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1 Introduction

While the traditional geometric design community focuses on the design of curves and surfaces, the

advent of Isogeometric Analysis (IGA) [1] has made the development of methods for designing Trivariate

B-spline Solids (TBSs) imperative. In IGA, a valid TBS should have a positive Jacobian value at every

point in its domain. A negative Jacobian value at any point in the domain of the TBS can render the

IGA invalid.

As is widely recognized, the generation of a valid TBS is difficult, owing to two key factors:

• The geometric condition for ensuring that a TBS is valid, i.e., the Jacobian value at every point is

positive, is highly nonlinear. Hence, it is theoretically very difficult to guarantee the validity of a TBS. The

state-of-the-art methods for generating TBS usually transform the validity problem into an constrained

optimization problem. However, the optimization is prone to fail owing to the high nonlinearity of

the objective function and high complexity of constraints. Therefore, to generate valid TBSs, the high

nonlinearity of the objective function and high complexity of constraints should be reduced and an efficient

method should be developed for solving the constrained optimization problem.

• The regions with negative Jacobian are usually concentrated near the boundary curves where ad-

jacent surfaces are smoothly stitched (refer to Fig. 6). To eliminate negative Jacobian values, the input

model should be segmented along the boundary curves.

In this paper, we developed a method that can generate a TBS with a guaranteed positive Jacobian, if

the initial TBS is valid. Using a tetrahedral (tet) mesh with six surfaces segmented on its boundary mesh

as the input, we first partition the tet mesh model into seven sub-volumes using the pillow operation [2],

a method originally developed for improving the quality of hexahedral meshes. After each of them

is parameterized into a cubic parameter domain, seven initial valid TBSs are constructed. Moreover,

starting with the initial valid TBSs, the boundary curves, boundary surfaces and the TBSs are fitted by

a geometric iterative fitting algorithm, known as the Geometric Feasible Direction (GFD) algorithm. In

each iteration of the GFD algorithm, the movements of the control points are restricted inside a feasible

region to ensure the validity. Finally, the smoothness between two adjacent TBSs is improved by the

GFD algorithm. In this way, the validity of the generated TBSs is guaranteed with desirable smoothness

between adjacent TBSs.
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The structure of this paper is as follows: Section 1.1 provides a survey on related work. Section 2

presents an overview of the proposed method. In Section 3, we introduce the validity conditions for

B-spline curves, surfaces, and TBSs, the geometric continuity between TBSs, and the pillow operation.

In Section 4, the Geometric Feasible Direction (GFD) algorithm is developed. After elucidating the

details of the developed method in Section 5, the experimental results are illustrated in Section 6. Lastly,

Section 7 concludes the paper.

1.1 Related work

In this section, work related to TBS modeling and geometric iterative fitting is briefly reviewed.

TBS modeling: To analyze the arterial blood flow by IGA, a trivariate NURBS-solid modeling the

artery was constructed using a skeleton-based method [3]. Following volume parameterization by a har-

monic function, a cylinder-like trivariate B-spline solid was generated with a singular centric curve [4].

Moreover, trivariate B-spline solids with positive Jacobian values were produced from boundary repre-

sentations using optimization-based approaches [5,6]. However, the optimization method may fail due to

the highly nonlinear objective function and highly complicated constraints. Based on the given boundary

conditions and guiding curves, a NURBS solid was constructed to model a swept volume by the varia-

tional approach [7]. After an automatic and robust pants-to-cuboids decomposition, surface and volume

parameterizations are generated in order to fit the trivariate splines, based on a discrete harmonic map-

ping between the cuboids’ boundary and a polycube’s boundary [8]. In addition, using the volumetric

parametrization provided by a hierarchical basis of C1 cubic polynomials, a fast and automated method

is proposed to get a spline-based model from voxel data in [9]. In [10], a C2-continuous seven-directional

box spline based framework was developed for the parametrization of volumetric data with high accuracy.

Moreover, trivariate T-spline solids are employed in IGA owing to their adaptive refinement capabil-

ity [11]. To fill a genus-zero triangular mesh, a T-spline solid was constructed after mesh untangling and

smoothing [12]. Starting from a boundary surface triangulation with genus-zero, Zhang et al. developed

a mapping-based method to generate rational trivariate solid T-splines [13]. Furthermore, to fill a bound-

ary triangulation with arbitrary genus, a polycube mapping-based algorithm for constructing T-spline

solids was proposed in [14]. In [15], a volumetric T-spline was constructed for filling a B-rep model

using Boolean operations, polycube mapping, and octree subdivision. The inputs for the aforementioned

methods are triangular meshes. When the input was a genus-zero T-spline surface model, Zhang et al.

constructed a solid T-spline whose boundary exactly conformed to the given T-spline surface model [16].

On the other hand, Catmull-Clark subdivision solids were developed to model the computational

domain in IGA [17]. Additionally, other representations for spline solids include simplex splines [18] and

polycube splines [19,20].

The methods described above usually generate a trivariate solid to fill a given B-rep model. However,

the generation of a TBS by fitting a tet mesh model is much easier than by filling a B-rep model. Because

it is very easy to produce a tet mesh using popular software, such as, TetGen [21], and NetGen [22], it

is feasible to generate a TBS by fitting a tet mesh model. In Ref. [23], a tet mesh model is fitted by the

geometric iterative method to generate a TBS. However, there are some regions with negative Jacobian

values close to the boundary. In this paper, a tet mesh is first segmented into seven sub-volumes, each

of which is fitted with a TBS by a geometric iterative fitting method. In this way, the generated TBSs

are ensured to be valid, i.e. the Jacobian value at any point of the TBSs is positive.

In conclusion, the representations of a trivariate solid include B-spline solid, NURBS solid, T-spline

solid, subdivision solid, etc. The input for a solid generation method is either a boundary representation,

such as a B-spline surface, a triangular mesh, or a volume mesh, such as a tet mesh. In our method,

the input model is segmented to generate the valid TBS. While tet meshes are easy to be partitioned

into sub-volumes, the boundary representations are hard to be segmented owing to the loss of inner

information. Therefore, tet meshes are taken as inputs for our method.

Geometric iterative fitting: Geometric Iterative Fitting (GIF), also called Progressive-Iterative

Approximation (PIA), was first developed in [24, 25]. The GIF method endows iterative methods with
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geometric meanings, facilitating the handling of geometric problems appearing in the field of geometric

design. It was proved that the GIF method is convergent for B-spline fitting [26,27], NURBS fitting [28],

T-spline fitting [29], subdivision surface fitting [30–32], as well as curve and surface fitting with totally

positive basis [25]. Moreover, the GIF methods have been employed in some applications such as reverse

engineering [33,34], curve design [35], surface-surface intersection [36], etc. For more information on the

GIF methods, please refer to the survey paper [37]. In this paper, the GIF method is used to fit several

sub-volumes with valid TBSs.

Figure 1 Overview of the TBS generation algorithm developed in this paper.

2 Algorithm overview

The TBS generation algorithm is demonstrated in Fig. 1. The input to this algorithm is a tet mesh with

six boundary surfaces (Fig. 5(a)). The tet mesh is first parameterized into a cubic parametric domain.

