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Abstract Diffusion curves can be used to generate
vector graphics images with smooth variation by
solving Poisson equations. However, using the classical
diffusion curve model, it is difficult to ensure
that the generated diffusion image satisfies desired
constraints. In this paper, we develop a model for
producing a diffusion image by solving a diffusion
equation with diffusion coefficients, in which color
layers and coefficient layers are introduced to facilitate
the generation of the diffusion image. Doing so allows
us to impose various constraints on the diffusion
image, such as diffusion strength, diffusion direction,
diffusion points, etc., in a unified computational
framework. Various examples are presented in this
paper to illustrate the capabilities of our model.

Keywords diffusion curves; diffusion coefficients;
color layers; coefficient layers; vector
graphics

1 Introduction
The diffusion curve model [1] is a powerful tool
for generating vector graphics images with smooth
variation. Unlike traditional representations of vector
images [2–4], which usually depend on a mesh,
diffusion curves are simply defined in terms of curves
with colors along either side, and the image is
generated by a diffusion procedure represented by
a Poisson equation. Thus, diffusion curves present a
simple way to create and edit vector images.

As noted, the generation of diffusion curves relies
on the solution of a Poisson equation. However,
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little can be done to control the solution of this
Poisson equation. Consequently, it is not possible to
ensure that the vector images generated by diffusion
curves satisfy various diffusion constraints, such
as diffusion strength, diffusion direction [5], and
diffusion points [6]. Currently, such constraints
require either dedicated constraint systems [5] or
different representations [6]. Overall, the generation
of diffusion curves with constraints is not only very
complicated, but also incompatible with the methods
of generating classical diffusion curves [1]. There
is thus a need to develop a convenient unified
computational framework to generate diffusion curves
that satisfy constraints.

This paper develops a model that employs a
diffusion equation with diffusion coefficients to
produce a vector image; we call it the diffusion
equation with coefficients (DCC) model. Compared
to the traditional diffusion curve model based on
a Poisson equation [1] (referred to as the Poisson
model), where diffusion properties of the diffusive
medium are not considered, in the DCC model,
diffusion coefficients of the media are utilized to
control the diffusion procedure, producing a wide
range of results. Using a concept similar to that of
image layers used in some image processing software
such as Photoshop, the DCC model uses two types
of layers, i.e., color layers and coefficient layers.
Coefficient layers include strength coefficient layers
and direction coefficient layers. (Color layers and
coefficient layers are explained in Section 3 in detail.)
Using color layers as initial values, and coefficient
layers as diffusion coefficients, the vector image
produced by the DCC model can be generated by
solving a diffusion equation. With suitably designed
coefficient layers, it is possible to ensure that DCC
vector images satisfy various constraints, such as
diffusion strength, diffusion direction, diffusion points,
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etc., all in a unified computational framework.
The structure of the rest of this paper is as follows.

In Section 2, related work on diffusion curves is
briefly reviewed. In Section 3, we introduce the DCC
model, including its representation and storage, and
some default settings and terminology. Techniques
for generating DCC vector images are elucidated in
Section 4. In Section 5, implementation details are
discussed together with experimental results. Finally,
Section 6 discusses limitations and future work, then
concludes the paper.

2 Related work
The diffusion curve model was developed by Orzan et
al. [1] for the generation of vector images, by solving
a Poisson equation taking user designed color curves
as boundary conditions. Since the shapes of curves
and colors along curves are easy to generate manually,
diffusion curves present a simple way to create or edit
vector images. While a Poisson equation is employed
in the diffusion curve model developed by Orzan et
al. [1], a bi-harmonic equation is utilized in Ref. [7]
to enable more natural interpolation and greater
expressive control. Moreover, diffusion curves have
been extended to diffusion surfaces to model many
different kinds of objects with internal structure [8].

In general, the computation of diffusion curves is
very complicated, so some researchers have striven for
greater speed. Jeschke et al. [9] utilized a multigrid
method on the GPU to accelerate rasterization
of diffusion curves; the image quality depends on
the resolution at which the Poisson equation is
solved. To keep sharp features in close-up views,
a high resolution is required, with large time and
storage costs. This problem may be alleviated by
warping the texture space according to the current
view, and employing a dynamic feature embedding
algorithm to keep sharp features [10].

