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Abstract Data fitting is an extensively employed modeling tool in geometric design. With the advent

of the big data era, the data sets to be fitted are made larger and larger, leading to more and more least-

squares fitting systems with singular coefficient matrices. LSPIA (least-squares progressive iterative

approximation) is an efficient iterative method for the least-squares fitting. However, the convergence

of LSPIA for the singular least-squares fitting systems remains as an open problem. In this paper, we

showed that LSPIA for the singular least-squares fitting systems is convergent. Moreover, in a special

case, LSPIA converges to the Moore-Penrose (M-P) pseudo-inverse solution to the least-squares fitting

result of the data set. This property makes LSPIA, an iterative method with clear geometric meanings,

robust in geometric modeling applications. In addition, we discussed some implementation detail of

LSPIA, and presented an example to validate the convergence of LSPIA for the singular least-squares

fitting systems.

Keywords LSPIA, singular least-squares fitting system, data fitting, geometric modeling

1 Introduction

Least-squares fitting is a commonly employed approach in engineering applications and

scientific research, including geometric modeling. With the advent of the big data era, least-

squares fitting systems with singular coefficient matrices often appear, when the number of fitted

data points is very large, or there are “holes” in the fitted data point set [1, 2]. LSPIA [3, 4]

is an efficient iterative method for least-squares curve and surface fitting [5]. Although the

convergence of LSPIA for the nonsingular least-squares fitting systems was shown in Refs. [3, 4],

the convergence analysis of LSPIA for the singular least-squares fitting systems is not easy to

perform, and remains as an open problem. In this paper, we will show that, when the coefficient

matrix of a least-squares fitting system is singular, LSPIA is still convergent. This property of

LSPIA will promote its applications in the large scale data fitting.
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The motivation of this paper comes from our research practices, where some singular least-

squares fitting systems emerge. For examples, in generating trivariate B-spline solids by fitting

tetrahedral meshes [6], and in fitting images with holes by T-spline surfaces [3], the coefficient

matrices of least-squares fitting systems are singular. There, LSPIA was employed to solve the

singular least-squares fitting systems, and converged to stable solutions. However, in Ref. [3, 6],

the convergence of LSPIA for the singular least-squares fitting systems was not proved.

The progressive-iterative approximation (PIA) method was first developed in [7, 8]. Because

PIA endows iterative methods with geometric meanings, it is suitable to handle geometric

problems appearing in the field of geometric design. It has been shown that the PIA method

is convergent for the B-spline fitting [4, 9], NURBS fitting [10], T-spline fitting [3], subdivision

surface fitting [11–13], as well as curve and surface fitting with the totally positive basis [8].

The iterative method of the geometric interpolation (GI) [14] is similar as that of PIA. While

PIA depends on the parametric distance, the iterations of GI rely on the geometric distance.

Moreover, the PIA and GI methods have been employed in some practical applications, such

as reverse engineering [15, 16], curve design [17], surface-surface intersection [18], trivariate

B-spline solid generation [6], etc.

The structure of this paper is as follows. In Section 2, we show the convergence of LSPIA for

the singular least-squares fitting systems. In Section 3, some implementation details of LSPIA

are discussed, and an example is illustrated. Finally, Section 4 concludes the paper.

2 The LSPIA iterative format and its convergence analysis

To integrate the LSPIA iterative methods for B-spline curves, B-spline patches, trivariate

B-spline solids, and T-splines, their representations are rewritten as the following form,

P (t) =

n∑
i=0

PiBi(t). (1)

Specifically, T-spline patches [19] and trivariate T-spline solids [20] can be naturally written as

the form (1). Moreover,

• If P (t) (1) is a B-spline curve, then, t is a scalar u, and Bi(t) = Ni(u), where Ni(u) is a

B-spline basis function.

• If P (t) (1) is a B-spline patch with nu × nv control points, then, t = (u, v), and Bi(t) =

Ni(u)Ni(v), where Ni(u) and Ni(v) are B-spline basis functions. In the control net of

the B-spline patch, the original index of Ni(u) is [ i
nu

], and the original index of Ni(v) is

(i mod nu), where [ i
nu

] represents the maximum integer not exceeding i
nu

, and (i mod nu)

is the module of i by nu.