Then, the cubic domain is segmented into seven sub-domains, as shown in Fig. 5(b). By mapping the

sub-domains into the input tet mesh, it is divided into seven sub-volumes. After the initial TBSs are

constructed, the boundary curves, boundary surfaces, and the seven TBSs are respectively fitted using

the GFD algorithm. Finally, the smoothness between adjacent TBSs is improved. In subsequent sections,

the details of the TBS generation algorithm will be elucidated.

3 Validity conditions, geometric continuity between TBSs, and pillow oper-
ation

In this paper, what we want to generate is a composition of valid TBSs with as desirable as possible

smoothness between adjacent TBSs. So, the validity conditions and geometric continuity definition

between TBSs should be clarified. Moreover, the pillow operation is also introduced in this section.

3.1 Validity conditions

In this section, the validity conditions for a B-spline curve, surface, and TBS are presented, respectively.

Definition 1. 1) A B-spline curve is valid, if its derivative vector is nonzero at any parameter in its

domain;

2) A B-spline surface is valid, if its normal vector is nonzero at any point in its parametric domain;

3) A TBS H(u, v, w) is valid, if Hu · (Hv ×Hw) 6= 0 at any point in its parametric domain.

Given a B-spline curve of degree d with control points Pi, i = 0, 1, · · · ,m,

C(u) =

m∑
i=0

PiB
d
i (u), (1)

where Bd
i (u), i = 0, 1, · · · ,m are B-spline basis functions of degree d defined on some knot vector, and

denoting the difference vectors as,

Ti =
Pi+1 − Pi

‖Pi+1 − Pi‖
, i = 0, 1, · · · ,m− 1, (2)
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Figure 2 If the apertures of the minimum circular cones enclosing the difference vectors (2) {Ti,Ti+1, · · · ,Ti+d−1} , i =

0, 1, · · · ,m− d, respectively, are all less than π, the B-spline curve of degree d is valid.

the validity condition for the B-spline curve (1) is:

Proposition 1 (Validity condition for B-spline curves). A B-spline curve of degree d is valid if the

apertures of the minimum circular cones enclosing the difference vectors (2)

{Ti,Ti+1, · · · ,Ti+d−1} , i = 0, 1, · · · ,m− d,

respectively, are all less than π.

Proof: The derivative of the B-spline curve (1) is,

C ′(u) =

m−1∑
i=0

αC
i (Pi+1 − Pi)B

d−1
i (u) =

m−1∑
i=0

αC
i ‖Pi+1 − Pi‖TiB

d−1
i (u),

where αC
i > 0 is related to the knot vector of C(u) (1).

Because C ′(u) is a B-spline curve of degree d− 1, the d control points,{
αC
i ‖Pi+1 − Pi‖Ti, α

C
i+1 ‖Pi+2 − Pi+1‖Ti+1, · · · , αC

i+d−1 ‖Pi+d − Pi+d−1‖Ti+d−1

}
(3)

determine the ith piece of curve, i = 0, 1, · · · ,m − d. In Fig. 2, if the aperture of the minimum circular

cone enclosing the d control points is less than π, the ith piece of curve, i = 0, 1, · · · ,m− d, of C ′(u) will

not pass the origin, due to the convex hull property of B-spline curve. Therefore, the derivative vector

of C(u) (1) is nonzero at any parameter in its domain. According to Definition 1, the B-spline curve

C(u) (1) is valid.

Furthermore, because

αC
i ‖Pi+1 − Pi‖ > 0, i = 0, 1, · · · ,m− d,

the minimum circular cones enclosing the the d control points (3) is the same as that enclosing the

difference vectors (refer to Eq. (2) and Fig. 2)

{Ti,Ti+1, · · · ,Ti+d−1} , i = 0, 1, · · · ,m− d.

Proposition 1 is proved. 2

Moreover, suppose we are given a B-spline surface of degree du × dv with control points

Sij , i = 0, 1, · · · ,m, j = 0, 1, · · · , n,

and denote the difference vectors as

T u
ij =

Si+1,j − Sij

‖Si+1,j − Sij‖
, i = 0, 1, · · · ,m− 1, j = 0, 1, · · · , n, (4)
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and,

T v
kl =

Sk,l+1 − Skl

‖Sk,l+1 − Skl‖
, k = 0, 1, · · · ,m, l = 0, 1, · · · , n− 1. (5)

LetMIJ , I = 0, 1, · · · ,m−du, J = 0, 1, · · · , n−dv be the sub-control-polygon constituted by the control

points,

SIJ SI,J+1 · · · SI,J+dv

SI+1,J SI+1,J+1 · · · SI+1,J+dv

...
...

...

SI+du,J SI+du,J+1 · · · SI+du,J+dv

(6)

Moreover, suppose UIJ and VIJ are the unit axis vectors of the minimum circular cones CuIJ and CvIJ
enclosing the difference vectors T u

ij (4) and T v
kl (5) of the sub-control-polygon MIJ , starting from the

apexes of cones, respectively. Then, a sufficient condition for the validity of a B-spline surface is presented

as follows:

Proposition 2 (Validity condition for B-spline surfaces). If T u
ij ·UIJ > T u

ij ·VIJ > 0, and, T v
kl ·VIJ >

T v
kl ·UIJ > 0, where T u

ij and T v
kl are defined on each sub-control-polygonMIJ , I = 0, 1, · · · ,m−du, J =

0, 1, · · · , n− dv, the B-spline surface is valid.

Proof: Because,

T u
ij ·UIJ > T u

ij · VIJ > 0, and, T v
kl · VIJ > T v

kl ·UIJ > 0,

we have,

(T u
ij × T v

kl) · (UIJ × VIJ) = (T u
ij ·UIJ)(T v

kl · VIJ)− (T u
ij · VIJ)(T v

kl ·UIJ) > 0.

It means that, all of the vectors T u
ij × T v

kl of the sub-control-polygon MIJ are on the same side of the

plane with UIJ × VIJ as the normal vector. It makes the normal vector of the given B-spline surface

nonzero at any point in its domain. So, the given B-spline surface is valid. 2

Remark 1. Note that, the conditions T u
ij ·UIJ > T u

ij · VIJ > 0, and, T v
kl · VIJ > T v

kl ·UIJ > 0, mean

that the two minimum circular cones CuIJ and CvIJ are separate. According to the definition of normal

vector, the closer to orthogonality the two unit axis vectors UIJ and VIJ of the circular cones CuIJ and

CvIJ , the better the validity of the B-spline surface.