To avoid the need for a computational grid
for diffusion curves, Bowers et al. [11] recast
the generation of diffusion curves as a global
illumination problem, and employed a stochastic
ray-tracing method to calculate colors. Pang et
al. [12] triangulated the image plane and interpolated
color values on the triangular mesh using mean
value coordinates. Boyé et al. [13] improved on that
approach by quadratic interpolation across triangles
to solve the bi-Laplace equation. Recently, Prévost

et al. [14] combined a triangular representation with
an extended ray tracing formulation, using cubic
interpolation within each triangle, to produce high-
quality images.

The representations of the diffusion curves in
the aforementioned work are implicit, requiring a
grid or triangular mesh. An explicit representation
of diffusion curves was presented in Ref. [15],
formulating the diffusion process in terms of Green’s
functions. This allows the vector image formed by
the diffusion curves to be solved in closed form, giving
the color value at any point directly. Going further,
a fast multipole representation was proposed based
on Green’s functions, for random-access evaluation
of diffusion curve images [6]. Similarly, an explicit
representation of the bi-harmonic equation was also
developed for rasterizing a diffusion curve in a line-
by-line approach [16].

However, it is difficult to control the solutions of
the corresponding Laplace, Poisson, or bi-harmonic
equation so that they satisfy desired constraints.
Instead, Bezerra et al. [5] reformulated the generation
of diffusion curves as a constrained minimization
problem. Extra constraints on diffusion strength
and diffusion direction may be imposed by the users.
In a further development, Gaussian radial basis
functions were incorporated into the fast multipole
representation to generate diffusion points [6].

Although these strategies allow diffusion curves to
generate various special effects, they are incompatible
with the numerical methods for solving Laplace,
Poisson, and bi-harmonic equations, thus increasing
the difficulty of implementation. However, the
DCC model developed in this paper employs a
diffusion equation with diffusion coefficients, allowing
us to enforce various kinds of constraints, on DCC
vector images, including diffusion strength, diffusion
direction, diffusion points, etc., all in a unified
computational framework.

3 Diffusion model with diffusion
coefficients

3.1 Preliminaries

Here, the following diffusion equation is employed to
generate the vector image:{

dI(x, y, t)/dt = div(c(x, y)∇I) + f(x, y)
I(x, y, 0) = f(x, y)

(1)
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where I(x, y, t) is the image at time t, I(x, y, 0) is
the initial image, div and ∇ are the divergence and
gradient operators respectively, c(x, y) is the diffusion
coefficient, and f(x, y) is the diffusion source.

In the diffusion equation (1), there are two
functions which must be designed by the user:

1) the diffusion source f(x, y),
2) the diffusion coefficient c(x, y).

On one hand, the diffusion source function f(x, y) is
taken as one component of the RGB color value along
either side of some geometric curves; in other places,
f(x, y) is set to 0. Therefore, to generate a color
image, Eq. (1) must be used three times, once for each
RGB component. On the other hand, the diffusion
coefficient function c(x, y) measures the diffusion
strength at point (x, y) of the diffusion medium. The
larger the coefficient c(x, y), the stronger the diffusion
at (x, y). In our implementation, we let c(x, y) ∈ [0, 1].
If c(x, y) = 0, this means that point (x, y) is a sink,
and diffuses nothing to its neighbours. By selecting
appropriate values, the coefficient function c(x, y)
can be used to control both diffusion direction and
diffusion strength (see below).

Consider the following differential equation (see
Eq. (1)):
dI(x, y, t)

dt
= div(c(x, y)∇I) = c(x, y)ΔI + ∇c · ∇I

(2)
where

ΔI =
∂2I

∂x2 +
∂2I

∂y2 and ∇I =
(

∂I

∂x
,

∂I

∂y

)
As in Ref. [17], we use a 4-nearest-neighbor
discretization of differential equation (2) on a square
lattice (see Fig. 1):

It+1
ij = It

ij + λ[cNij · ∂NIt
ij + cSij · ∂SIt

ij

+cEij · ∂EIt
ij + cWij · ∂WIt

ij ] (3)
where 0 � λ � 1/4 for the numerical scheme to
be stable [17], N, S, E, W denote North, South, East,
West respectively, cNij , cSij , cEij , and cWij are the
values of the coefficient function c(x, y) at the four
neighbors of the lattice vertex (i, j) (see Fig. 1):
cNij = ci,j+1, cSij = ci,j−1, cEij = ci+1,j , cWij =
ci−1,j , and