• If P (t) is a trivariate B-spline solid with nu × nv × nw control points, then t = (u, v, w),

and Bi(t) = Ni(u)Ni(v)Ni(w). In the control net of the trivariate B-spline solid, the

original index of Ni(w) is [ i
nunv

], the original index of Ni(u) is [ (i mod nunv)
nu

], and the

original index of Ni(v) is ((i mod nunv) mod nu).
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Figure 1: All of DVDs δkj distributed to the control point P
(k)
4 are weighted averaged to generate

the DVC ∆
(k)
i . Here, blue circles are the data points, and the red curve is the kth curve P (k)(u).

Suppose we are given a data point set

{Qj = (xi, yi, zi), j = 0, 1, · · · ,m}, (2)

each of which is assigned a parameter tj , j = 0, 1, · · · ,m. Let the initial form be,

P (0)(t) =

n∑
i=0

P
(0)
i Bi(t), n ≤ m. (3)

It should be noted that, though the initial control points P
(0)
i are usually chosen from the

given data points, the initial control points are unrelated to the convergence of LSPIA. To

perform LSPIA iterations, data points are classified into groups (Fig. 1). All of data points

with parameters tj satisfying Bi(tj) 6= 0 are classified into the ith group, corresponding to the

ith control point (3).

After the kth iteration of LSPIA, the kth form P (k)(t) is generated,

P (k)(t) =

n∑
i=0

P
(k)
i Bi(t).

To produce the (k+1)st form P (k+1)(t), we first calculate the difference vectors for data points

(DVD) (Fig. 1),

δ
(k)
j = Qj − P (k)(tj), j = 0, 1, · · · ,m.

And then two procedures are performed, i.e., vector distribution and vector gathering (Fig. 1).

In the vector distribution procedure, all of DVDs corresponding to data points in the ith group

are distributed to the ith control point P
(k)
i ; in the vector gathering procedure, all of DVDs

distributed to the ith control point P
(k)
i are weighted averaged to generate the difference vectors

for control points (DVC) (Fig. 1),

∆
(k)
i =

∑
j∈Ii Bi(tj)δj∑
j∈Ii Bi(tj)

, i = 0, 1, · · · , n,
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where Ii is the index set of the data points in the ith group. Then, the new control point P
(k+1)
i

is produced by adding the ith DVC ∆
(k)
i to P

(k)
i , i.e.,

P
(k+1)
i = P

(k)
i + ∆

(k)
i , i = 0, 1, · · · , n, (4)

leading to the (k + 1)st iteration form,

P (k+1)(t) =

n∑
i=0

P
(k+1)
i Bi(t). (5)

In this way, we get a sequence of iterative forms {P k(t), k = 0, 1, · · · }. Let,

P (k) = [P
(k)
0 ,P

(k)
1 , · · · ,P (k)

n ]T , (6)

Q = [Q0,Q1, · · · ,Qm]T . (7)

From Eq. (4), it follows,

P
(k+1)
i = P

(k)
i +

1∑
j∈Ii Bi(tj)

∑
j∈Ii

Bi(tj)(Qj − P (k)(tj))

= P
(k)
i +

1∑
j∈Ii Bi(tj)

∑
j∈Ii

Bi(tj)

(
Qj −

n∑
l=0

P
(k)
l Bl(tj)

)

Therefore, we get the LSPIA iterative method in matrix form,

P (k+1) = P (k) + ΛAT (Q−AP (k)), k = 0, 1, · · · (8)

where, Λ = diag
(

1∑
j∈I0

B0(tj) ,
1∑

j∈I1
B1(tj) , · · · ,

1∑
j∈In

Bn(tj)

)
is a diagonal matrix, and A is a

collocation matrix,

A =


B0(t0) B1(t0) · · · Bn(t0)

B0(t1) B1(t1) · · · Bn(t1)
...

...
...

B0(tm) B1(tm) · · · Bn(tm)


(m+1)×(n+1)

.

Remark 2.1 The iterative method (8) is the one presented in Ref. [3], and the iterative

method developed in [4] is actually a special case of the method (8). In the special case [4],

diagonal elements of the diagonal matrix Λ are equal to each other.