Similarly, we can develop a sufficient condition for determining the validity of a TBS H(u, v, w) of

degree du × dv × dw,

H(u, v, w) =
∑
i

∑
j

∑
k

HijkB
du
i (u)Bdv

j (v)Bdw

k (w),

where Bdu
i (u), Bdv

j (v), and Bdw

k (w) are B-spline basis functions of degrees du, dv, and dw, respectively,

and,

Hijk, i = 0, 1, · · · ,m, j = 0, 1, · · · , n, k = 0, 1, · · · , l,

are control points. Denote the difference vectors as

T u
ijk =

Hi+1,j,k −Hijk

‖Hi+1,j,k −Hijk‖
, T v

ijk =
Hi,j+1,k −Hijk

‖Hi,j+1,k −Hijk‖
, Tw

ijk =
Hi,j,k+1 −Hijk

‖Hi,j,k+1 −Hijk‖
. (7)

Moreover, letting

GIJK , I = 0, 1, · · · ,m− du, J = 0, 1, · · · , n− dv, K = 0, 1, · · · , l − dw, (8)

be the sub-grid constituted by the control points

Hijk, i = I, I + 1, · · · , I + du, j = J, J + 1, · · · , J + dv, k = K,K + 1, · · · ,K + dw,

we have,
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Proposition 3 (Validity condition for TBSs). If

T u
iujuku

· (T v
ivjvkv

× Tw
iwjwkw

) > 0,

where T u
iujuku

,T v
ivjvkv

and Tw
iwjwkw

are defined on each sub-grid GIJK , the TBS H(u, v, w) is valid.

Proof: The Jacobian value of the TBS H(u, v, w) at (u, v, w) is,

J(u, v, w) = Hu(u, v, w) · (Hv(u, v, w)×Hw(u, v, w))

=
∑
Iu

∑
Iv

∑
Iw

αH
IuIvIw

[
T u
iujuku

· (T v
ivjvkv

× Tw
iwjwkw

)
]
BIu(u)BIv (v)BIw(w),

where Iu = (iu, iv, iw), Iv = (ju, jv, jw), Iw = (ku, kv, kw) are index sets, αIuIvIw > 0, and,

BIu(u) = Bdu−1
iu

(u)Bdu
iv

(u)Bdu
iw

(u), BIv (v) = Bdv
ju

(v)Bdv−1
jv

(v)Bdv
jw

(w),

BIw(w) = Bdw

ku
(w)Bdw

kv
(v)Bdw−1

kw
(w).

Moreover, because the local support property of TBS, the Jacobian value J(u, v, w) is determined by

one of the sub-grid GIJK (8). Therefore, if T u
iujuku

· (T v
ivjvkv

× Tw
iwjwkw

) > 0, where T u
iujuku

,T v
ivjvkv

and

Tw
iwjwkw

are defined on the sub-grid GIJK , it follows that

Hu(u, v, w) · (Hv(u, v, w)×Hw(u, v, w)) > 0,

meaning that, the TBS H(u, v, w) is valid. 2

Figure 3 Geometric continuous condition between adjacent TBSs.

3.2 Geometric continuity between TBSs

Given two adjacent TBSs (Fig. 3),

P (u, v, w) =

mp∑
ip=0

np∑
jp=0

lp∑
kp=0

Pip,jp,kpBip(u)Bjp(v)Bkp(w), (u, v, w) ∈ [0, 1]× [0, 1]× [0, 1], (9)

and

Q(µ, ν, ω) =

mq∑
iq=0

nq∑
jq=0

lq∑
kq=0

Qiq,jq,kqBiq (µ)Bjq (ν)Bkq (ω), (µ, ν, ω) ∈ [0, 1]× [0, 1]× [0, 1], (10)

where, Pip,jp,kp
and Qiq,jq,kq

are control points, Bip(u), Bjp(v), Bkp
(w), Biq (µ), Bjq (ν), and Bkq

(ω) are

B-spline basis, the geometric continuity between the two TBSs P (u, v, w) and Q(µ, ν, ω) is defined as,

Definition 2 (Geometric Continuity). The two TBSs P (u, v, w) and Q(µ, ν, ω) are Gn geometric con-

tinuous along the common boundary surface P (u, v, 1) = Q(µ, ν, 0), if,

1) the two B-spline surfaces P (c, v, w) and Q(c, ν, ω) are Gn geometric continuous along the common

boundary curve P (c, v, 1) = Q(c, ν, 0), and,
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2) the two B-spline surfaces P (u, d, w) and Q(µ, d, ω) are Gn geometric continuous along the common

boundary curve P (u, d, 1) = Q(µ, d, 0),

where c and d are arbitrary constants in their domains (refer to Fig. 3).

The following proposition presents a sufficient condition for the G1 geometric continuity between two

TBSs P (u, v, w) and Q(µ, ν, ω) along their common boundary surface P (u, v, 1) = Q(µ, ν, 0).

Proposition 4. Suppose the two TBSs P (u, v, w) (9) and Q(µ, ν, ω) (10) have uniform knot vectors

with Bézier end condition [38], respectively (Fig. 3). If

Pi,j,lp = Qi,j,0, and, Pi,j,lp − Pi,j,lp−1 = α(Qi,j,1 −Qi,j,0),

where α > 0 is a positive constant, the two TBSs P (u, v, w) and Q(µ, ν, ω) are G1 geometric continuous

along their common boundary surface P (u, v, 1) = Q(µ, ν, 0).

Proof: Referring to Fig. 3, if

Pi,j,lp = Qi,j,0, and, Pi,j,lp − Pi,j,lp−1 = α(Qi,j,1 −Qi,j,0),

it follows that P ′w(c, v, 1) ‖ Q′w(c, ν, 0), and P ′w(u, d, 1) ‖ Q′w(µ, d, 0), where c and d are arbitrary constants

in the domain of P (u, v, w) and Q(µ, ν, ω). That is, the two TBSs P (u, v, w) and Q(µ, ν, ω) are G1

geometric continuous along their common boundary surface P (u, v, 1) = Q(µ, ν, 0). 2

(a) (b)

Figure 4 Improve the mesh quality using the pillow operation. (a) In the quadrilateral ABCD, the Jacobian value at

vertex A is 0, because vertex D,A, and B are co-linear. (b) By the pillow operation, the Jacobian values at all of the

vertices are greater than 0.

3.3 Pillow operation

The pillow operation was originally invented in Ref. [2] to improve the quality of hexahedral meshes

and quadrilateral meshes. Take the quadrilateral ABCD in Fig. 4(a) as an example, where the Jacobian

value at vertex A is 0. To perform the pillow operation, the quadrilateral ABCD shrinks inwards to

the rectangle A′B′C ′D′ (Fig. 4(b)), and then, the four corresponding edges AA′, BB′, CC ′, and DD′

are linked, forming a quadrilateral mesh. After performing the pillow operation (Fig. 4(b)), the Jacobian

values at all of the vertices are greater than 0, thus improving the mesh quality. Moreover, to perform

the pillow operation on a hexahedral mesh, it first shrinks inwards, and then, the corresponding edges

between the original and shrunk hexahedral meshes are linked to form a new hexahedral mesh with better

quality. In this paper, pillow operation is employed to improve the quality of TBSs.