∂NIt
ij = It

i,j+1 − It
ij , ∂SIt

ij = It
i,j−1 − It

ij ,

∂EIt
ij = It

i+1,j − It
ij , ∂WIt

ij = It
i−1,j − It

ij

3.2 The diffusion model

As noted, the DCC model developed in this paper
uses two kinds of layers, color layers and coefficient

Fig. 1 The discretization scheme of the divergence operator (2).

layers. It is well known that the classical Poisson
model [1] consists of a geometric curve, a color source
curve along either side of the geometric curve, and a
linearly interpolated blur curve along the geometric
curve. A color source curve is a geometric curve with
color defined along it; the colors are used as diffusion
sources. In our DCC model, the discretized color
source curves constitute the color layers.

The coefficient layers are further divided into
strength coefficient layers and direction coefficient
layers. A strength coefficient layer represents a
scale function defined at each lattice vertex (i, j),
specifying the diffusion strength at (i, j). The value
of the kth strength layer at vertex (i, j) is denoted
by ck

ij . A direction coefficient layer is a vector-
valued function defined at (i, j), giving the diffusion
direction. Specifically, the vector for the lth direction
coefficient layer at (i, j) is denoted by

(dN
l
ij , dE

l
ij , dS

l
ij , dW

l
ij) (4)

and its components act on the North, South, East,
and West neighbors of vertex (i, j), respectively (see
Fig. 1). While a strength coefficient layer represents
isotropic behaviour of the diffusion medium, a
direction coefficient layer represents anisotropic
behaviour.

In general, in the DCC model, there is at least one
color layer, in which color sources are defined. Each
color layer is accompanied by at least one strength
layer and one direction layer. Diffusion is performed
on each color layer using the accompanying strength
and direction layers, generating a diffusion image. All
of the generated diffusion images are composited with
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masks to produce the final image. In the diffusion on
each color layer, the effects of strength and direction
layers are combined by multiplication. Consequently,
diffusion in the DCC model is performed as follows
for each color layer:

It+1
ij = It

ij + λ
[ ∏

k

ck
Nij

∏
l

dl
Nij

· ∂NIt
ij

+
∏
k

ck
Sij

∏
l

dl
Sij

· ∂SIt
ij

+
∏
k

ck
Eij

∏
l

dl
Eij

· ∂EIt
ij

+
∏
k

ck
Wij

∏
l

dl
Wij

· ∂WIt
ij

]
+ fij (5)

where fi,j is the value of f(x, y) at vertex (i, j),
ck

Nij
= ck

i,j+1, ck
Sij

= ck
i,j−1, ck

Eij
= ck

i+1,j , ck
Wij

= ck
i−1,j

and
dl

Nij
= dl

i,j+1, dl
Sij

= dl
i,j−1, dl

Eij
= dl

i+1,j , dl
Wij

= dl
i−1,j

In the example shown in Fig. 2(a), each vector in
the direction layer is set to (dNij = 0.8, dEij = 0.6,
dSij = 1.0, dWij = 1.0), while each value in the
strength layer is set as cij = 1.0, except for those
pixels on the curve adjacent on the right (explained
later) to the mountain-shaped color source curve,
which are set to 0.0. Using these settings for the
direction and strength layers, diffusion in the color
layer (illustrated in Fig. 13(a)) spreads northward and
eastward, generating the aurora image in Fig. 2(a).
As a comparison, Fig. 2(b) demonstrates the image
produced by the Poisson model [1] using the same
color layer as in Fig. 13(a), in which the color sources
are uniformly spread. Diffusion is iterated for 1000
steps to generate the two images in Figs. 2(a) and 2(b),
but the anisotropic diffusion in Fig. 2(a) is faster than
the isotropic diffusion in Fig. 2(b).

3.3 Representation and storage

As noted, the classical Poisson model uses a geometric
curve, and color source curves along either side of
it [1]. In the DCC model, the color source curves are
discretized into pixels, giving the color layer. Each
color layer is stored as an RGB color image.