Remark 2.2 Because the diagonal elements of the diagonal matrix Λ in the iterative

method (8) are all positive, the diagonal matrix Λ is nonsingular.

To show the convergence of the LSPIA iterative method (8), it is rewritten as,

P (k+1) = (I − ΛATA)P (k) + ΛATQ. (9)

As stated above, it has been shown that, when the coefficient matrix ATA of a least-squares

fitting system is nonsingular, the LSPIA iterative method is convergent [3, 4]. However, the
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convergence of LSPIA with singular coefficient matrix ATA still remains as an open problem.

In the following, we will show that, even the matrix A is not of full rank, and then ATA is

singular, the LSPIA iterative method (8) (9) is still convergent.

We first show some lemmas.

Lemma 2.3 The eigenvalues λ of the matrix ΛATA are all real, and satisfy 0 ≤ λ ≤ 1.

Proof On one hand, suppose λ is an arbitrary eigenvalue of the matrix ΛATA with eigen-

vector v, i.e.,

ΛATAv = λv. (10)

By multiplying A at both sides of Eq. (10), we have,

AΛAT (Av) = λ(Av).

It means that λ is also an eigenvalue of the matrix AΛAT with eigenvector Av. Moreover,

∀x ∈ Rm+1, because,

xTAΛATx = xTAΛ
1
2 (Λ

1
2 )TATx = (xTAΛ

1
2 )(xTAΛ

1
2 )T ≥ 0,

the matrix AΛAT is a positive semidefinite matrix. Eigenvalues of a positive semidefinite matrix

are all nonnegative, so λ is real, and λ ≥ 0.

On the other hand, because the B-spline basis functions are nonnegative and form a partition

of unity, it holds, ‖A‖∞ = 1, where ‖·‖∞ denotes the ∞-norm of a matrix. Together with∥∥ΛAT
∥∥
∞ = 1, we have, ∥∥ΛATA

∥∥
∞ ≤

∥∥ΛAT
∥∥
∞ ‖A‖∞ = 1.

Therefore, the eigenvalue λ of the matrix ΛATA satisfies,

λ ≤
∥∥ΛATA

∥∥
∞ ≤ 1.

In conclusion, the eigenvalues λ of the matrix ΛATA are all real, and satisfy 0 ≤ λ ≤ 1. �

Because ATA (9) is singular, ΛATA is also singular, and then λ = 0 is its eigenvalue. The

following lemma deals with the relationship between the algebraic multiplicity and geometric

multiplicity of the zero eigenvalue λ = 0 of ΛATA.

Remark 2.4 In this paper, we assume that the dimension of the zero eigenspace of ATA

is n0. So, the rank of the (n+ 1)× (n+ 1) matrix ATA is

rank(ATA) = n− n0 + 1.

Because Λ is nonsingular (refer to Remark 2.2), we have

rank(ΛATA) = n− n0 + 1.

Lemma 2.5 The algebraic multiplicity of the zero eigenvalue of matrix ΛATA is equal to

its geometric multiplicity.
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Proof The proof consists of three parts.

(1) The algebraic multiplicity of the zero eigenvalue of matrix ATA is equal to its geometric

multiplicity. Because ATA is a positive semidefinite matrix, it is a diagonalizable matrix. Then,

for any eigenvalue of ATA (including the zero eigenvalue), its algebraic multiplicity is equal to

its geometric multiplicity. In Remark 2.4, we assume that the dimension of the zero eigenspace

of ATA, i.e., the geometric multiplicity of zero eigenvalue of ATA, is n0. So, the algebraic

multiplicity and geometric multiplicity of zero eigenvalue of ATA are both n0.

(2) The geometric multiplicity of the zero eigenvalue of the matrix ΛATA is equal to that of

the matrix ATA. Denote the eigenspaces of the matrices ΛATA and ATA associated with the

zero eigenvalue λ = 0 as K0(ΛATA) and K0(ATA), respectively. The geometric multiplicities

of the zero eigenvalue of matrices ΛATA and ATA are dimensions of K0(ΛATA) and K0(ATA),

respectively.