4 Geometric Feasible Direction algorithm

As pointed out in Section 2, the composition of TBSs is a step-by-step process, in the order of boundary

curve fitting, boundary surface fitting, TBS fitting and smoothness improvement. The fitting problems
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Input: An initial B-spline curve, B-spline surface, or TBS with control points arranged in a

one-dimensional sequence {P (0)
i , i = 0, 1, · · · ,m}; an objective function E and

constraints (11)

Output: A B-spline curve, B-spline surface, or TBS meeting the termination condition

k = 0 ;

while the termination condition is not reached do

Calculate the gradient vector ∇E(k) (12) of the objective function E (11) ;

for i = 0 to m do

Determine the directional vector D
(k)
i (13) for the control point P

(k)
i ;

Calculate the largest possible weight, τi, ensuring that requirements 1) and 2) satisfied ;

end

Calculate the Armijo step αk [39] ;

P (k+1) = P (k) + αkD
(k) ;

k = k + 1 ;

end
Algorithm 1: Geometric Feasible Direction algorithm (GFD)

and smoothness improvement in these steps are all modeled as constraint minimization problems,

minPi
E(P0,P1, · · · ,Pm)

s.t. Constraints
(11)

where Pi = (xi, yi, zi), i = 0, 1, · · · ,m are the unknown control points, and E is an objective function.

Moreover, the conditions for ensuring the validity of curves, surfaces, and TBSs are taken as the hard

constraints (11). The specific minimization problems will be elucidated in subsequent sections.

To solve the constrained minimization problem (11), we developed the geometric feasible direction

(GFD) algorithm (Algorithm 1). GFD has clear geometric meanings, so it is a kind of geometric iterative

fitting method. As listed in Algorithm 1, the inputs to GFD algorithm are an initial B-spline curve,

a B-spline surface, or a TBS with control points arranged in a one-dimensional sequence {P (0)
i , i =

0, 1, · · · ,m}, and a constrained minimization problem (11), including an objective function and the

constraints.

Specifically, in the kth iteration, the gradient vector of the objective function E (11) is,

∇E(k) =

(
∂E

∂x0
,
∂E

∂y0
,
∂E

∂z0
, · · · , ∂E

∂xi
,
∂E

∂yi
,
∂E

∂zi
, · · · , ∂E

∂xm
,
∂E

∂ym
,
∂E

∂zm

)
X(k)

, (12)

where X(k) = (x
(k)
0 , y

(k)
0 , z

(k)
0 , · · · , x(k)

i , y
(k)
i , z

(k)
i , · · · , x(k)

m , y
(k)
m , z

(k)
m ). In the iteration, each control point

P
(k)
i moves along the directional vector,

D
(k)
i = −

(
∂E

∂xi
,
∂E

∂yi
,
∂E

∂zi

)
X(k)

, (13)

to produce the new control point P
(k+1)
i , i.e.,

P
(k+1)
i = P

(k)
i + τiD

(k)
i ,

where τi ∈ [0, 1] is a weight. Initially, we set τi = 1, i = 0, 1, · · · ,m, and the direction D(k) in the kth

iteration is composed of,

D(k) = (τ0D
(k)
0 , τ1D

(k)
1 , · · · , τmD(k)

m ). (14)

Then, the weights τi, i = 0, 1, · · · ,m are adjusted one by one to make the direction D(k) (14) a feasible

one, which satisfies the following two requirements:

1) The new B-spline curve, surface, or TBS, generated by replacing P
(k)
i with P

(k+1)
i , satisfies con-

straints of the minimization problem (11),
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2) the condition, − D(k)·∇E(k)

‖D(k)‖
2
‖∇E(k)‖

2

> δd, holds as well.

To this end, we discretize τi ∈ [0, 1] to {0, 1
n ,

2
n , · · · ,

n
n}, and select an as large as possible τi, which

satisfies the two aforementioned requirements 1) and 2). In our implementation, we take n = 20, and

δd = 0.3.

Moreover, let,

P (k) = (P
(k)
0 ,P

(k)
1 , · · · ,P (k)

m ).

After the feasible direction D(k) is figured out, we calculate the Armijo step αk (please refer to Ref. [39]

for the calculation of the Armijo step). Then, the new control points are generated as,

P (k+1) = P (k) + αkD
(k).

The GFD algorithm is presented in Algorithm 1, where the termination condition is taken as,∣∣∣∣E(P (k+1))− E(P (k))

E(P (k))

∣∣∣∣ < εe. (15)

The value of εe will be specified in solving specific problems. The convergence analysis of the GFD

algorithm is demonstrated in the Appendix.

5 Valid TBS generation by the geometric iterative method

In Section 2, the overview of the method for generating valid TBSs was presented. In this section, we

will elucidate the details of the method.

(a) (b) (c)

Figure 5 Partition of the input tet mesh model. (a) The input to the developed algorithm is a tet mesh with six surfaces

segmented on its boundary mesh. (b) The tet mesh is parameterized into the cubic domain [0, 1] × [0, 1] × [0, 1], which

is partitioned into seven sub-domains. (c) Mapping the seven sub-domains into the tet mesh model leads to the seven

partitioned sub-volume meshes.

5.1 Partition of the tet mesh model by pillow operation

As stated above, the input to our method is a tet mesh model with six surfaces segmented on its boundary

mesh (Fig. 5(a)). The scaled Jacobian value of the generated TBS is heavily influenced by the segmentation

of the boundary mesh. If two adjacent surfaces are Cn(n > 1) continuous across their common boundary,

or even concave across the boundary, the Jacobian values at the points near the boundaries of the

fitting TBS will be small or even negative (Figs. 6, 4(a)). This makes the generated TBS invalid. Fig. 6

illustrates the distribution of the scaled Jacobian values of the TBS fitting the tet mesh model in Fig. 5(a)

by the method developed in Ref. [23]. It can be seen that, the small or negative Jacobian values mainly

concentrate in the region (in blue) close to the boundaries of the surfaces, along which two adjacent

surfaces are smoothly stitched.
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Figure 6 The small or negative scaled Ja-

cobian values (in blue) concentrate near the

boundaries where the adjacent surfaces are

smoothly stitched.

In order to perform the pillow operation on the input tet

mesh, the tet mesh model (Fig. 5(a)) is first parameterized into

a cubic parameter domain Ω = [0, 1]×[0, 1]×[0, 1] by the volume

parameterization method [23] (Fig. 5(b)). Then, the parameter

domain Ω shrinks to the subdomain,

Ωc = [
1

3
,

2

3
]× [

1

3
,

2

3
]× [

1

3
,

2

3
].

As illustrated in Fig. 5(b), the vertices of the cubes Ω and Ωc

are denoted as v0, v1, · · · , v7, and vc0, v
c
1, · · · , vc7, respectively.

Connecting vi to vci , i = 0, 1, · · · , 7 generates six sub-domains

Ωu,Ωd,Ωl,Ωr,Ωf , and Ωb. For example, the sub-domain Ωu is

enclosed by the six faces

v0v1v2v3, v
c
0v

c
1v

c
2v

c
3, v0v

c
0v

c
1v1, v1v

c
1v

c
2v2, v2v

c
2v

c
3v3, and, v3v

c
3v

c
0v0.

Mapping the seven sub-domains into the original tet mesh model produces seven partitioned sub-volumes

(Fig. 5(c)).

5.2 Construction of the initial TBSs

In Section 5.1, the input tet mesh model is partitioned into seven sub-volumes. Each of them are

parameterized into the cubic parameter domain by the volume parameterization method developed in [23].