To facilitate creation of the coefficient layer, an
intermediate representation is introduced between the
vector image representation and pixel representation.
The intermediate representation is generated while
discretizing the color source curves. It stores labels
for the color source curves, and coordinates of
pixels belonging to each color source curve. This

Fig. 2 With suitably designed values, the coefficient layer c(x, y)
can be used to control the diffusion direction and strength. (a) Aurora
image generated by the DCC model with direction coefficient vector
(dNij = 0.8, dEij = 0.6, dSij = 1.0, dWij = 1.0) at each pixel. (b)
Aurora image produced by the classical Poisson model [1].

intermediate representation allows easy selection of
color source curves in the pixel representation. When
users wish to select a piece of a color source curve,
they only need to choose a pixel on it, and the
whole curve can readily be determined from the
intermediate representation.

In our implementation, we use gray images to store
the coefficient layers. As coefficient values are in [0, 1],
they must be converted to gray values in [0, 255].

As a direction coefficient is a vector with four
components, each direction coefficient layer is stored
as a four-component image, where the values of
each component are scaled and rounded to integers
between 0 and 255 as above.
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3.4 Default settings and terminology

By default, there are one color layer, one strength
layer, and one direction layer in a DCC model. The
default values of the strength coefficients are 1, while
the default direction coefficient vectors are (1, 1, 1, 1).

A color layer is composed of several color source
curves; each piece of color source curve contains a
set of coloured pixels. As noted above, color source
curves always appear in pairs (see Fig. 5(a)). Colors
on one source curve diffuse in one direction locally,
while those on the other curve spread in the opposite
direction. For example, in Fig. 5(a), there is a
pair of color source curves along either side of the
outermost circle. Colors on the outer source curve
spread outwards, and those on the inner curve diffuse
inwards. In general, the color source curves in a pair
are separated by a set of pixels forming the separating
curve.

To facilitate the design of coefficient layers, we
need some notations: see Fig. 3(a). When walking
along a closed color source curve anticlockwise, the
pixels adjacent to the closed color source curve on
the left constitute the left adjacent curve, while those
adjacent on its right make up the right adjacent
curve. Similarly, when walking along an open color
source curve from the lower right corner to the upper
left corner, the left and right pixels adjacent to
the open color source curve form the left adjacent
curve and right adjacent curve, respectively (see
Fig. 3(b)). If both color source curves in a pair are
close, the separating curve is both the left adjacent
curve to the outer color source curve, and the right
adjacent curve to the inner color source curve. In
order to ensure colors on a pair of color source curves
spread in correct directions, strength coefficients at
pixels on the separating curve are taken to be 0 by
default.

4 Generation of diffusion curves with
coefficients

The DCC model has color layers and coefficient layers,
the former containing color sources for diffusion. The
latter are further classified into strength layers and
direction layers. In this section, we will show that, by
suitably designed coefficient layers, diffusion images
generated by the DCC model can satisfy a variety of
constraints in a unified computational framework.

Fig. 3 Left adjacent curve (green) and right adjacent curve (blue)
to (a) a closed color source curve (black) and (b) an open color source
curve (black), respectively.

4.1 Feature preservation

Features in an image are usually regions with
sharp boundaries. Using the DCC model, features
in a diffusion image can be preserved by setting
appropriate strength coefficients for pixels on the
boundary of a region. These coefficients cij have
values in [0, 1]; the lower the values for cij , the sharper
the boundary of the feature becomes. The strength
coefficients for the pixels inside a region can be used
to control the diffusion strength (see Section 4.4).

In the example in Fig. 4, to preserve the
features forming the stamens and veins, the strength
coefficients on the left and right adjacent curves to

Fig. 4 Feature preservation capability of the DCC model. Main figure:
lotus image generated by the DCC model, in which the yellow stamens
of the lotus and the veins of the lotus leaf are clearly preserved. Insets,
upper right: image from the Poisson model [1], in which the features
of stamens and veins are not well kept. Inset, lower left: color layer.
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their color source curves are all set to 0.0. After
diffusion, the yellow stamens of the lotus and the
veins of the lotus leaf are clearly preserved by the
DCC model (see Fig. 4). In comparison, insets show
local regions of the lotus and lotus leaf generated
by the classical Poisson model [1]. In this case the
stamens and veins in the image are not kept well. A
further inset at the lower left shows the color layer,
in which color sources are defined.

