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Data driven composite shape descriptor design for shape

retrieval with a VoR-Tree

WANG Zi-hao LIN Hong-wei∗ XU Chen-kai

Abstract. We develop a data driven method (probability model) to construct a composite

shape descriptor by combining a pair of scale-based shape descriptors. The selection of a pair

of scale-based shape descriptors is modeled as the computation of the union of two events, i.e.,

retrieving similar shapes by using a single scale-based shape descriptor. The pair of scale-based

shape descriptors with the highest probability forms the composite shape descriptor. Given a

shape database, the composite shape descriptors for the shapes constitute a planar point set.

A VoR-Tree of the planar point set is then used as an indexing structure for efficient query

operation. Experiments and comparisons show the effectiveness and efficiency of the proposed

composite shape descriptor.

§1 Introduction

Shape descriptors are key values in shape retrieval. Several different kinds of shape descrip-

tors have been developed. They can be divided into three categories based on the dimension of

the descriptor, i.e., scale-based, vector-based, and matrix-based descriptors. Scale-based shape

descriptors employ scales to measure various properties of shapes, such as orientability [32], com-

pactness [3], rectilinearity [17], etc. Similarly, vector-based and matrix-based shape descriptors

describe shapes using vectors and matrices, respectively. For example, Shape-DNA [22] is a

vector-based descriptor, and DeepSD [8] is a matrix-based descriptor. The computations of

the vector and matrix-based descriptors are generally much more complicated than those of the

scale-based descriptors, while the shape retrieval precision of the scale-based descriptors is much

lower than that of the vector and matrix-based descriptors. Because the scale-based descriptors

measure different properties of a shape, a composition of several scale-based descriptors can

improve retrieval precision with less computational complexity than vector and matrix-based

descriptors.
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However, one must decide how many scale-based descriptors should be used in the com-

posite shape descriptor (CSD). When taking both shape retrieval precision and computational

complexity into account, it is most appropriate for the CSD to contain two scale-based shape

descriptors. The reasoning for this is as follows. If the CSD includes exactly two scale-based

descriptors, all of the CSDs of the shapes in a database constitute a planar data point set. Not

only can a Voronoi diagram of the planar data point set be constructed using efficient algo-

rithms, but a Voronoi diagram-based query is also very fast and efficient. However, if three or

more scale-based descriptors are included in the composite descriptor, the computation of the

shape query will become much more complicated when compared to queries of the CSD using

two scale-based descriptors. Therefore, it is most appropriate for the CSD to contain exactly

two scale-based descriptors.

Next, one must choose the two scale-based descriptors to be used for the CSD. We employ

a data-driven method to select the two scale-based descriptors and create the CSD with the

best performance. Data-driven methods are used to extract knowledge or insights from data

in various forms, either structured or unstructured [6]. With the dawn of the big data era,

data-driven methods have been quickly become increasingly powerful. Because there are many

existing geometric models, and the computations of scale-based shape descriptors are relatively

simply, it is easy to acquire a large amount of scale-based descriptor data. This makes the

selection of the two best scale-based descriptors using data-driven methods possible.

We first develop an algorithm using the MapReduce framework to calculate scale-based

descriptors for each geometric shape model. With this data, the Pearson correlation coeffi-

cients [15] are calculated for each pair of scale-based descriptors. We then consider an event to

be the retrieval of similar shapes using the scale-based descriptor as an inquiry, and test the

retrieval performance of the scale-based descriptor using four measurements: nearest neighbor

(NN), first-tier (1-tier), second-tier (2-tier), and discounted cumulative gain(DCG) [25] as the

probabilities of the event. Next, in order to choose the best pair of scale-based descriptors, we

model the problem as solving for the joint probability of two events. The pair of scale-based

descriptors with the highest joint probability are chosen as the two descriptors for creating the

CSD. Finally, for a given database of polygonal models, a CSD is calculated for every model in

the database. Using these CSDs as planar points, a VoR-Tree [24] is constructed with the aid

of the MapReduce framework, which can be employed to retrieve similar shapes for efficient

shape queries. The experiments presented in this paper validate the effectiveness and efficiency

of the proposed CSD.

The rest of this paper is arranged as follows. In Section 2, some related work is briefly

surveyed. The method for constructing the CSD is discussed in Section 3. The shape retrieval

data structure and algorithm are introduced in Section 4. After some experimental results and

discussion are presented in Section 5, we give our conclusions in Section 6.
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§2 Related work

In this section, we briefly review related work on shape descriptors and Voronoi diagram

based query methods.

2.1 Shape descriptors

Many different shape descriptors have been developed. As stated previously, they can be

divided into scale-based, vector-based, and matrix-based descriptors. Because the composite

shape descriptor designed in this paper is a combination of two scale-based descriptors, we focus

on the work related to scale-based shape descriptors for 3D polygonal models in this section,

including eccentricity E [20], rectilinearity R [17], convexity C1 [30] and C2 [16], compactness

Cst and Cd [3], and fractal dimension F [12].

