently. By the 2-descriptors,

ot only is the retrieval speed accelerated significantly, but the re-

rieval precision is improved as well, compared with the original

engthy shape descriptors. The 2-descriptors developed in this pa-

er will play a more and more important role in large scale shape

etrieval in huge shape data set with rapidly growing number of

hapes. 
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