Note that the parameterization on the common boundary curves and common boundary surfaces of

adjacent sub-volumes should conform with each other. Moreover, each cubic parameter domain is sampled

into a (M+1)×(N+1)×(K+1) grid. Similar to the parameterization, the grid on the common boundary

curves and common boundary surfaces of adjacent sub-volumes should be the same. Mapping the grids

into the corresponding sub-volumes leads to the control grids of the initial TBSs, whose knot vectors are

uniformly distributed in [0, 1]× [0, 1]× [0, 1] with Bézier end conditions. Owing to the conformity of the

parameterization and control grids on the common boundary curves and boundary surfaces, there is the

unique control grid on each boundary curve or boundary surface.

It should be pointed out that, the geometric iterative fitting method, which is employed to fit the sub-

volumes (refer to Section 5.3), requires that the initial TBSs should be valid. If the input tet mesh has

no extreme concave or even folder over dihedral angle (0 or even negative degree), the proposed method

can generate valid initial TBSs. In fact, in all of the examples we handled, the initial TBSs generated by

the proposed method are all valid. However, the proposed method does not guarantee the validity of the

constructed initial TBSs in arbitrary case.

5.3 Geometric iterative fitting

The result generated by the developed method is a composition of seven valid TBSs. As stated above,

the objective function for guaranteeing the validity of a TBS is highly nonlinear with a large number

of unknowns, so the optimization is prone to fail. Even if we can find a solution, the computation for

solving the optimization problem is complicated, owing to a significant number of unknowns. To reduce

the difficulty in guaranteeing the validity of the TBSs, we solve this problem step by step, in the order

of,

(1) boundary curve fitting (Section 5.3.1),

(2) boundary surface fitting (Section 5.3.2), and,

(3) TBS fitting (Section 5.3.3).

As mentioned above, the first objective we want to reach is that the generated TBSs should be valid, that

is, the Jacobian value at any point of each TBS should be greater than 0. This means that the boundary

curves and boundary surfaces of TBSs should also be valid (refer to Section 3.1 for validity condition).
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5.3.1 Boundary curve fitting

Suppose the data point sequence to be fitted is,

V0,V1, · · · ,VMc . (16)

By volume parameterization [23], each data point Vj has been assigned a parameter tj ∈ [0, 1], j =

0, 1, · · · ,Mc. The data point sequence (16) will be fitted by a B-spline curve,

P (u) =

m∑
i=0

PiB
k
i (u), u ∈ [0, 1], (17)

where, Pi are the control points, Bk
i (u) are the B-spline basis functions with degree d, and the knot

vector of the B-spline curve is uniformly defined in [0, 1] with Bézier end conditions.

The curve fitting should concern two aspects. One is the fitting error, and the other is the validity of

the fitting curve. On one hand, the fitting error can be modeled as,

Ec
fit =

Mc∑
j=0

‖P (uj)− Vj‖2 .

On the other hand, denote α as the aperture of the minimum circular cone C enclosing the difference

vectors, {
Ti =

Pi+1 − Pi

‖Pi+1 − Pi‖
, i = 0, 1, · · · ,m− 1

}
, (18)

with unit axis vector,

T =

∑m−1
i=0 Ti∥∥∥∑m−1
i=0 Ti

∥∥∥ .
Evidently, if P ′(u) = 0, the B-spline curve (17) is not valid. On the contrary, the larger the norm

‖P ′(u)‖, the better is the validity of the B-spline curve (17). With fixed lengths of the vectors Ti in (18),

the smaller the aperture α, the larger is the norm ‖P ′(u)‖. Therefore, the improvement of validity of the

fitting curve can be achieved by minimizing the following objective function,

Ec
val =

1

m

m−1∑
i=0

(1− Ti · T ).

In conclusion, the fitting of the data point sequence (16) with a valid B-spline curve (17) can be

formulated as the following minimization problem,

minPi
Ec = (1− λc)Ec

fit + λcE
c
val

s.t. 1) The control polygon of P (u) satisfies Proposition 1,

2) Compatibility condition,

3) P0 = V0, Pm = VMc
,

(19)

where λc ∈ [0, 1] is a weight. Constraint 1) in the minimization problem (19) ensures that the fitted

curve satisfies the validity condition for B-spline curves (Proposition 1). The values of λc taken in our

implementation are listed in Table 3.

Specifically, the B-spline curves are constructed piece by piece. After one piece of B-spline curve is

constructed, it is fixed. When constructing a new B-spline curve P (u), it should satisfy the compatibility

condition 2) with the adjacent constructed B-spline curves, which belong to the same B-spline surface

as P (u). That is, they should satisfy Proposition 2. Specifically, refer to Fig. 7(a), when constructing

the new B-spline curve P (u) with control points P00,P10, · · · ,Pdu,0 (red points), if there exists the

piece of B-spline curve adjacent to P00, with control points P00,P01, · · · ,P0,dv (blue points), (the two
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(a) (b)

Figure 7 Compatibility conditions for curve fitting (a) and surface fitting (b).

pieces of B-spline curves belong to the same surface,) the difference vectors (refer to Eqs. (4) and (5))

T u
00,T

u
10, · · · ,T u

du−1,0 and T v
00,T

v
01, · · · ,T v

0,dv−1 should satisfy Proposition 2.

The constrained minimization problem (19) is solved by the GFD algorithm (Algorithm 1), where

the inputs are the initial B-spline curves constructed in Section 5.2, and the objective function and

constraints of the minimization problem (19). In our implementation, the threshold εe in the termination

condition (15) is taken as 10−4.

5.3.2 Boundary surface fitting

After the boundaries of the seven sub-volumes are fitted by B-spline curves, they are fixed. The next task

is to fit the boundary surfaces of the sub-volumes. Each of the boundary surfaces is a triangular mesh with

four boundary curves. Suppose the inner vertices of such a triangular mesh are Vi, i = 0, 1, · · · ,Ms, each

of which is assigned a pair of parameter values (ui, vi) by the volume parameterization [23]. Moreover,

suppose the B-spline surface fitted to the triangular mesh is,

S(u, v) =

m∑
i=0

n∑
j=0

SijB
du
i (u)Bdv

j (v), (u, v) ∈ [0, 1]× [0, 1], (20)

where, Sij are the control points, Bdu
i (u) and Bdv

j (v) are B-spline basis functions with degrees du and

dv, respectively, both defined in [0, 1] with Bézier end conditions.

Similar to the curve fitting, the surface fitting also involves two aspects: the fitting precision, and the

validity. The fitting precision is measured by the following energy function,

Es
fit =

Ms∑
k=0

‖S(uk, vk)− Vk‖2 . (21)

Moreover, the validity of the B-spline surface should be improved as per the requirement. Suppose Cu
and Cv are the minimum circular cones enclosing the difference vectors T u

ij (4) and T v
ij (5), respectively,

with unit axis vectors T u and T v, taken as,

T u =

∑m−1
i=0

∑n
j=0 T

u
ij∥∥∥∑m−1

i=0

∑n
j=0 T

u
ij

∥∥∥ , and, T v =

∑m
i=0

∑n−1
j=0 T v

ij∥∥∥∑m
i=0

∑n−1
j=0 T v

ij

∥∥∥ . (22)

The validity of a B-spline surface can be improved by two strategies. Firstly, as analyzed in Section 5.3.1,

the apertures of the two cones should be as small as possible, which is achieved by minimizing the

following two energy functions,

Es
u =

1

m(n+ 1)

m−1∑
i=0

n∑
j=0

(
1− T u

ij · T u
)
, and,

Es
v =

1

(m+ 1)n

m∑
i=0

n−1∑
j=0

(
1− T v

ij · T v
)
.
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Secondly, the two cones should be as close to perpendicularity as possible, which is formulated as the

minimization of the following energy function (refer to Eq. (22)),

Es
uv = (T u · T v)2.