Eccentricity. Eccentricity is the ratio of the length of the minor axis to that of the major

axis, which can be calculated using the principal axis method CPCA [20]. First, a covariance

matrix of the model’s surface is calculated:

C =

∫ ∫
v∈V

(v −m)(v −m)T ds

=
1

12E

N∑
i=1

Ei[f(Ai) + f(Bi) + f(Ci) + 9 · f((Ai +Bi + Ci)/3)],

where V is the set of vertices of the mesh, m denotes the center of mass, f(v) = (v−m)(v−m)T ,

E is the total surface area of the model, and Ei is the area of a triangle with vertices Ai, Bi,

and Ci, i = 1, 2, · · · , N . Because the lengths of the three principal axes equal the eigenvalues

of the covariance matrix C, the eccentricity can be represented as:

E =
λmin

λmax
, (1)

where λmin and λmax are the minimum and maximum eigenvalues of matrix C [23].

Rectilinearity. Rectilinearity is a shape descriptor derived from the concept of rectilinear

polygons, all of whose interior angles belong to the set {π
2 ,

3π
2 } [31]. Lian et al. [17] extended

the rectilinearity measurement from 2D polygons to 3D meshes. The rectilinearity of a 3D mesh

M is defined as:

R(M) = 3×
(

max
α,β,γ∈[0,2π]

S(M)

P (M,α, β, γ)
− 2

3

)
, (2)

where S(M) is the surface of M ,

P (M,α, β, γ) =
∑
i

P (Ti, α, β, γ),

and P (Ti, α, β, γ) denotes the sum of three projected areas on the Y OZ, ZOX , and XOY

planes of the triangular face Ti after rotating the coordinate frame around the x, y, z axes by

the angles α, β, γ.

Convexity. As proposed in [21,30], the convexity of a shape M is defined as:

C1(M) = P (αX1 + (1 − α)X2 ∈ M+), ∀α ∈ [0, 1], (3)

where P (·) denotes the probability of the event that for randomly chosen points A and B from
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the shape M , all points in the segment AB also belong to M . Recently, Lian et al. [16] proposed

a new convexity for 3D shapes, which is given by:

C2(M) = min
α,β,γ∈[0,2π]

Pview(M,α, β, γ)

Pface(M,α, β, γ)
, (4)

where Pface(M,α, β, γ) is the sum of the projected areas of triangles on the planes Y OZ, ZOX ,

and XOY after rotating the coordinate system around its x, y, z axes by the angles α, β, γ.

Pview(M,α, β, γ) denotes the sum of the areas of the valid regions in six views projected onto

the faces of the bounding box whose edges are parallel to the coordinate axes.

Compactness. Compactness is an intrinsic property that describes the degree to which

a shape is compact. The common compactness measurement for a 3D shape M is also called

sphericity, which is the ratio of the surface area of a sphere (with the same volume as the given

shape) to the surface area of M :

Cst(M) =
π

1
3 (6 · volume of M)

2
3

area of M
. (5)

In 2008, Bribiesca [3] proposed a new method to measure the compactness of a 3D shape. This

descriptor is based on volumetric reconstruction of a 3D mesh. Solids are discretized as voxel

representations. In this manner, compactness is formulated as:

Cd =
Ac

Acmax

=
n−A/6

n− ( 3
√
n)2

, (6)

where the contact area Ac corresponds to the sum of the areas of the contact surfaces which

are common to both voxels, the maximum contact surface area Acmax occurs when the solid

is a perfect cube, and A denotes the area of the enclosing surface of the solid composed of n

voxels.

Fractal dimension. The fractal dimension (FD), first proposed by Mandlebrot [18], can

be used to measure the degree of self-similarity of a shape. In this paper, we compute FD by

using the box-counting method [12]. This method places the shape M onto a cubic grid of size

r, then calculates the number of boxes occupied by the object, specifically, N(r). The slope of

the fitted r-N(r) curve is then taken as the value of FD. Additionally, in order to normalize

the attribute value to [0,1], we define the FD measure as:

F(M) =
1

3
· d lnN(r)

d ln 1/r
. (7)

Descriptor fusion. Although the scale-based descriptors outlined above are useful in

some specific cases, no single scale-based descriptor is capable of providing satisfactory retrieval

performance for a broad class of shapes [25,26]. In order to improve the retrieval performance,

some shape descriptor fusion methods were developed in previous literature. Chahooki et

al. [4] proposed a fusion method for contour and region based shape descriptors. The retrieval

results showed significant improvement after fusion. Akgül et al. [2] proposed a supervised

fusion method based on a linear combination of shape similarity scores provided by different

descriptors, aiming to find the optimal combination of weights by minimizing the empirical

ranking risk criterion. Additionally, Zhang et al. [29] investigated an unsupervised graph-based

fusion of retrieval sets using multiple methods to enhance retrieval precision.
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Note that the outputs of the methods developed in [2,4] are a linear combination of several

shape descriptors, and the method proposed in [29] integrates the retrieval results retrieved by

several descriptors into a better results using an ensemble learning technique. However, in our

method, a pair of scale based shape descriptors are selected by a data driven method, i.e., a

probability model, to form a vector for improving the retrieval results.