4.2 Emissivity

The emissivity of a color source curve can be
controlled by the strength coefficients for the pixels
on the left and right adjacent curves to the color
source curve. Figure 5(a) shows the color layer for
the moon image. A halo can be simulated for the
moon by adjusting the strength coefficients for the
pixels on the right adjacent curve to the outermost
circle (see the color source). In Fig. 5(b), the strength
coefficients on the right adjacent curve are set to
0.0, so the color sources on the outermost circle
emit nothing outside: there is no halo around the
moon. In Fig. 5(c), the strength coefficients on the
right adjacent curve are changed to 0.1, resulting in

Fig. 5 Moon image: the emissivity of the outermost color source
curve is controlled by setting different strength for the coefficients
of pixels on its right adjacent curve, to generate halos of different
intensity. (a) Color layer. (b)–(d) Strength coefficients of 0.0, 0.1, and
1.0 respectively.

a faint halo around the moon. Finally, in Fig. 5(d),
we set the strength coefficients on the right adjacent
curve to 1.0, making the emissivity of the color sources
on the outermost circle at their strongest, generating
the brightest halo around the moon.

4.3 Blurring

As noted, the classical Poisson model consists of
a geometric curve, color sources along either side
of the geometric curve, and a linearly interpolated
blurring curve along the geometric curve [1]. In images
generated by this model, a blurring effect is achieved
by a postprocessing procedure based on the linearly
interpolated blurring curve, after generation of the
diffusion image [1]. However, in the DCC model,
the blurring effect can be produced at the same
time as the diffusion image is generated, without
postprocessing: the blurring procedure of the DCC
model is integrated into the diffusion procedure.

In the DCC model, to control blurring, we just need
to set appropriate coefficients for the pixels on the
separating curve. For instance, see Fig. 6, in which
there is a pair of color source curves. The separating
curve between them is divided into two sub-curves at
the midpoint. While the strength coefficients at the
pixels on the left sub-curve are interpolated between
1.0 at the left corner to 0.0 at the right corner, those
on the right sub-curve are interpolated between 0.0
at the left corner to 1.0 at the right corner. Therefore,
the strength coefficient for the middle pixel of the
separating curve is 0, and increases from the middle to
the two ends, where the strength coefficients are both
1.0. With the strength coefficients so set, a blurring
effect can be generated by the DCC model without

Fig. 6 Generate a blurring effect by setting appropriate strength
coefficients for pixels on the separating curve.
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postprocessing. The result in Fig. 6 is that a sharp
boundary is preserved in the middle region, because
of the small strength coefficients there, while blurring
increases from the middle to the two ends, as the
strength coefficients increase. It should be noted that
to produce the blurring effect in Fig. 6, the color
sources stop emitting colors in the last 1000 time
diffusion steps by setting fij = 0 in Eq. (5).

4.4 Diffusion strength

Strength coefficients in a region can be employed
to control the diffusion strength in that region.
We provide a user-friendly method to set strength
coefficients within a region, using the interpolatory
basis functions proposed in Ref. [18]. Firstly, the
values of strength coefficients at various isolated
pixels, or pixels on some curves in the region Ω are
assigned by the user, denoted by

cik,jk
, (ik, jk) ∈ Ω, k = 1, . . . , K

Secondly, the assigned strength coefficient values
are interpolated using the interpolatory basis
functions [18] to give the strength coefficient c(i, j)
for pixel (i, j) in Ω:

c(i, j) =
K∑

k=1
cik,jk

φ(i − ik, a)φ(j − jk, a) (6)

where

φ(x, a) =
{

(sin(πx)/πx) e−ax2
, x �= 0

1, x = 0
and we take a = 1/3, as suggested in Ref. [18].

An example of controlling the diffusion strength
using the DCC model is presented in Fig. 7.
Figure 7(a) shows the color layer for a girl
image. There are two red dots (i.e., color sources)
on the girl’s left and right cheeks. To prevent these
red color sources diffusing too much into the face,
we set relatively small strength coefficients for pixels
around the two dots, allowing the strength coefficients
in a region around the two dots to be calculated
using the method stated above, as illustrated in
Fig. 7(b). As the strength coefficients in the region
are small, diffusion is effectively weakened in the face
region (see Fig. 7(c)). In comparison, in the image
produced by the Poisson model [1] (see Fig. 7(d)),
too much red color is spread out in the face region.