Therefore, the B-spline surface fitting the triangular mesh with validity guarantee can be generated by

the following minimization problem,

minSij
Es = (1− λs − µs)E

s
fit + λs(E

s
u + Es

v) + µsE
s
uv

s.t. 1) The control polygon of S(u, v) satisfies Proposition 2,

2) Compatibility condition, and,

3) The boundary control points of S(u, v) (20) are fixed,

(23)

where λs, µs ∈ [0, 1] are weights, whose values can be found in Table 3, and Constraint 1) in Eq. (23)

ensures that the B-spline surface S(u, v) (20) satisfies the validity condition for B-spline surfaces (Propo-

sition 2).

Similar to the curve case, the B-spline surfaces are constructed piece by piece. Hence, the construction

of a new B-spline surface S(u, v) (the surface in light red in Fig. 7(b)), should satisfy the compatibility

condition 2) (Eq. (23)) with existing B-spline surfaces (the two surfaces in light blue in Fig. 7(b)), which

are adjacent to one of the corners of the new B-spline surface S(u, v), and belong to the same TBS with

S(u, v). In other words, the corresponding sub-control-polygons of these surfaces adjacent to one corner

of S(u, v) should satisfy Proposition 3. Specifically, refer to Fig. 7(b), supposing the degree of the TBS is

du × dv × dw, the three sub-control-polygons with size du × dv, dv × dw, and du × dw, respectively (refer

to Eq. (6)), should satisfy the validity condition for TBSs, i.e., Proposition 3.

The constrained minimization problem (23) is solved by the GFD algorithm (Algorithm 1). The inputs

to the GFD algorithm are the initial B-spline surfaces constructed in Section 5.2, the objective function

and constraints of the minimization problem (23). According to Eq. (20), the control points of the B-spline

surface are arranged in a one-dimensional sequence with lexicographic order, i.e., {S00,S01, · · · ,Smn}.
It should be pointed out that the threshold εe in the termination condition (15) is set as 10−5.

5.3.3 TBS fitting

Now, it is the time to fit seven sub-volumes by TBSs. Similar to the boundary curve fitting and boundary

surface fitting, the seven sub-volumes are also fitted one by one. Each sub-volume is a tetrahedral (tet)

mesh, whose boundary triangular meshes were fitted with B-spline surfaces (refer to Section 5.3.2), and

thus fixed in the TBS fitting. Suppose Vn, n = 0, 1, · · · ,Mh are the inner vertices of a sub-volume mesh

with parameter values (un, vn, wn), and the TBS fitting the sub-volume mesh vertices is,

H(u, v, w) =

mu∑
i=0

mv∑
j=0

mw∑
k=0

HijkB
du
i (u)Bdv

j (v)Bdw

k (w), (24)

where Hijk are the control points, Bdu
i (u), Bdv

j (v), and Bdw

k (w) are the B-spline basis functions of degrees

du, dv, and dw, defined on the interval [0, 1], with Bézier end conditions, respectively.

The generation of a TBS should involve the following factors:

1) The fitting precision to the tet mesh vertices, and,

2) the improvement of validity of each TBS.

On one hand, the fitting precision is modeled by the following formula,

Eh
fit =

Mh∑
n=0

‖H(un, vn, wn)− Vn‖2 . (25)
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On the other hand, to improve the validity of a TBS, we define the difference vectors along the u−, v−,

and w−directions, respectively, as,

T u
ijk =

Hi+1,j,k −Hijk

‖Hi+1,j,k −Hijk‖
, T v

ijk =
Hi,j+1,k −Hijk

‖Hi,j+1,k −Hijk‖
, Tw

ijk =
Hi,j,k+1 −Hijk

‖Hi,j,k+1 −Hijk‖
.

Suppose Cu, Cv, and Cw are the minimum circular cones enclosing T u
ijk, T v

ijk, and Tw
ijk, with unit axis

vectors T u,T v, and Tw, taken as, respectively,

T u =

∑
ijk T

u
ijk∥∥∥∑ijk T
u
ijk

∥∥∥ , T v =

∑
ijk T

v
ijk∥∥∥∑ijk T
v
ijk

∥∥∥ , Tw =

∑
ijk T

w
ijk∥∥∥∑ijk T
w
ijk

∥∥∥ . (26)

Similar as the analysis in Section 5.3.2, the smaller the apertures of the cones, the better the validity of

the TBS, which is modeled as the minimization of the following three energy functions, i.e.,

Eh
u =

1

Nu

∑
i,j,k

(1− T u
ijk · T u), Eh

v =
1

Nv

∑
i,j,k

(1− T v
ijk · T v) Eh

w =
1

Nw

∑
i,j,k

(1− Tw
ijk · Tw),

where, Nu, Nv, and Nw are the number of the vectors T u
ijk,T

v
ijk, and Tw

ijk, respectively. In addition, the

closer the perpendicularities of the three cones are to each other, the better is the validity of the TBS,

which can be formulated as the minimization of the following energy functions:

Eh
uv = (T u · T v)2, Eh

vw = (T v · Tw)2, Eh
uw = (T u · Tw)2.

Essentially, the minimization problem for generating the valid TBSs can be modeled as,

minHijk
Eh = (1− λh − µh)Eh

fit + λh(Eh
u + Eh

v + Eh
w) + µh(Eh

uv + Eh
uw + Eh

vw)

s.t. 1) The control grid of H(u, v, w) satisfies Proposition 3,

2) The boundary control points of H(u, v, w) (24) are fixed,

(27)

where λh, µh ∈ [0, 1] are weights, and Constraint 1) makes the TBS H(u, v, w) satisfy the validity

condition for TBSs (Proposition 3). The values of weights λh, µh ∈ [0, 1] are presented in Table 3.

The constrained minimization problem (27) is solved by the GFD algorithm (Algorithm 1), with the

initial TBSs constructed in Section 5.2 as input. The control points of an input TBS (refer to Eq. (24))

are arranged in a one-dimensional sequence with lexicographic order, i.e., {H000,H001, · · · ,Hmu,mv,mw
}.

Moreover, we set εe = 10−6 in the termination condition (15).