2.2 MapReduce

Hadoop MapReduce is an efficient offline, parallel, and distributed computing framework

for processing large datasets. It is the open source implementation of Google’s MapReduce [5]

and runs on HDFS, a distributed storage system. Using MapReduce, complex processes can be

reduced to two operations: Map and Reduce. The files to be processed are stored in HDFS and

broken into multiple blocks, called splits. The Map task first parses splits into <key, value>

pairs, and then uses a map() function defined by user to process the pairs. The intermediate

output of the Mapper is stored on a local disk and divided into several partitions, each of which

maps to a Reduce Task. The Reduce task can be divided into three stages:

• Shuffle stage: read the intermediate results of the Map task from the remote computing

node.

• Sort stage: sort pairs according to their keys.

• Reduce stage: call a user-defined reduce() function to process the corresponding interme-

diate <key, value> pairs and, finally, write the results to HDFS.

2.3 Voronoi diagram, VoR-Tree and query

Consider a given set of points (called sites)

P = {p1, p2, . . . , pn}.
A voronoi diagram of P is a partition of the space into disjoint regions R(pi), i = 1, . . . , n,

with a specified distance metric. Each region corresponds to one site and the region R(pi)

corresponding to the site pi covers points in space that are closer to pi than to any other site.

Many methods have been developed to construct Voronoi diagrams; they can be roughly divided

into four types: divide-and-conquer methods [7], incremental methods [10], Delaunay triangle

transform methods, and sweep-line-based methods [9].

Most existing Voronoi diagram parallel construction algorithms are based on the divide-

and-conquer strategy. Parallel frameworks, like MapReduce, are suitable for the construction

of Voronoi diagrams because they can be obtained by merging multiple partial Voronoi diagram-

s [1]. Using this idea, Akdogan et al. [1] proposed a Voronoi diagram construction algorithm

using MapReduce for geospatial query processing. In their method, data points are first sepa-

rated into several subsets. Then, the Map task is designed to generate partial Voronoi diagrams

for each subset, and the Reduce process aggregates and combines them into a single Voronoi

diagram.
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Additionally, Voronoi diagrams have been shown to be efficient at solving spatial data query

problems like kNN [13] with the help of extra indexing structures, such as the Voronoi history

graph D-tree [28]. Thus, the parallel algorithm should take not only the Voronoi diagram,

but also the indexing structure into consideration. In 2010, Sharifzadeh et al. [24] proposed

a new structure, VoR-Tree, which incorporates Voronoi diagrams into R-tree index structures.

Thus, it benefits from both the coarse granularity hierarchical grouping of R-trees and the fine

granularity exploration capability of Voronoi diagrams. Furthermore, it can be easily modified

for the MapReduce framework, so we use it as one of the retrieval tools in our work.

§3 Data driven composite shape descriptor design

In this section, a data driven method is developed to select a pair of descriptors to form

a composite shape descriptor (CSD). Specifically, after calculating the scale-based shape de-

scriptors (for example, the shape descriptors designated in Eqs. (1)-(7)) for each shape model

in a given shape database, we calculate the Pearson correlation coefficient [15] between each

pair of scale-based shape descriptors. The retrieval precisions of the shape descriptors are also

measured. Based on the resulting Pearson correlation coefficients and retrieval precisions, the

most desirable pair of shape descriptors is chosen by a probability model, forming the CSD. In

the following section, we will elaborate on the data driven CSD construction method.

Figure 1: The MapReduce framework for calculating shape descriptors.

Figure 2: Because the two shape descriptors R and C2 have a high positive correlation, the retrieval
results from R, C2, and (R, C2) are all highly similar. The retrieval results are all comprised of bodies,
pincers, and octopuses, except that there is an instance of glasses in the retrieval results of C2.

Suppose there are m types of scale-based shape descriptors Di, i = 1, 2, · · · ,m (such as
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those presented in Eqs. (1)-(7)). Given a shape database, the m types of scale-based shape

descriptors should be calculated for every shape model. In order to accommodate computations

for large scale shape databases, we employ the MapReduce framework to calculate the scale-

based shape descriptors (Fig. 1). When using MapReduce, 3D shape models are first serialized

and transformed into a data stream. The MapReduce framework includes two procedures: Map

and Reduce. In the Map procedure, all of the 3D shape models in a data stream are distributed

into n Mappers running in parallel. In each Mapper, each scale-based shape descriptor is

calculated by a different program. The Mapper inputs the shape data from the data stream,

calculates a scale-based shape descriptor, and outputs it back to the data stream in the format

< shape id, des id, des val >, where shape id, des id and des val are the ID of the shape, ID

of the scale-based shape descriptor, and value of the shape descriptor, respectively. Next, a

Combiner program captures these results from the data stream and assembles them into records,

each of which reads as:

< shape id, d1, d2, · · · , dm >,

where di is the value of the ith shape descriptor Di, i = 1, 2, · · · ,m. Finally, the Reducer

combines the records into a data file and writes it back to HDFS.

(a) (b) (c)

Figure 3: The two shape descriptors R and C2 are positively correlated. (a) R = 0.1161, C2 = 0.03250.
(b) R = 0.1174, C2 = 0.03440. (c) R = 0.1207, C2 = 0.03508.

Evidently, scale-based shape descriptors are not totally independent. Refer to Fig. 3, when

the shape model in Fig. 3(a) deforms into the shapes contained in Figs. 3(b) and 3(c), the

two shape descriptors R (rectilinearity) and C2 (convexity) display the same increasing trend.