Note that the matrix Λ is nonsingular (Remark 2.2). On one hand, ∀v ∈ K0(ΛATA),ΛATAv =

0, leading toATAv = Λ−10 = 0. So, v ∈ K0(ATA). On the other hand, ∀w ∈ K0(ATA), ATAw =

0, resulting in ΛATAw = 0. So, w ∈ K0(ΛATA). In conclusion, K0(ΛATA) = K0(ATA).

Therefore, the geometric multiplicity of the zero eigenvalue of the matrix ΛATA is equal to

that of the matrix ATA.

(3) The algebraic multiplicity of the zero eigenvalue of the matrix ΛATA is equal to that of

the matrix ATA. Denote I as an (n+ 1)× (n+ 1) identity matrix,

ATA = (bij)(n+1)×(n+1), and, Λ = diag(d0, d1, · · · , dn), (11)

where di > 0, i = 0, 1, · · · , n.

The characteristic polynomial of ATA and ΛATA can be written as [21, pp.42],

pATA(λ) = det(λI −ATA) = λn+1−E1(ATA)λn +E2(ATA)λn−1 + · · ·+ (−1)n+1En+1(ATA),

(12)

and,

pΛATA(λ) = det(λI−ΛATA) = λn+1−E1(ΛATA)λn+E2(ΛATA)λn−1+· · ·+(−1)n+1En+1(ΛATA),

(13)

where Ek(ATA), k = 1, 2, · · · , n + 1 are the sums of the k × k principal minors of ATA, and

Ek(ΛATA), k = 1, 2, · · · , n+ 1 are the sums of the k × k principal minors of ΛATA.

On one hand, because the algebraic multiplicity of the zero eigenvalue of ATA is n0 (see

Part (1)), its characteristic polynomial (12) can be represented as,

pATA = λn0
(
λn−n0+1 − E1(ATA)λn−n0 + · · ·+ (−1)n−n0+1En−n0+1(ATA)

)
.

where En−n0+1(ATA) 6= 0. Moreover, because ATA is positive semi-definite, all of its principal

minors are nonnegative. Therefore, we have En−n0+1(ATA) > 0. Consequently, all of (n−n0 +

1) × (n − n0 + 1) principal minors of ATA are nonnegative, and there is at least one positive

(n− n0 + 1)× (n− n0 + 1) principal minor of ATA.
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On the other hand, because rank(ΛATA) = n−n0+1 (Remark 2.4), all of l×l (l > n−n0+1)

principal minors of ΛATA are zero. Therefore,

El(ΛA
TA) = 0, l > n− n0 + 1. (14)

Denote MATA(i1, i2, · · · , ik) and MΛATA(i1, i2, · · · , ik) are the k × k principal minors of ATA

and ΛATA, respectively. Now, considering a k×k principal minor of ΛATA (refer to Eq. (11)),

we have,

MΛATA(i1, i2, · · · , ik) = det


di1bi1,i1 · · · di1bi1,ik

· · · · · · · · ·

dikbik,i1 · · · dikbik,ik

 = (

k∏
j=1

dij )MATA(i1, i2, · · · , ik),

where
∏k

j=1 dij > 0 (Eq. (11)). In other words, the principal minor MΛATA(i1, i2, · · · , ik) of

ΛATA is the product of a principal minor MATA(i1, i2, · · · , ik) of ATA and a positive value∏k
j=1 dij . Together with the result that all of (n − n0 + 1) × (n − n0 + 1) principal minors of

ATA are nonnegative, and there is at least one positive (n − n0 + 1) × (n − n0 + 1) principal

minor of ATA, the sum of all (n − n0 + 1) × (n − n0 + 1) principal minors of ΛATA, namely,

En−n0+1(ΛATA), is positive. That is,

En−n0+1(ΛATA) > 0. (15)

By Eqs. (14) and (15), the characteristic polynomial of ΛATA (13) can be transformed as,

pΛATA = λn0
(
λn−n0+1 − E1(ΛATA)λn−n0 + · · ·+ (−1)n−n0+1En−n0+1(ΛATA)

)
,

where En−n0+1(ΛATA) > 0. It means that the algebraic multiplicity of the zero eigenvalue of

ΛATA is n0, equal to the algebraic multiplicity of the zero eigenvalue of ATA.

