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While the traditional geometric design commu-
nity focuses on the design of curves and surfaces,
the advent of Isogeometric Analysis (IGA) [1] has
made the development of methods for designing
Trivariate B-spline Solids (TBSs) imperative. In
IGA, a valid TBS should have a positive Jacobian
value at every point in its domain. A negative
Jacobian value at any point in the domain of the
TBS can render the IGA invalid.

In this paper, we developed a method that can
generate a TBS with a guaranteed positive Jaco-
bian, if the initial TBS is valid. Using a tetra-
hedral (tet) mesh with six surfaces segmented on
its boundary mesh as the input, we first partition
the tet mesh model into seven sub-volumes using
the pillow operation [2], a method originally de-
veloped for improving the quality of hexahedral
meshes. After each of them is parameterized into
a cubic parameter domain, seven initial valid TBSs
are constructed. Moreover, starting with the ini-
tial valid TBSs, the boundary curves, boundary
surfaces and the TBSs are fitted by a geometric
iterative fitting algorithm, known as the Geomet-
ric Feasible Direction (GFD) algorithm. In each
iteration of the GFD algorithm, the movements of
the control points are restricted inside a feasible
region to ensure the validity. Finally, the smooth-
ness between two adjacent TBSs is improved by
the GFD algorithm. In this way, the validity of
the generated TBSs is guaranteed with desirable
smoothness between adjacent TBSs.

In this highlight, we will list the main results
and main algorithmic steps for generating the valid
TBSs. For more detail, please refer to the support-
ing information to this highlight.

Validity conditions: What we want to gen-
erate is a composition of valid TBSs with as de-
sirable as possible smoothness between adjacent
TBSs. So, the validity conditions and geometric
continuity definition between TBSs should be clar-
ified.

Given a B-spline curve of degree d with control
points Pi, i = 0, 1, · · · ,m, and denoting the differ-
ence vectors as,

Ti =
Pi+1 − Pi

‖Pi+1 − Pi‖
, i = 0, 1, · · · ,m− 1, (1)

the validity condition for the B-spline curve is:

Proposition 1 (Validity condition for B-spline
curves). A B-spline curve of degree d is valid if
the apertures of the minimum circular cones en-
closing the difference vectors (1)

{Ti,Ti+1, · · · ,Ti+d−1} , i = 0, 1, · · · ,m− d,

respectively, are all less than π. 2

Moreover, suppose we are given a B-spline sur-
face of degree du × dv with control points

Sij , i = 0, 1, · · · ,m, j = 0, 1, · · · , n,

and denote the difference vectors as

T u
ij =

Si+1,j − Sij

‖Si+1,j − Sij‖
, (2)
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and,

T v
kl =

Sk,l+1 − Skl

‖Sk,l+1 − Skl‖
. (3)

LetMIJ , I = 0, 1, · · · ,m−du, J = 0, 1, · · · , n−dv
be the sub-control-polygon constituted by the con-
trol points,

SIJ SI,J+1 · · · SI,J+dv

SI+1,J SI+1,J+1 · · · SI+1,J+dv

...
...

...

SI+du,J SI+du,J+1 · · · SI+du,J+dv

Moreover, suppose UIJ and VIJ are the unit axis
vectors of the minimum circular cones CuIJ and CvIJ
enclosing the difference vectors T u

ij (2) and T v
kl (3)

of the sub-control-polygonMIJ , starting from the
apexes of cones, respectively. Then, a sufficient
condition for the validity of a B-spline surface is
presented as follows:

Proposition 2 (Validity condition for B-spline
surfaces). If T u

ij ·UIJ > T u
ij · VIJ > 0, and, T v

kl ·
VIJ > T v

kl · UIJ > 0, where T u
ij and T v

kl are
defined on each sub-control-polygon MIJ , I =
0, 1, · · · ,m− du, J = 0, 1, · · · , n− dv, the B-spline
surface is valid. 2

Similarly, we can develop a sufficient condition
for determining the validity of a TBS H(u, v, w)
of degree du × dv × dw, with control points,

Hijk, i = 0, 1, · · · ,m, j = 0, 1, · · · , n, k = 0, 1, · · · , l.

Denote the difference vectors as

T u
ijk =

Hi+1,j,k −Hijk

‖Hi+1,j,k −Hijk‖
,

T v
ijk =

Hi,j+1,k −Hijk

‖Hi,j+1,k −Hijk‖
,

Tw
ijk =

Hi,j,k+1 −Hijk

‖Hi,j,k+1 −Hijk‖
.

Moreover, letting

GIJK , I = 0, 1, · · · ,m− du, J = 0, 1, · · · , n− dv,
K = 0, 1, · · · , l − dw,

be the sub-grid constituted by the control points

Hijk, i = I, I + 1, · · · , I + du,

j = J, J + 1, · · · , J + dv, k = K,K + 1, · · · ,K + dw,

we have,

Proposition 3 (Validity condition for TBSs). If

T u
iujuku

· (T v
ivjvkv

× Tw
iwjwkw

) > 0,

where T u
iujuku

,T v
ivjvkv

and Tw
iwjwkw

are defined on
each sub-grid GIJK , the TBS H(u, v, w) is valid.
2

The following proposition presents a sufficient
condition for the G1 geometric continuity between
two TBSs P (u, v, w), with control points Pijk, and
Q(µ, ν, ω), with control points Qijk, along their
common boundary surface P (u, v, 1) = Q(µ, ν, 0).