Thus, they are positively correlated. It can be extrapolated that, if two scale-based shape de-

scriptors have high positive correlation or high negative correlation, not only are the retrieval

results of the two descriptors highly similar, but the retrieval results of the combination of the

two descriptors are also highly similar to those of each of the two descriptors individually. For

example, refer to Fig. 2, because the two shape descriptors R and C2 have a high positive corre-

lation, the retrieval results from R, C2, and (R, C2) are all highly similar. Actually, the retrieval

results are all comprised of bodies, pincers, and octopuses, except that there is an instance of

glasses in the retrieval results of C2. In other words, the combination of two descriptors with a

highly positive or highly negative correlation cannot significantly improve the retrieval results

of either of the individual descriptors. Therefore, in order to choose the best pair of scale-based

descriptors, the correlation between each pair of descriptors must be measured.

We employ the Pearson’s correlation coefficient [15] to measure the correlation between each
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pair of scale-based shape descriptors. Suppose there are n shapes in a given shape database,

and m types of scale-based descriptors for all of the shapes have been calculated. The same

types of descriptors for all of the shapes are then extracted, forming a shape descriptor vector:

Di = (di,1, di,2, · · · , di,n), i = 1, 2, · · · ,m, (8)

where di,k is the ith scale-based shape descriptor for the kth shape (k = 1, 2, · · · , n). We denote

d̄i =
∑n

j=1 di,j

n and construct an average shape descriptor vector D̄i as:

D̄i = (d̄i, d̄i, · · · , d̄i)1×n.

The Pearson’s correlation coefficients for the m types of scale-based descriptors are defined

as [15]:

rij =
(Di − D̄i) · (Dj − D̄j)√
(Di − D̄i)2

√
(Dj − D̄j)2

. (9)

Additionally, in order to measure the retrieval precision of a pair of scale-based descrip-

tors, the retrieval precision of each individual scale-based descriptor should be calculated in

advance. In our implementation, we employ four scores [25] to measure the retrieval precision

of scale-based descriptors: Nearest Neighbor (NN), First-tier (1-tier), Second-tier (2-tier), and

Discounted Cumulative Gain (DCG). For the meanings and computations of the four scores,

please refer to Ref. [25].

Figure 4: Probability model.

We are now in a position to seek the most desirable pair of scale-based shape descriptors to

create the CSD based on the Pearson’s correlation coefficients (9) and a score of the measure-

ment for retrieval precision. The most desirable pair of scale-based descriptors is the pair of

descriptors with the highest retrieval precision. In this section, we develop a probability model

to calculate a score for measuring the retrieval precision of a pair of scale-based descriptors. In

our developed probability model, for each scale-based shape descriptor Dk, k = 1, 2, · · · ,m, an

event is defined as:

Ek = {retrieved shape in the range |d− dk| < ε is similar to the query shape },
where dk is the value of shape descriptor Dk, k = 1, 2, · · · ,m for a query shape. The retrieval

precision of the descriptor Dk is considered to be the probability of Ek, i.e., P (Ek), k =

1, 2, · · · ,m. For a CSD (Di,Dj), an event is defined as:

Eij = {retrieved shape in the range (x− di)
2 + (y − dj)

2 < ε2 is similar to the query shape },
where di and dj are the values of the two scale-based shape descriptors Di and Dj , i �= j, i, j =
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1, 2, · · · ,m, for a query shape. The probability of Eij (i.e., P (Eij)) is the retrieval precision of

the CSD (Di,Dj).

Refer to Fig. 4, the x− and y−axis represent the values of the two scale-based descriptors Di

and Dj , respectively. Suppose we are given a query shape model whose values of descriptor Di

and Dj are di and dj , respectively. In the O−xy plane, the shape lies on the green point. Addi-

tionally, suppose that the shapes with their (di, dj) lying in the circle
√
(x− di)2 + (y − dj)2 < ε

are similar shapes to the query. In Fig. 4, there are 5 points (in blue) in the circle. However, in

the range |x− di| < ε, there are 12 points (in blue), and in the range |y − dj | < ε, there are 13

points (in blue). So, the probability of event Eij is 1 (P (Eij) = 1), the probability of event Ei

is 5
12 (P (Ei) =

5
12 ), and the probability of event Ej is 5

13 (P (Ej) =
5
13 ). Actually, in the case

illustrated in Fig. 4,

• if the event Ei occurs, Eij occurs, i.e., Ei ⊆ Eij ;

• if the event Ej occurs, Eij also occurs, meaning Ej ⊆ Eij .

Therefore, we use Ei ∪ Ej to approximate Eij .

Note that,

P (Ei ∪ Ej) = P (Ei) + P (Ej)− P (Ei ∩Ej), (10)

where the probabilities P (Ei) and P (Ej) are taken as retrieval precisions of the scale-based

descriptors Di and Dj , respectively, measured by scores NN, 1-tier, 2-tier, and DCG, as stated

above. Now, what is left unknown in Eq. (10) is P (Ei ∩ Ej). On one hand, if the events Ei

and Ej are totally independent, corresponding to rij = 0 (9), we have,

P (Ei ∩ Ej) = P (Ei)P (Ej).