Combining the results of part (1)-(3), we have shown that the algebraic multiplicity of the

zero eigenvalue of matrix ΛATA is equal to its geometric multiplicity. �

Denote Jr(a, b) as a r × r matrix block,

Jr(a, b) =



a b

a b 0
. . .

. . .

0 . . . b

a


r×r

. (16)

Specifically, Jr(λ, 1) is a r× r Jordan block. Lemma 2.3 and 2.5 result in Lemma 2.6 as follows.
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Lemma 2.6 The Jordan canonical form of the matrix ΛATA (9) can be written as,

J =



Jn1
(λ1, 1)

Jn2(λ2, 1) 0
. . .

Jnk
(λk, 1)

0

0 . . .

0


(n+1)×(n+1)

, (17)

where 0 < λi ≤ 1, i = 1, 2, · · · , k are the nonzero eigenvalues of ΛATA, which need not be

distinct, and Jni
(λi, 1) (16) is an ni × ni Jordan block, i = 1, 2, · · · , k.

Proof Based on Lemma 2.3, the eigenvalues λi of ΛATA are all real and lie in the interval

[0, 1], so the Jordan canonical form of ΛATA can be written as,

Jn1
(λ1, 1)

. . . 0
Jnk

(λk, 1)

Jm1(0, 1)

0 . . .

Jml
(0, 1)


(n+1)×(n+1)

,

where 0 < λi ≤ 1, i = 1, 2, · · · , k are the nonzero eigenvalues of ΛATA, which need not be

distinct, and Jni
(λi, 1) (16) is an ni × ni Jordan block, i = 1, 2, · · · , k; Jmj

(0, 1) is an mj ×mj

Jordan block corresponding to the zero eigenvalue of ΛATA, j = 1, 2, · · · , l.
According to the theory on the Jordan canonical form [21, p.129], the number of the Jordan

blocks corresponding to an eigenvalue is the geometric multiplicity of the eigenvalue, and the

sum of the orders of all Jordan blocks corresponding to an eigenvalue equals its algebraic mul-

tiplicity. Based on Lemma 2.5, the algebraic multiplicity of the zero eigenvalue of the matrix

ΛATA is equal to its geometric multiplicity, so the Jordan blocks Jmj
(0, 1), j = 1, 2, · · · , l cor-

responding to the zero eigenvalue of ΛATA are all 1×1 matrix (0)1×1. This proves Lemma 2.6.

�

Denote (ATA)+ as the Moore-Penrose (M-P) pseudo-inverse of the matrix ATA. We have

the following lemma.

Lemma 2.7 There exists an orthogonal matrix V , such that,

V T (ATA)+(ATA)V = diag(1, 1, · · · , 1︸ ︷︷ ︸
n−n0+1

, 0, 0, · · · , 0︸ ︷︷ ︸
n0

). (18)
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Proof Because rank(ATA) = n− n0 + 1 (Remark 2.4), and ATA is a positive semidefinite

matrix, it has the singular value decomposition (SVD),

ATA = V diag(δ1, δ2, · · · , δn−n0+1, 0, · · · , 0︸ ︷︷ ︸
n0

)V T , (19)

where V is an orthogonal matrix, δi, i = 1, 2, · · · , n − n0 + 1 are the singular values of ATA.

Then, the M-P pseudo-inverse of ATA is,

(ATA)+ = V diag(
1

δ1
,

1

δ2
, · · · , 1

δn−n0+1
, 0, · · · , 0︸ ︷︷ ︸

n0

)V T .

Therefore,

(ATA)+(ATA) = V diag(1, 1, · · · , 1︸ ︷︷ ︸
n−n0+1

, 0, 0, · · · , 0︸ ︷︷ ︸
n0

)V T ,

where V is an orthogonal matrix. It leads to Eq. (18). �

Based on the lemmas stated above, we can show the convergence of the LSPIA iterative

method (9) when ATA is singular.

Theorem 2.8 When ATA (9) is singular, the LSPIA iterative method (9) is convergent.