Proposition 4. Suppose the two TBSs
P (u, v, w) and Q(µ, ν, ω) have uniform knot vec-
tors with Bézier end condition, respectively. If

Pi,j,lp = Qi,j,0, and,

Pi,j,lp − Pi,j,lp−1 = α(Qi,j,1 −Qi,j,0),

where α > 0 is a positive constant, the two
TBSs P (u, v, w) and Q(µ, ν, ω) are G1 geometric
continuous along their common boundary surface
P (u, v, 1) = Q(µ, ν, 0). 2

Partition of the tet mesh model by pillow
operation: In order to perform the pillow oper-
ation on the input tet mesh, the tet mesh model
(Fig. 1(a)) is first parameterized into a cubic pa-
rameter domain Ω = [0, 1] × [0, 1] × [0, 1] by the
volume parameterization method [3] (Fig. 1(b)).
Then, the parameter domain Ω shrinks to the sub-
domain,

Ωc = [
1

3
,

2

3
]× [

1

3
,

2

3
]× [

1

3
,

2

3
].

As illustrated in Fig. 1(b), the vertices of the
cubes Ω and Ωc are denoted as v0, v1, · · · , v7,
and vc0, v

c
1, · · · , vc7, respectively. Connecting vi

to vci , i = 0, 1, · · · , 7 generates six sub-domains
Ωu,Ωd,Ωl,Ωr,Ωf , and Ωb. For example, the sub-
domain Ωu is enclosed by the six faces

v0v1v2v3, v
c
0v

c
1v

c
2v

c
3, v0v

c
0v

c
1v1,

v1v
c
1v

c
2v2, v2v

c
2v

c
3v3, v3v

c
3v

c
0v0.

Mapping the seven sub-domains into the original
tet mesh model produces seven partitioned sub-
volumes (Fig. 1(c)).

Construction of the initial TBSs: After the
input tet mesh model is partitioned into seven sub-
volumes. Each of them are parameterized into the
cubic parameter domain by the volume param-
eterization method developed in [3]. Note that
the parameterization on the common boundary
curves and common boundary surfaces of adja-
cent sub-volumes should conform with each other.
Moreover, each cubic parameter domain is sam-
pled into a (M + 1) × (N + 1) × (K + 1) grid.
Similar to the parameterization, the grid on the
common boundary curves and common boundary
surfaces of adjacent sub-volumes should be the
same. Mapping the grids into the corresponding
sub-volumes leads to the control grids of the ini-
tial TBSs, whose knot vectors are uniformly dis-
tributed in [0, 1] × [0, 1] × [0, 1] with Bézier end
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(a) (b) (c) (d) (e)

Figure 1 Generation of the trivariate B-spline solid by the pillowing operation and geometric iterative fitting. (a) The
input to the developed algorithm is a tet mesh with six surfaces segmented on its boundary mesh. (b) The tet mesh is
parameterized into the cubic domain [0, 1] × [0, 1] × [0, 1], which is partitioned into seven sub-domains. (c) Mapping the
seven sub-domains into the tet mesh model leads to the seven partitioned sub-volume meshes. (d) Cut-away view of the
generated TBSs. (e) Distribution of the scaled Jacobian values on the TBSs.

conditions. Owing to the conformity of the pa-
rameterization and control grids on the common
boundary curves and boundary surfaces, there is
the unique control grid on each boundary curve or
boundary surface.

Geometric iterative fitting: The result gen-
erated by the developed method is a composition
of seven valid TBSs. As stated above, the ob-
jective function for guaranteeing the validity of a
TBS is highly nonlinear with a large number of un-
knowns, so the optimization is prone to fail. Even
if we can find a solution, the computation for solv-
ing the optimization problem is complicated, ow-
ing to a significant number of unknowns. To re-
duce the difficulty in guaranteeing the validity of
the TBSs, we solve this problem step by step, in
the order of,

(1) boundary curve fitting,

(2) boundary surface fitting, and,

(3) TBS fitting.

As mentioned above, the first objective we want
to reach is that the generated TBSs should be
valid, that is, the Jacobian value at any point of
each TBS should be greater than 0. This means
that the boundary curves and boundary surfaces of
TBSs should also be valid. After the TBS fitting is
completed, the smoothness between two adjacent
TBSs, and the fairness of each TBS are improved.
The boundary curve fitting, boundary surface fit-
tig, TBS fitting and the smoothness and fairness
improvement are performed by solving the corre-
sponding constrained minimization problems.

Results: With the devloped method, we gener-
ated six TBS models. All of them are valid. Actu-
ally, in each of the six TBS models, the Jacobian

values are larger than 0.5 in over 80% region. In
Fig. 1(d), the cut-away views of the TBS models are
illustrated. It can be seen that the iso-parametric
curves vary smoothly not only inside a single TBS,
but between two adjacent TBSs as well. Moreover,
in Fig. 1(e), the distribution of the scaled Jacobian
values [4] of the TBSs is visualized with different
colors. The darker the red color, the higher the
scaled Jacobian values. As shown in Fig. 1(e), the
scaled Jacobian values of the model are all posi-
tive. A majority of region of the TBS model is in
red.
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