On the other hand, if the events Ei and Ej are totally positively correlated (rij = 1 (9)), or

totally negatively correlated (rij = −1 (9)), the retrieval results of Di and Dj are the same,

meaning that P (Ei) = P (Ej). Therefore, when rij = 1 or rij = −1, it holds that:

P (Ei ∩Ej) = P (Ei) = P (Ej) =
P (Ei) + P (Ej)

2
.

We then formulate the computation of P (Ei ∩Ej) as the model:

P (Ei ∩ Ej) = (1− |rij |α)P (Ei)P (Ej) + |rij |β P (Ei) + P (Ej)

2
, (11)

where, 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 are the two parameters.

In total, the retrieval precision of the pair of descriptors (Di,Dj) is measured by:

P (Ei ∪Ej) = P (Ei) + P (Ej)− (1− |rij |α)P (Ei)P (Ej)− |rij |β P (Ei) + P (Ej)

2
, (12)

where P (Ei) and P (Ej) are taken as the retrieval precisions of descriptors Di and Dj , measured

by the scores NN, 1-tier, 2-tier, and DCG, respectively, and rij is the Pearson correlation

coefficient (9) of Di and Dj .

The next task is to determine the parameters α and β in model (12). For this purpose, the

retrieval precisions, i.e., the scores NN, 1-tier, 2-tier, and DCG, for each pair of scaled-based

shape descriptors (Di,Dj) are first calculated on a training set, denoted Cij , i, j = 1, 2, · · · ,m.

With the data Cij , the two parameters α and β can be determined by solving a constrained
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minimization problem:

min
α,β

∑
i,j

(Pi + Pj − (1− |rij |α)PiPj − |rij |β Pi + Pj

2
− Cij)

2

s.t. 0 ≤ α ≤ 1, 0 ≤ β ≤ 1,

(13)

where Pi = P (Ei), Pj = P (Ej) (refer to Eq. (12)). In our implementation, we use the Matlab

function lsqnonlin to solve the constrained minimization problem (13).

In conclusion, for the m scale-based shape descriptors Dk, k = 1, 2, · · · ,m, the retrieval

precision of each pair of descriptors (Di,Dj) is calculated by the model (12), and the pair of

shape descriptors with highest retrieval precision is used as the CSD.

§4 Shape retrieval by VoR-Tree

Given a shape database, we computed the CSD for each shape model in the database. The

computed CSDs constitute a planar point set G. In order to perform shape queries on the

planar point set G, we user the VoR-Tree data structure proposed in Ref. [24]. A VoR-Tree

is a combination of an R-tree and Voronoi diagram. The R-tree [11] is an indexing structure

commonly used in spatial query processing. An R-tree encloses subsets of the point set G with

minimum bounding rectangles. Leaf nodes of an R-tree store the points of a subset of the point

set G and each intermediate node contains the minimum bounding rectangle for its child nodes.

On the other hand, a Voronoi diagram [19] of a planar data point set with n points segments

the plane into n regions, each of which corresponds to a data point. Each region contains all

the points closest to the data point which it corresponds to. In order to construct the VoR-Tree

for the planar point set G, the Voronoi diagram and R-tree of G are first formed independently.

Then, for each leaf node of the R-tree, which stores a subset of the point set G, two records are

appended to each point in the leaf node. One record contains pointers to locations of Voronoi

neighbors of the point, and the other collects the vertices of the Voronoi cell for the point. In

this manner, the entire VoR-Tree for the point set G is constructed.

Given a query point q, we want to find the k Nearest Neighbors (kNN) to q with the help

of the VoR-Tree. For this purpose, a Best-First Search (BFS) algorithm is first employed to

find the Nearest Neighbor to q. With BFS, nodes are visited in the order from the root R of

the VoR-Tree to its leaves. These nodes are sorted in a minheap H according to their distances

from the query point q, and the node with minimum distance is put at the top of the minheap

H . Specifically, BFS first visits the root R and puts it into the minheap H . Then, at each step

of BFS, The node at the top of the heap H is removed and its entries are added into H . The

nearest neighbor p is found if it is an entry in a leaf node and its corresponding Voronoi cell

V (p) contains the query point q. Then, the nearest neighbor p is pushed into a new minheap H ′

with its distance to the query q. At each following step, the top of the minheap H ′ is deleted
and output as one of the kNN to the query q. The neighbors of the top of minheap H ′ in the

Voronoi diagram are then added into H ′ with their distances to the query q. After k steps, the

kNN to the query q are outputted. For additional details, please refer to Ref. [24].
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(a) The first example.

(b) The second example.

(c) The third example.

Figure 5: Three retrieval examples by Cst, R, (Cst,R), and ShapeDNA, respectively.

§5 Results and discussions

In our implementation, we employ the McGill Articulated 3D Shape Benchmark (MASB),

which contains 255 shape models, as a training set. The test set is a blending of several
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articulated shape sets, including Shrec15 (1200 shapes) and four subclasses of the Princeton

Shape Benchmark(PSB) [25]: winged vehicle class (135 shapes), animal class (155 shapes),

hand class (17 shapes), and lamp class (8 shapes). In total, the test set contains 1515 shape

models. The MapReduce frameworks for shape descriptor calculation, VoR-Tree construction,

and shape retrieval operations are run on a Hadoop platform (version: 2.6.0) comprised of four

PCs, each with a 2.0GHz dual-core CPU, 2GB RAM, and CentOS 7.0.