Proof By Lemma 2.6, the Jordan canonical form of the matrix ΛATA (9) is J (17). Then,

there exists an invertible matrix W , such that,

ΛATA = W−1JW.

Therefore (refer to Eq. (17)),

I − ΛATA =

W−1



Jn1(1− λ1,−1)

Jn2
(1− λ2,−1) 0

. . .

Jnk
(1− λk,−1)

1

0 . . .

1


W,

where 0 ≤ 1− λi < 1, i = 1, 2, · · · , k. Together with Lemma 2.7, it holds,

lim
l→∞

(I − ΛATA)l = W−1diag(0, · · · , 0︸ ︷︷ ︸
n−n0+1

, 1, · · · , 1︸ ︷︷ ︸
n0

)W

= I −W−1diag(1, · · · , 1︸ ︷︷ ︸
n−n0+1

, 0, · · · , 0︸ ︷︷ ︸
n0

)W

= I −W−1V T (ATA)+(ATA)VW

= I − (VW )−1(ATA)+(ATA)(VW ).

(20)
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Now, consider the linear system ATAX = ATQ (refer to Eq. (7)). It has solutions if and

only if [22],

(ATA)(ATA)+(ATQ) = ATQ. (21)

Subtracting (ATA)+ATQ from both sides of the iterative method (9), together with Eq. (21),

we have,

P (k+1) − (ATA)+ATQ

= (I − ΛATA)P (k) + ΛATQ− (ATA)+ATQ

= (I − ΛATA)P (k) + Λ(ATA)(ATA)+(ATQ)− (ATA)+ATQ

= (I − ΛATA)P (k) − (I − ΛATA)(ATA)+ATQ

= (I − ΛATA)(P (k) − (ATA)+ATQ)

= (I − ΛATA)k+1(P (0) − (ATA)+ATQ).

(22)

Owing to Eq. (20), it follows,

P (∞) − (ATA)+ATQ = lim
k→∞

(P (k+1) − (ATA)+ATQ)

= lim
k→∞

(I − ΛATA)k+1(P (0) − (ATA)+ATQ)

= (I − (VW )−1(ATA)+(ATA)(VW ))(P (0) − (ATA)+ATQ)

(23)

By simple computation, Eq. (23) changes to,

P (∞) = (VW )−1(ATA)+(ATA)VW (ATA)+ATQ+ (I − (VW )−1(ATA)+(ATA)(VW ))P (0).

(24)

Therefore, the iterative method (9) is convergent when ATA is singular. Theorem 2.8 is proved.

�

Remark 2.9 Returning to Eq. (24), if V is the inverse matrix of W , i.e., VW = I, it

becomes,

P (∞) = (ATA)+(ATA)(ATA)+ATQ+ (I − (ATA)+(ATA))P (0)

= (ATA)+ATQ+ (I − (ATA)+(ATA))P (0),
(25)

where, P (0) is an arbitrary initial value. Eq. (25) is the M-P pseudo-inverse solution of the

linear system ATAX = ATQ, which is the normal equation of the least-squares fitting to the

data points (2). Because P (0) is an arbitrary value, there are infinite solutions to the normal

equation ATAX = ATQ. Within these solutions, (ATA)+(ATQ) is the one with the minimum

Euclidean norm [21].

As mentioned in Remark 2.1, the iterative method developed in [4] is a special case of the

method (8). In the special case [4], diagonal elements of the diagonal matrix Λ (Eq. (9)) are

equal to each other. Denoting α as the diagonal elements of the diagonal matrix Λ, the iterative

method developed in [4] can be written as (refer to Eq. (9)),

P (k+1) = (I − αATA)P (k) + αATQ. (26)
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In this special case, we have the following theorem.

Theorem 2.10 If ATA is singular, and the spectral radius ρ(αATA) ≤ 1, the iterative

method (26) converges to the M-P pseudo-inverse solution of the linear system ATAX = ATQ

(refer to Eq. (7)). Moreover, if the initial value P (0) = 0, the iterative method (26) converges

to (ATA)+(ATQ), i.e., the M-P pseudo-inverse solution of the linear system ATAX = ATQ

with the minimum Euclidean norm.