5.3.4 Smoothness and fairness improvement

In this section, we will improve the smoothness between two adjacent TBSs, and the fairness of each

TBS. Suppose Hl(u, v, w), l = 0, 1, · · · , 6 is a TBS with control points Hl;ijk. Since the boundary

patches are fixed before the TBS fitting, the two adjacent TBSs have reached G0 continuity. According

to Proposition 4 and Fig. 3, the two adjacent TBSs Hl1(u, v, w) and Hl2(u, v, w) are G1 continuous, if

the two unit vectors Tl1;ij and Tl2;ij , i.e.,

Tl1;ij =
Pi,j,lp − Pi,j,lp−1∥∥Pi,j,lp − Pi,j,lp−1

∥∥ , and, Tl2;ij =
Qi,j,1 −Qi,j,0

‖Qi,j,1 −Qi,j,0‖
,

have the same direction. Then, the smoothness between a pair of adjacent TBSs can be improved by the

minimization of the energy function, ∑
ij

(1− Tl1;ij · Tl2;ij).

The smoothness between all of the adjacent TBSs can be improved by minimizing the energy,

Eh
smooth =

∑
any pair of adjacent TBSs

Hl1
and Hl2

∑
i,j

(1− Tl1;ij · Tl2;ij).
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Meanwhile, the fairness of the TBSs is improved by minimizing the fairness energy,

Eh
fair =

∑
l

∫ 1

0

∫ 1

0

∫ 1

0

((
∂2Hl

∂u2

)2

+

(
∂2Hl

∂v2

)2

+

(
∂2Hl

∂w2

)2

+

2

(
∂2Hl

∂u∂v

)2

+ 2

(
∂2Hl

∂u∂w

)2

+ 2

(
∂2Hl

∂v∂w

)2
)
dudvdw.

The fairness energy Eh
fair is a quadratic function of control points of the TBS Hl. In our implementation,

the composite trapezoidal rule [40] is utilized to calculate the integrals in the fairness energy Eh
fair.

Therefore, the improvement of smoothness and fairness with validity guarantee can be modeled as the

constrained minimization problem,

minHl;ijk
(1− λf )Eh

smooth + λfE
h
fair

s.t. 1) The control grid of each TBS satisfies Proposition 3,

2) The boundary control points of each TBS are fixed,

(28)

where, λf ∈ [0, 1] is a weight, listed in Table 3. Constraint 1) in (28) guarantees that each TBS satisfies

the validity condition for TBSs (Proposition 3).

The constrained minimization problem (28) is solved by the GFD algorithm (Algorithm 1). The input

to the GFD algorithm is the composition of the seven TBSs, constructed in Section 5.3.3, with control

points arranged in a one-dimensional sequence. The threshold εe in the termination condition (15) is

taken as 10−5.

(a) (b) (c)

(d) (e) (f)

Figure 8 The cut-away views of TBSs generated by our method. (a) Mannequin. (b) Tooth. (c) Duck. (d) Moai. (e)

Ball joint. (f) Venus.
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6 Results

The algorithm developed in this paper is implemented using Visual Studio C++ 2010, and run on a PC

with Intel Core2 Quad CPU Q9400 2.66 GHz and 4GB memory. In this section, we demonstrate six

TBS models generated by the developed method. In Fig. 8, the cut-away views of the TBS models are

illustrated. It can be seen that the iso-parametric curves vary smoothly not only inside a single TBS,

but between two adjacent TBSs as well. Moreover, in Fig. 9, the distribution of the scaled Jacobian

values [41] of the TBSs is visualized with different colors. The darker the red color, the higher the scaled

Jacobian values. As shown in Fig. 9, the scaled Jacobian values of these models are all positive. A

majority of region of the six TBS models is in red. Actually, in each of the six TBS models, the Jacobian

values are larger than 0.5 in over 80% region.

(a) (b) (c)

(d) (e) (f)

Figure 9 The distribution of scaled Jacobian values on TBSs generated by our method. (a) Mannequin. (b) Tooth. (c)

Duck. (d) Moai. (e) Ball joint. (f) Venus.

The statistics of TBSs generated by our method are listed in Table 1. The third column of Table 1 is

the number of control points of TBSs, reading as m × n × k × l. It means that, the number of control

points of the central TBS is m × n × k, those of the six surrounding TBSs are m × n × l, m × n × l,
m× k × l, m× k × l, n× k × l, and n× k × l, respectively. The fourth column is the fitting error, which

is defined as, √∑6
l=0

∑Ni−1

i=0 ‖Hl(ui,vi,wi)−Vi‖2
Ni

L
,

where Ni is the number of tet mesh vertices in the ith sub-volume (i = 0, 1, · · · , 6), and L is the diagonal

length of the bounding box of the whole model. The fitting errors for all of the six models are in the

order of magnitude 10−2. Moreover, in the fifth column, the ratios of the volume of the region with

scaled Jacobian in (0, 0.2] to the whole volume of the TBS are listed. It can be seen that the largest ratio

(for the model Ball joint) is 1.96%, and the ratios for the other models are all below 0.5%, meaning that
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Table 1 Statistical data of the TBS generation method developed in this paper.

model #vert.1 #control2 fitting error ratio3
time4

curve surface TBS quality

Mannequin 44152 50× 50× 90× 30 5.06× 10−2 0.11% 3.26 344.85 1268.87 605.72

Tooth 61311 30× 26× 26× 26 5.07× 10−3 0.12% 1.62 198.54 464.13 124.66

Duck 41998 30× 30× 24× 20 7.65× 10−2 0.09% 1.37 166.14 393.67 117.90

Moai 8831 30× 30× 30× 20 3.89× 10−2 0.34% 1.38 230.28 538.54 111.10

Ball joint 43994 30× 22× 34× 15 2.37× 10−2 1.96% 1.41 280.62 685.98 130.53

Venus 35858 30× 30× 30× 24 1.91× 10−2 0.00% 1.34 228.32 573.67 165.90

1 Number of vertices of the input tet mesh model.
2 Number of the control points of the TBSs generated by our method.
3 The ratio of the volume of the region with scaled Jacobian in (0,0.2] to the whole volume of the TBS.
4 Time (in second) cost in curve, surface, TBS fitting and quality improvement (smoothness and fairness

improvement).

regions with scaled Jacobian in (0, 0.2] in generated TBSs are very small. In the last four columns, we

list the time cost (in second) in curve, surface, TBS fitting, and quality improvement (i.e., smoothness

and fairness improvement). The whole process for the six models takes time ranging from 11 min to 37

min.