Table 1: Average time for computing seven descriptors for a shape model.
E R C1 C2 Cst Cd F

Time 8ms 20.4s 1632ms 46.78s 3ms 560ms 160ms

Table 2: The Pearson correlation coefficients (9) of seven shape descriptors.

E R C1 C2 Cst Cd F
E 1.00 -0.31 -0.12 -0.34 -0.48 0.30 -0.20

R -0.31 1.00 0.18 0.84 0.47 -0.16 0.53

C1 -0.12 0.18 1.00 0.21 -0.00 0.61 0.16

C2 -0.34 0.84 0.21 1.00 0.52 -0.29 0.44

Cst -0.48 0.47 -0.00 0.52 1.00 -0.35 0.19

Cd 0.30 -0.16 0.61 -0.29 -0.35 1.00 0.01

F -0.20 0.53 0.16 0.44 0.19 0.01 1.00

For each shape in the training set (MASB), we first calculate the seven scale-based shape

descriptors (Eqs. (1)-(7)) presented in Section 2.1 by using the MapReduce-based method de-

veloped in Section 3. The average time for computing the seven descriptors for a shape model

is listed in Table 1. It can be seen that the cost time ranges from 3ms to 46.78s. The Pearson

correlation coefficients rij (9) of the seven shape descriptors are then calculated. They are

listed in Table 2. We then use the four scores [25], NN, 1-tier, 2-tier, and DCG, to measure the

retrieval precisions of the seven scale-based descriptors (Eqs. (1)-(7)). The four scores of the

seven descriptors are presented in Table 3. In the developed probability model (12), the scores

are used as the probabilities.

Table 3: Retrieval precisions of seven shape descriptors on the training set.
NN 1-Tier 2-Tier DCG

Eccentricity E 26.3% 21.9% 38.3% 57.2%

Rectilinearity R 20.8% 18.9% 34.5% 54.6%

convexity C1 20.0% 16.8% 32.2% 53.1%

convexity C2 26.7% 21.4% 39.4% 56.7%

compactness Cst 21.2% 18.0% 34.1% 54.0%

compactness Cd 32.2% 28.7% 44.2% 60.8%

Fractal Dim F 21.6% 18.8% 36.0% 54.0%

Next, we compute Cij (13), the true retrieval precision of a pair of scale-based shape de-

scriptors (Di,Dj), measured by the four scores, on the training set. The data for Cij are listed

in Tables 10 and 11 in the Appendix. Because the matrix for the retrieval precision of each
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pair of scale-based descriptors is symmetric, we combine the two matrices resulting from two

scores into a single matrix. For example, in Table 10, the upper triangular matrix stores the

scores measured by NN and the lower triangular matrix stores the scores measured by 1-Tier.

Additionally, the structures of the matrices in Tables 5, 6, 11, 12, and 13 are the same.

With the data rij (Table 2), P (Ei) (Table 3), and Cij (Tables 10 and 11), we can learn

the parameters α and β for the probability model (12) by solving the constrained minimization

problem (13). The learned parameters α and β corresponding to the four scores NN, 1-Tier,

2-Tier, and DCG are listed in Table 4.

Table 4: The learned parameters α and β (12) corresponding to four scores.

NN 1-Tier 2-Tier DCG

α 0.6281 0.1032 0.0533 0.0447

β 0.7865 0.1323 0.0699 0.0540

Table 5: The computed retrieval precision for each pair of descriptors on the test set measured by
NN(upper triangle) and 1− T ier(lower triangle).

E R C1 C2 Cst Cd F
E N/A 0.20 0.13 0.12 0.30 0.12 0.12

R 0.11 N/A 0.24 0.21 0.31 0.21 0.20

C1 0.10 0.14 N/A 0.12 0.27 0.10 0.14

C2 0.09 0.11 0.09 N/A 0.25 0.14 0.10

Cst 0.20 0.21 0.19 0.18 N/A 0.26 0.25

Cd 0.09 0.12 0.09 0.10 0.19 N/A 0.13

F 0.08 0.11 0.09 0.07 0.18 0.08 N/A

Table 6: The computed retrieval precision for each pair of descriptors on the test set measured by
2− T ier(upper triangle) and DCG(lower triangle).

E R C1 C2 Cst Cd F
E N/A 0.18 0.17 0.14 0.31 0.15 0.13

R 0.44 N/A 0.22 0.18 0.34 0.20 0.18

C1 0.45 0.49 N/A 0.15 0.32 0.16 0.16

C2 0.44 0.44 0.44 N/A 0.29 0.15 0.12

Cst 0.52 0.53 0.53 0.50 N/A 0.31 0.30

Cd 0.44 0.46 0.44 0.45 0.52 N/A 0.15

F 0.42 0.44 0.44 0.40 0.50 0.43 N/A

We are now ready to test the developed probability model (12) on the test set with the pa-

rameters listed in Table 4. Similar to operations on the training set, the seven scale-based shape

descriptors (Eqs. (1)-(7)) are first calculated along with their Pearson correlation coefficients

rij (9). The retrieval precisions of the seven shape descriptors for the test set are then measured

by the four scores NN, 1-Tier, 2-Tier, and DCG. With this data, the retrieval precision for

each pair of shape descriptors can be calculated by using the probability model (12) with the

parameters α and β listed in Table 4. The computed precisions are listed in Tables 5 and 6. It
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can be seen that, in all of the precisions measured by the four scores, the highest precision is

that of the pair of scale-based descriptors (Cst,R). For comparison, we also calculate the true

retrieval precision of each pair of scale-based descriptors measured by the four scores and list

them in Tables 12 and 13 in the Appendix. In the true precisions, the highest value is also the

one for the pair of (Cst,R).