Proof Because ATA is both a normal matrix and a positive semidefinite matrix, its eigen

decomposition is the same as its singular value decomposition [21], and has the form presented

in Eq. (19). So, we have,

αATA = V diag(αδ1, αδ2, · · · , αδn−n0+1, 0, · · · , 0︸ ︷︷ ︸
n0

)V T ,

where V is an orthogonal matrix, and αδi, i = 1, 2, · · · , n− n0 + 1 are both the nonzero eigen-

values and nonzero singular values of αATA. Because ρ(αATA) ≤ 1, it holds

0 < αδi ≤ 1, i = 1, 2, · · · , n− n0 + 1.

Then, based on Lemma 2.7, we have,

lim
l→∞

(I − αATA)l = V diag(0, · · · , 0︸ ︷︷ ︸
n−n0+1

, 1, · · · , 1︸ ︷︷ ︸
n0

)V T

= I − V diag(1, · · · , 1︸ ︷︷ ︸
n−n0+1

, 0, · · · , 0︸ ︷︷ ︸
n0

)V T

= I − V V T (ATA)+(ATA)V V T

= I − (ATA)+(ATA).

Similar as the deduction in the proof of Theorem 2.8 (Eqs. (22) (23)), we have,

P (k+1) − (ATA)+ATQ = (I − αATA)k+1(P (0) − (ATA)+ATQ),

and,

P (∞) − (ATA)+ATQ = lim
k→∞

(P (k+1) − (ATA)+ATQ)

= lim
k→∞

(I − αATA)k+1(P (0) − (ATA)+ATQ)

= (I − (ATA)+(ATA))(P (0) − (ATA)+ATQ).

Therefore,

P (∞) = (ATA)+ATQ+ (I − (ATA)+(ATA))P (0),

where P (0) is an arbitrary initial value. It is the M-P pseudo-inverse solution of the linear

system ATAX = ATQ. Moreover, when P (0) = 0, P (k) converges to P (∞) = (ATA)+ATQ, i.e.,

the M-P pseudo-inverse solution with the minimum Euclidean norm. �
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3 Discussion and Example

In this section, we will discuss some implementation detail on LSPIA (8), and illustrate

an example for validating the convergence of LSPIA when the matrix ATA is singular. The

numerical examples demonstrated in Section 3.2 and 3.3 are implemented by Matlab 2013b,

and run on a PC with 2.9G CPU, and 8G memory.

3.1 Computational complexity and memory cost

First, we will measure the computational complexity and memory cost per iteration step of

the LSPIA iteration method (8). Suppose the matrix A is of (m + 1) × (n + 1), and Q is of

(m+ 1)× 1. Then, each iteration step of the LSPIA method (8) needs:

• once matrix-vector multiplication M1 = AP (k), cost (m + 1)(n + 1) multiplications and

(m+ 1)n additions,

• once vector-vector subtraction M2 = Q−M1, cost (m+ 1) subtractions,

• once matrix-vector multiplication M3 = ATM2, cost (m+ 1)(n+ 1) multiplications, and

(n+ 1)m additions,

• once matrix-vector multiplications M4 = ΛM3, cost n+ 1 multiplications, and,

• once vector-vector subtraction P (k) −M4, cost n+ 1 subtractions.

In total, one step iteration of the LSPIA method needs (2m + 3)(n + 1) multiplications, and

2(m+1)(n+1) additions (subtractions). Moreover, in each iteration, it is required to store two

(n+ 1)× 1 vectors, P (k) and P (k+1), one (m+ 1)× 1 vector Q, one (m+ 1)× (n+ 1) matrix

A, and a diagonal matrix Λ with n + 1 diagonal elements. Therefore, each LSPIA iteration

requires (m+ 4)(n+ 1) +m+ 1 unit memory. It should be pointed out that, in the large scale

data fitting, the matrix A (8) is usually sparse, and then the computational complexity and

memory requirement will be greatly reduced.