4.5 Diffusion direction

In the DCC model, with the help of the coefficient
layer, not only the diffusion strength, but also

Fig. 7 Girl image generated by the DCC model, using strength
coefficients to control diffusion strength within a region. (a) Color
layer. (b) Strength coefficient layer, with small strength coefficients
in the regions around the two red dots. (c) Image generated by the
DCC model with the color layer in (a) and the coefficient layer in (b);
diffusion of the red dots is effectively hindered in the face region. (d)
Image produced by the Poisson model with the color sources defined
using the color layer in (a); too much red color spreads into the face
region.

the diffusion direction can be controlled, using the
direction coefficient layers. Specifically, to cause
diffusion to occur in some directions, the diffusion
route should first be designated. See Fig. 8(a). The
lower left pixel in green is the color source, while
the red curve specifies the diffusion route, with black
arrows indicating diffusion directions. Similarly, in
Fig. 8(b), the red curve is the diffusion route, the
green dot represents the center of pixel (i, j) on
the route, and T is the unit tangent vector to the
route at pixel (i, j). To make the color source spread
along the diffusion route according to the diffusion
directions, the direction coefficients at the pixels on
the route should be assigned as follows. Firstly, the
unit tangent vector T is reversed to −T (blue arrow
in Fig. 8(b)). Secondly, from the four directions,
North, East, South, and West, select one or two
directions, making an angle with −T of less than
90◦. In Fig. 8(b), the two directions selected are West
and South. Let the angle between the West direction
and −T be α. Project −T onto the selected directions,
and take the lengths of the projections as the
corresponding components of the direction coefficient
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Fig. 8 Design of the direction coefficients. (a) Diffusion route (red
curve) is specified by users with diffusion directions (indicated by
black arrows). (b) The direction coefficient is calculated by reversing
the unit tangent vector T , and projecting the reversed tangent vector
−T to corresponding directions.

vector (see Eq. (4)). The remaining components are
set to 0.0. In the example in Fig. 8(b), the direction
coefficients at (i, j) are

(dNij
, dEij

, dSij
, dWij

) = (0.0, 0.0, sin α, cos α)
An example illustrating the effect of the direction

coefficients is presented in Fig. 9. In this example, we
wish to generate a partial rainbow based on the color
layer in Fig. 9(a). The rainbow is emitted from the
color sources in the lower left corner to the lower right
corner, along a specified diffusion route. To design
the direction coefficients, we first draw two concentric
circles, with point O = (oi, oj) at their center (see
Fig. 9(b)). Then, direction coefficients for pixels on
the two circles are calculated following the method
given. Specifically, suppose each circle is given by

(i − oi)2 + (j − oj)2 = r2

The unit tangent vector at pixel (i, j) on the circle is
((j − oj)/r, −(i − oi)/r)

Therefore, the direction coefficients are taken as{
(0, 0, −(i − oi)/r, (j − oj)/r) , i � oi

((i − oi)/r, 0, 0, (j − oj)/r) , i > oi

To calculate the direction coefficient at pixel R in
the region enclosed by the two concentric circles in
Fig. 9(b), we make a line connecting the center O

and the point R, which intersects the two circles at
the points P and Q, respectively. Then, the direction
coefficient at R is calculated by interpolating the
two direction coefficients at P and Q. The direction
coefficients at pixels outside the region enclosed by the
concentric circles are set to (0, 0, 0, 0). The resulting
rainbow generated using the specified direction
coefficients is illustrated in Fig. 9(c). In comparison,
Fig. 9(d) shows the result produced by the classical

Fig. 9 Rainbow image generated by the DCC model, with diffusion
directions specified by the direction coefficient layer. (a) Color layer. (b)
The diffusion route is enclosed by two concentric circles. (c) Rainbow
image generated by the DCC model with the direction coefficient
layer. (d) Image produced by the classical Poisson model [1] with the
same color sources as in (c).

Poisson model [1]: as the color sources are uniformly
distributed, no rainbow is produced. Once again, the
anisotropic diffusion in Fig. 9(c) is faster than the
isotropic diffusion in Fig. 9(d), as the diffusion times
of the two images are the same.