Moreover, to check the correlation between the computed precisions and true precisions, a

significance test for the correlation coefficient between the true and the computed precisions is

performed. To each of the four scores, the true and the computed precisions of the 21 shape

descriptor pairs form two vectors of length 21, respectively, and the correlation coefficient r

between them are calculated. Suppose ρ is the true correlation coefficient between the computed

precisions and true precisions. The significance test contains the following steps:

1. Give the null hypothesisH0 : ρ = 0 and the alternative hypothesisH1 : ρ �= 0, respectively.

2. Test the significance of r using the Student’s t-test, where the t-value of r is calculated

as:

t =
r − 0√
1−r2

n−2

(14)

3. Search the Student’s t-distribution table [14] to determine the corresponding two-side p-

value. If the p-value is below the threshold α chosen for statistical significance, the null

hypothesis is rejected, and the alternative hypothesis is accepted.

Denote n as the size of sample, and d as the degree of freedom. In our test, n = 21 and

d = n − 2 = 19. The correlation coefficients r and their corresponding t-values are listed in

Table 7. It can be seen that under each of the four scores, r > 0.9 and the absolute value of

t-value
∣∣∣t p

2 ,d

∣∣∣ > t 0.01
2 ,d = 2.861. Then we have p < α = 0.01, meaning that with α = 0.01,

H0 is rejected and H1 is accepted. This result shows that the precisions calculated by the

computation model (12) are highly significant correlated with the true precisions.

Therefore, with respect to the selection of the best pair of descriptors with the highest

retrieval precision, the selection made by the probability model perfectly conforms to the true

data in the test set.

Table 7: The correlation coefficients r between the true and computed precisions and the t-values used
in the significance test.

NN 1-Tier 2-Tier DCG
correlation coefficient r 0.9128 0.9511 0.9328 0.9407

t value 9.7445 13.4194 11.28 12.0871

As stated above, by using the probability model, the pair of descriptors (Cst,R) are chosen

for being the CSD. We will now evaluate its performance for shape retrieval. The CSDs of the

shapes in the test set constitute a planar point set. A VoR-Tree of the point set is construct-

ed [24] and taken as the data structure for shape retrieval. In Fig. 5, three retrieval examples
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Table 8: Retrieval precisions of shape descriptors on the test set.

NN 1-Tier 2-Tier DCG
E 6.4% 6.7% 12.6% 39.6%
R 19.1% 12.5% 21.9% 45.8%
C1 7.6% 8.5% 16.3% 43.6%
C2 6.5% 6.1% 10.8% 39.0%
Cst 30.0% 27.0% 45.3% 59.2%
Cd 8.0% 8.1% 15.2% 42.6%
F 8.4% 6.6% 11.8% 39.4%

(Cst,R) 50.5% 35.6% 52.1% 67.1%

are illustrated. In these examples, we compare the retrieval results of the CSD (Cst,R) with

those of the two indidivual shape descriptors Cst, R, and ShapeDNA [22]. For fairness, the first

two smallest eigenvalues of ShapeDNA are used for shape retrieval, also based on the VoR-Tree.

In the first example (Fig. 5(a)), while there are 9 correct results in the top 10 results retrieved

by the CSD (Cst,R), the numbers of correct results in the top 10 retrieval results by Cst, R,

and ShapeDNA, are 6, 4, and 2, respectively. In the second example (Fig. 5(b)), the numbers

of correct results in the top 10 retrieval results by Cst, R, (Cst,R), and ShapeDNA, are, 4, 3, 6,

and 2. Note that, in this example, only the nearest neighbor to the query, retrieved by the CSD

(Cst,R), is correct. In the third example (Fig. 5(b)), the numbers of correct results in the top

10 retrieval results by Cst, R, (Cst,R), and ShapeDNA, are, 3, 2, 5, and 1. In all three examples,

the performance of the CSD (Cst,R) is the best, while that of ShapeDNA with the two smallest

eigenvalues is the worst, even worse than that of the two individual scale-based shape descrip-

tors. Additionally, we calculate the retrieval precisions of the seven scale-based descriptors and

the composite descriptor (Cst,R), measured by the four scores (Table 8). Refer to Table 8,

the retrieval precisions of the CSD (Cst,R) show improvements of 20.5%, 8.6%, 6.8%, and 7.9%

compared with the highest precisions of the individual scale-based descriptors under the four

scores, NN, 1-Tier, 2-Tier, and DCG, respectively. We also illustrate the precision-recall curves

for the seven scale-based descriptors (Eqs. (1)-(7)), the CSD (Cst,R), and ShapeDNA in Fig. 6.