Table 2 Comparison of the TBSs generated by our method and the methods in Ref. [6] [23].

model
min Jac.1 avg Jac2

our method method in [6] method in [23] our method method in [6] method in [23]

Mannequin 0.1048 -0.5678 -0.9771 0.8713 0.8005 0.8267

Tooth 0.1576 0.0557 -0.1171 0.9357 0.8393 0.9321

Duck 0.0851 -0.6855 -0.9588 0.8154 0.6471 0.8377

Moai 0.1127 0.1833 -0.9850 0.8412 0.9118 0.8804

Ball joint 0.0987 -0.5664 -0.5972 0.8367 0.7437 0.8189

Venus 0.1243 0.0001 -0.7239 0.9176 0.7484 0.8821

1 Minimum scaled Jacobian value.
2 Average scaled Jacobian value.

Moreover, for comparison, the minimum scaled Jacobian values and average Jacobian values of TBSs

generated by the two methods developed in Refs. [6], [23] and our method, respectively, are presented in

Table 2. The average Jacobian value is calculated as,

avgJac =

∫ ∫ ∫
Ω
J(x, y, z)dxdydz∫ ∫ ∫

Ω
dxdydz

,

where J(x, y, z) is the scaled Jacobian value [41] at (x, y, z). Specifically, on one hand, inputs to the

method in [6] are the boundary B-spline patches of TBSs generated by our method. On the other

hand, the resolutions of control grids of boundary B-spline patches employed in the method in [23] are

the same as those in our method, and fitting errors of TBSs all reach the same order of magnitude, i.e.,

10−2. In Ref. [6], the divide-and-conquer technique was employed to reduce the original large optimization

problem into a set of separable small sub-problems. And then, isolated groups of invalid Bézier patches are

optimized separately. However, the movements of B-spline control points in optimizing an invalid patch

will affect its neighbor patches. Therefore, even an isolated invalid patch becomes valid by optimization,

the movements of its B-spline control points can make a valid neighbor patch turn into an invalid one. In

Table 2, minimum scaled Jacobian values of three TBSs generated by the method in Ref. [6] are negative,

and those generated by the method in Ref. [23] are all negative. It is worth noting that, minimum scaled

Jacobian values of all TBSs produced by our method are positive. Additionally, in the six models, the

average scaled Jacobian values of four TBSs generated by our method are superior to those of other

methods (refer to Table 2).
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It should be pointed out that, because the values of energy functions, i.e., Ec
fit and Ec

val in Eq. (19),

Es
fit, E

s
u, E

s
v , and Es

uv in Eq. (23), Eh
fit, E

h
u , E

h
v , E

h
w, E

h
uv, E

h
uw, and Eh

vw in Eq. (27), and Eh
smooth, E

h
fair in

Eq. (28), differ much for different models, different weights should be chosen in solving the minimization

problems (Eqs. (19) (23) (27) (28)), in order to balance the energy functions well, and achieve desirable

results. The weights employed in generating the six TBSs are presented in Table 3.

Table 3 Weights employed in generating TBSs.

Mannequin Tooth Duck Moai Ball joint Venus

λc 0.0001 0.99 0.98 0.1 0.0001 0.0001

λs, λh 0.0001 0.9 0.9 0.1 0.0001 0.0001

µs, µh 0.0001 0.09 0.09 0.1 0.0001 0.0001

λf 0.9 0.0001 0.0001 0.6 0.9 0.9

Limitations: There are several limitations of the developed method. First, the segmentation by

pillowing operation is not suitable for some types of tet mesh models. For example, because the bottom

of the Isis model shown in Fig. 10 is slim, the quality of the TBS generated by our method is not very

good, though the Jacobian value can be guaranteed positive. The fitting precision can just reach the order

of magnitude 10−1, and the Jacobian values in 16.69% region lie in the interval (0, 0.2]. Therefore, a more

reasonable tet mesh segmentation method should be developed in the future. Second, the validity of the

generated TBS model depends on an valid initial TBS. Although the developed initial TBS construction

method can generate a valid initial TBS when the input tet mesh has no extreme concave or even folder

over dihedral angle, it does not guarantee the validity of constructed initial TBSs in arbitrary cases.

(a) (b)

Figure 10 The pillow operation is not suitable for some types of tet mesh models. For example, scaled Jacobian values

in 16.69% region of the Isis TBS model lie in the interval (0, 0.2]. (a) Cut away view of the TBS model. (b) Distribution

of the scaled Jacobian values.

7 Conclusion

In this paper, we developed a method to generate a TBS by fitting a tet mesh model. The input to this

method is a tet mesh model with six surfaces segmented on its boundary mesh. To improve the Jacobian

values in the regions close to the boundaries, the tet mesh model was first partitioned into seven sub-

volumes using the pillow operation. Then, a geometric iterative fitting algorithm was developed to fit the

boundary curves, boundary surfaces, and the sub-volumes, separately. Because the validity conditions

are integrated into the geometric iterations, the Jacobian values of the generated TBSs are guaranteed
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to be positive, if the initial TBSs are valid. The method developed in this paper provides a practical

solution for producing valid TBSs for a wide range of models.

Appendix: Convergence analysis of the GFD algorithm

In this appendix, the convergence analysis of the GFD algorithm (Algorithm 1) will be presented. Let,

D = {(P0,P1, · · · ,Pm) | the constraints in (11) are satisfied} ,

L =
{

(P0,P1, · · · ,Pm) | E(P0, · · · ,Pm) 6 E(P
(0)
0 , · · · ,P (0)

m )
}
.

The analysis of the convergence of the GFD algorithm (Algorithm 1) depends mainly on the following

lemma [39].

Lemma 1. Suppose ∇E(P0,P1, · · · ,Pm) (11) is uniformly continuous on the region D ∩ L, and the

angle θk between the feasible direction D(k) generated by the GFD algorithm (Algorithm 1) and −∇E(k)

satisfies,

0 6 θk 6
π

2
− µ, for some µ > 0.

Then, ∇E(k) = 0 for some k, or E(P
(k)
0 ,P

(k)
1 , · · · ,P (k)

m )→ −∞, (k →∞), or ∇E(k) → 0, (k →∞).

Then, the convergence theorem for the GFD algorithm (Algorithm 1) is followed.

Theorem 1. If ∇E(P0,P1, · · · ,Pm) (11) is uniformly continuous on the region D∩L, and the objective

function E(P0,P1, · · · ,Pm) (11) is bounded, the GFD algorithm (Algorithm 1) is convergent.

Proof: Denote θk as the angle between the feasible direction D(k) and −∇E(k). In the iteration of

the GFD algorithm, the following inequality holds,

− D(k) · ∇E(k)∥∥D(k)
∥∥

2

∥∥∇E(k)
∥∥

2

> δd.

So, there exists some µ > 0, such that,

0 6 θk 6
π

2
− µ.

Therefore, based on Lemma 1, together with that the objective function E(P0,P1, · · · ,Pm) (11) is

bounded, the GFD algorithm (Algorithm 1) is convergent. 2
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7 Aigner M, Heinrich C , Jüttler B, et al. Swept volume parameterization for isogeometric analysis. In Proceedings of

Mathematics of Surfaces XIII, Berlin, 2009. 19–44.

8 Akhras H A, Elguedja T, Gravouila A, et al. Isogeometric analysis-suitable trivariate NURBS models from standard

B-Rep models. Computer Methods in Applied Mechanics and Engineering, 2016, 307 : 256–274.

9 Chan C L, Anitescu C, Rabczuk T. Volumetric parametrization from a level set boundary representation with PHT-

splines. Computer-Aided Design, 2017, 82 : 29–41.



Lin H, et al. Sci China Inf Sci 20

10 Fang M, Lu J, Peng Q. Volumetric data modeling and analysis based on seven-directional box spline. Science China

Information Sciences, 2014, 57(6): 1-14.

11 Sederberg T W, Cardon D L, Finnigan G T, et al. T-spline simplification and local refinement. ACM Transactions on

Graphics, 2004, 23 : 276–283.
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