The direction coefficient layer can also be used to
produce shadows, which is not easy to do using the
Poisson model [1]. Figure 10(a) shows a pepper image
with a clear shadow generated by the DCC model,
by means of the direction coefficient layer. However,
in Fig. 10(b), produced by the Poisson model from
the same color sources as used for Fig. 10(a), there
is no clear shadow.

A further example of the effects of direction
coefficients is demonstrated in Fig. 2(a). Here,
the direction coefficients at each pixel are set to
(0.8, 0.6, 1.0, 1.0), and diffusion spreads northwards
and eastwards.

4.6 Diffusion points

Using the Poisson model, it is hard to produce the
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Fig. 10 Direction coefficient layers in the DCC model can be
employed to generate shadows, which is not easy to do using the
classical Poisson model [1]. (a) Pepper image with shadows generated
by the DCC model. (b) Image produced by the classical Poisson model,
using the same color sources as in (a). Note lack of a clear shadow in (b).

effect of diffusion points. To add diffusion points
to a diffusion image, Sun et al. [6] proposed using
a boundary element method, the fast multipole
representation, for rendering diffusion curve images,
together with the fast Gauss transform. However,
using the DCC model, it is very easy to add diffusion
points to a diffusion image. Figure 11 demonstrates
a starry sky image with diffusion points produced by
the DCC model. Color sources in the image are just
points with different sizes and colors; there are one
thousand diffusion points in the image. It should be
pointed out that in the DCC model, computation
speed does not depend on the number of diffusion
points.

Fig. 11 Starry sky image generated by the DCC model. Using
the DCC model, diffusion points can be produced in a unified
computational framework.

5 Discussions and results
Coefficient layers are the key ingredient in our DCC
model. Besides the already mentioned methods for
designing coefficient layers, we suggest two other
methods for generating strength coefficient layers. One
produces a strength coefficient layer by solving an
inverse problem, and the other method transforms a
gray image into a strength coefficient layer.

Strength coefficients for a diffusive medium can be
calculated from a real diffusion image by solving an
inverse problem. Suppose we are given a diffusion
result for a diffusive medium, represented as a
diffusion image, with known diffusion sources, and
unknown diffusion coefficients for the medium. From
it, we wish to calculate the diffusion coefficients,
i.e., strength coefficients in the DCC model, for the
medium. This is an inverse problem, called parameter
identification [19]. In each of Figs. 12(a) and 12(b), a
drop of water was dripped onto different paper. We
employ the regularization method [20] to find the
diffusion coefficients for the two papers from these two
diffusion images. The calculated diffusion coefficients
can be employed to simulate diffusion results for a

Fig. 12 Calculating strength coefficients in the DCC model by
solving an inverse problem. (a, b) Results of dripping a drop of water
onto two different papers with different diffusion coefficients. (c, d)
Simulated diffusion results using the diffusion coefficients calculated
from (a) and (b), respectively.
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specific diffusive medium. Figures 12(c) and 12(d)
show diffusion results using the diffusion coefficients
calculated for Figs. 12(a) and 12(b) respectively. As
in the real diffusion results in Figs. 12(a) and 12(b),
where the diffusion region on the paper in Fig. 12(b) is
larger than that in Fig. 12(a), the simulated diffusion
region in Fig. 12(d) is again larger than that in
Fig. 12(c).

As a strength coefficient layer is stored as a gray
image, any gray image can be used in principle
as a strength coefficient layer. However, to get
desirable diffusion images, the gray image used should
be deliberately selected or designed. For instance,
Fig. 13(b) shows a gray image, used as a coefficient

Fig. 13 Gray images used as strength coefficient layers. Using the
color layer in (a), and strength and direction coefficient layers as in
Fig. 2(a), one further strength coefficient layer, given by the gray
image in (b), is added to the DCC model, resulting in a more realistic
aurora image in (c).

layer. As well as the original color layer, strength
coefficient layer, and direction coefficient layer used
to generate the image in Fig. 2(a), the gray image
in Fig. 13(b) is used as an extra strength coefficient
layer. The more realistic aurora image in Fig. 13(c) is
generated by the DCC model, compared to the result
in Fig. 2(a).