It can be seen that the performance of the precision-recall curve for the CSD (Cst,R) is the

best.

Furthermore, the average times for a kNN query with the shape descriptors Cst, R, (Cst,R),

and ShapeDNA are listed in Table 9 (where k = 10). For retrieval with (Cst,R) and ShapeDNA,

a VoR-Tree is used as the data structure. For retrieval with the scale-based descriptors Cst and
R, we employ a one-dimensional array and a dual-pivot quicksort algorithm [27]. It can be seen

that, while the average query time for scale-based shape descriptors Cst and R is 1 second or

so, the average query time for the CSD (Cst,R) and ShapeDNA needs 2.58 seconds.

Table 9: Average time for kNN query on the test set.

Cst R (Cst,R) ShapeDNA
Time 1.00s 1.02s 2.58s 2.58s
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Figure 6: Precision-recall curves for random queries on the test set, using the seven scale-based shape
descriptors (Eqs. (1)-(7)), the CSD (Cst,R), and ShapeDNA.

§6 Conclusion

In this paper, a probability model is developed to select a pair of scale-based shape de-

scriptors to form a CSD. The probability model concerns the retrieval precisions of individual

scale-based shape descriptors, and the Pearson correlation coefficient of each pair of descriptors.

To construct the probability model, we define the retrieval of similar shapes to a query as an

event, and the probability model is taken as the probability of the union of two events. In addi-

tion, the parameters in the probability model are learned by solving a constrained minimization

problem. Finally, the pair of shape descriptors with highest probability (i.e., retrieval preci-

sion) are taken as the components of the CSD. The CSDs of shapes in a shape set constitute

a planar point set. With the aid of VoR-Tree, the retrieval operation by CSD is efficient, and

the retrieval precision is clearly improved, compared with the scale-based shape descriptors.

Appendix

In this appendix, the true retrieval precision for each pair of descriptors on the training

set and test set is listed, measured by four scores NN, 1-Tier, 2-Tier, and DCG. Because the

matrix of retrieval precisions measured by a score for pairs of descriptors is symmetric, we

integrate two matrices measured by two scores into a matrix. For example, in Table 10, the

upper triangular matrix stores the precisions measured by NN, and the lower triangular matrix

is the precisions measured by 1-Tier.



104 Appl. Math. J. Chinese Univ. Vol. 33, No. 1

Table 10: The true retrieval precision for each pair of descriptors on the training set measured by
NN(upper triangle) and 1− T ier(lower triangle).

E R C1 C2 Cst Cd F
E N/A 0.36 0.29 0.39 0.30 0.47 0.38
R 0.24 N/A 0.33 0.31 0.31 0.42 0.23
C1 0.21 0.22 N/A 0.32 0.26 0.37 0.28
C2 0.23 0.23 0.18 N/A 0.35 0.50 0.35
Cst 0.21 0.24 0.21 0.20 N/A 0.39 0.29
Cd 0.31 0.33 0.26 0.36 0.29 N/A 0.40
F 0.21 0.22 0.24 0.22 0.25 0.29 N/A

Table 11: The true retrieval precision for each pair of descriptors on the training set measured by
2− T ier(upper triangle) and DCG(lower triangle).

E R C1 C2 Cst Cd F
E N/A 0.39 0.37 0.39 0.38 0.45 0.37
R 0.60 N/A 0.38 0.38 0.40 0.50 0.39
C1 0.57 0.57 N/A 0.34 0.38 0.42 0.40
C2 0.60 0.59 0.56 N/A 0.35 0.50 0.39
Cst 0.57 0.59 0.56 0.57 N/A 0.43 0.42
Cd 0.64 0.65 0.61 0.66 0.63 N/A 0.46
F 0.58 0.56 0.58 0.58 0.59 0.62 N/A

Table 12: The true retrieval precision for each pair of descriptors on the test set measured byNN(upper
triangle) and 1− T ier(lower triangle).

E R C1 C2 Cst Cd F
E N/A 0.22 0.23 0.16 0.42 0.20 0.14
R 0.17 N/A 0.33 0.23 0.51 0.26 0.20
C1 0.16 0.24 N/A 0.21 0.49 0.20 0.22
C2 0.12 0.17 0.16 N/A 0.40 0.19 0.14
Cst 0.24 0.36 0.29 0.26 N/A 0.43 0.44
Cd 0.11 0.18 0.12 0.11 0.32 N/A 0.18
F 0.10 0.16 0.14 0.10 0.32 0.13 N/A

Table 13: The true retrieval precision for each pair of descriptors on the test set measured by 2 −
T ier(upper triangle) and DCG(lower triangle).

E R C1 C2 Cst Cd F
E N/A 0.26 0.26 0.20 0.35 0.18 0.16
R 0.49 N/A 0.38 0.27 0.52 0.28 0.26
C1 0.50 0.57 N/A 0.26 0.41 0.19 0.23
C2 0.45 0.50 0.50 N/A 0.39 0.17 0.16
Cst 0.57 0.67 0.63 0.60 N/A 0.49 0.49
Cd 0.44 0.51 0.47 0.44 0.64 N/A 0.22
F 0.43 0.49 0.49 0.43 0.64 0.47 N/A
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