3.2 Influence of the initial value P (0)

In this section, the influence of the initial value P (0) (6) is considered. We select three

commonly employed initial values, i.e.,

P (0) = 0, P (0) =
ATQ

‖ATQ‖2
, and P (0) = ATQ, (27)

where, ‖·‖2 is the Euclidean norm of a vector. As stated in Section 2 (also refer to Fig. 1), at

the beginning of the LSPIA iterations, the data points are classified into groups. In geometry,

ATQ means that the weighted sum of the data points in each group is taken as an initial control

point. With the initial values (27), the LSPIA method (8) is employed to fit some synthesized

or practical data sets. In nearly all of the examples, the convergence speeds of the LSPIA

method with the two initial values P (0) = 0 and P (0) = ATQ
‖ATQ‖2

are nearly the same, faster

than that with the initial value P (0) = ATQ.
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Specifically, Fig. 2 illustrates the curve plots of iteration count v.s.
‖AT r(k)‖

2

‖A‖f‖r(k)‖
2

of LSPIA in

fitting two practical data sets (Fig. 3), using uniform bi-cubic B-spline patches. Here, r(k) =

Q−AP (k), and ‖·‖f is the Frobenius norm of a matrix. As illustrated in Fig. 3, one of the data

sets is the geological image Calabria (Fig. 3(a)) with resolution 17992 × 22510 and 2296014

data points, downloaded from AimatShape, and the other is the red-component of the image

flower (Fig. 3(b)) with resolution 2048× 3072. While the coefficient matrix for fitting the data

set Calabria is singular, that for fitting the data set flower is nonsingular. From Figs. 2(a)

and 2(b), we can see that the curve plots for the 2 initial values P (0) = 0 and P (0) = ATQ
‖ATQ‖2

are nearly overlapped. They are better than the curve plot for the initial value P (0) = ATQ.

(a) (b)

Figure 2: Curve plots of iteration count v.s.
‖AT r(k)‖

2

‖A‖f‖r(k)‖
2

of LSPIA in fitting the geological

image Calabria (a) and the image Flower (b) with the 3 different initial values (27). Note that

the curves for P (0) = ATQ
‖ATQ‖2

and P (0) = 0 are nearly overlapped.

(a) (b)

Figure 3: Two data sets for checking the influence of the initial values. (a) The geological image

Calabria with resolution 17992 × 22510 and 2296014 data points; (b) the image Flower with

resolution 2048× 3072.
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3.3 Example

In this example, LSPIA is employed for least-squares fitting a practical data point set,

i.e., the 43994 mesh vertices of a tetrahedral mesh model balljoint (Fig. 4(a)), by a tri-cubic

trivariate B-spline solid (Fig. 4(b)), which has 30 × 21 × 33 control points and uniform knot

vectors along the three parametric directions with Bézier end conditions, uniformly distributed

in the interval [0, 1], respectively. The tetrahedral mesh vertices are parameterized with the

method developed in Ref. [6], and the initial value of LSPIA iteration is taken as P (0) = 0. In

this example, the order of the matrix ATA (9) is 20790 × 20790, and its rank is 12628, so the

matrix ATA (9) is singular. Although ATA is singular, LSPIA converges to a stable solution

in 5.50 seconds (Fig. 4(b)) with least-squares fitting error 9.97× 10−5. Fig. 4(a) illustrates the

input model, i.e., a tetrahedral mesh model with six segmented patches on its boundary, and

Fig. 4(b) is the cut-away view of the generated trivariate B-spline solid.

(a) (b)

Figure 4: In least-squares fitting a tetrahedral mesh with six segmented patches on its boundary

(a), though the matrix ATA (9) is singular, LSPIA converges to a stable solution, i.e., a

trivariate B-spline solid (cut-away view) (b) in 5.50 seconds with least-squares fitting error

9.97× 10−5.

4 Conclusions

In this paper, we showed that the LSPIA method is convergent when the coefficient matrix

ATA of a least-squares fitting system is singular. Moreover, when the diagonal elements of the

diagonal matrix Λ (8) are equal to each other, it converges to the M-P pseudo-inverse solution

of the least-squares fitting to the given data points. Therefore, together with the previous

result proved in Refs. [3, 4], LSPIA is convergent whatever the least-squares fitting system

is singular or not. This property of LSPIA greatly extends the scope of the applications of

LSPIA, especially in solving geometric problems in the big data processing, where singular

linear systems frequently appear.
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