We implemented the DCC model using Visual
Studio C++ 2013, and ran it on a PC with a
3.6 GHz Intel Core i7 CPU, 8 GB memory, and
an NVIDIA GeForce GTX 960 GPU. Timing and
storage requirements for the DCC model are given in
Table 1. In this table, the second column gives the
resolution of each diffusion image, the third, fourth,
and fifth columns are the numbers of color layers,
strength layers, and direction layers, respectively, the
sixth column is the total storage size for all layers
and the final diffusion image, the seventh column
is the number of iterations performed to generate
each diffusion image, and the last column is the
time taken. In our implementation, all color layers,
strength layers, direction layers, and the final diffusion
images are stored as .png files. Storage sizes for the
images demonstrated in this paper range from 132 KB
to 698 KB, while iteration counts for diffusion vary
from 1000 to 50,000. The running time of the DCC
model depends on both the image resolution and the
number of iterations. Considering the images in this
paper, the starry sky image (Fig. 11), with resolution
600 × 800 and 10 + 2000 iterations (for star color
layer and moon color layer, respectively), took the
shortest time of 1.52 s to produce, while the blurring
effect in Fig. 6, with resolution 691 × 1028 and 50,000
iterations, took the longest time of 395.02 s.

As diffusion in the DCC model is performed on a
color layer, which is an image, diffusion time does not
depend on the complexity of the color sources. For

Table 1 Storage and timing for the DCC model, showing storage used, number of iterations used, and time taken. For the rainbow image,
5000 iterations were used for the rainbow and 1000 for the cloud. For the starry sky image, 10 iterations were used for the stars and 2000 for
the moon, and iteration count of cloud is 1000

Image Size #Color #Strength #Direction Storage #Iteration Time
Fig. 2(a) (aurora) 600 × 800 1 1 1 191 KB 1000 2.83 s
Fig. 4 (lotus) 720 × 800 1 1 1 407 KB 15000 45.48 s
Fig. 5(d) (moon) 400 × 400 1 1 1 139 KB 2000 1.83 s
Fig. 6 (blurring) 691 × 1028 1 1 1 509 KB 50000 395.02 s
Fig. 7(c) (girl) 600 × 600 1 1 1 167 KB 10000 19.95 s
Fig. 9(c) (rainbow) 500 × 1000 2 2 2 132 KB 5000+1000 14.55 s
Fig. 10(a) (pepper) 750 × 800 1 1 1 319 KB 5000 16.72 s
Fig. 11 (starry sky) 600 × 800 2 2 2 430 KB 10+2000 1.52 s
Fig. 13(c) (aurora) 600 × 800 1 2 1 698 KB 1000 2.83 s
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example, Table 2 gives the running time for diffusion
of the stars in the starry sky image (Fig. 11) for
varying numbers of stars. Using a fixed resolution of
600 × 800 and fixed iteration count of 100, although
the numbers of diffusion points vary from 10 to
10,000, the diffusion time remains approximately
constant.

Table 2 Running time for the starry sky image (Fig. 11), for different
numbers of diffusion points

Points 10 100 1000 5000 10000
Time 0.620 s 0.634 s 0.641 s 0.610 s 0.641 s

6 Limitations, future work, conclusions
The DCC model contains three kinds of layers: color
layers, strength layers, and direction layers. Although
an intermediate representation is used to facilitate
the creation of strength layers and direction layers,
manual creation of these two kinds of layers is
still tedious. Therefore, convenient methods for
creating strength layers and direction layers should
be developed in the future.

The running time of the DCC model heavily
depends on the diffusion speed. As demonstrated
in Fig. 2, the isotropic diffusion speed is much slower
than the anisotropic diffusion speed, so isotropic
diffusion usually needs many more iterations and
running time. In future, we hope to accelerate
diffusion by designing appropriate direction layers
for anisotropic diffusion.

In summary, this paper gives the DCC model
for generating diffusion images by solving diffusion
equations with diffusion coefficients. Underpinning
the generation of diffusion images by the DCC model,
color layers and coefficient layers are used; these are
stored as color images or gray images. Color sources
for diffusion are defined in color layers, while diffusion
coefficients are specified in coefficient layers. The
latter allow constraints such as diffusion strength,
diffusion direction, and diffusion points to be easily
integrated into the DCC model, permitting diffusion
images with constraints to be generated in a unified
computational framework.
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