
1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2779799, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 15, NO. 9, SEPTEMBER 2016 1

Computer Simulation and Generation of Moving
Sand Pictures

Mohan Zhang, Hongwei Lin, Kang Zhang and Jinhui Yu

Abstract—Moving sand pictures are interesting devices that can be used to generate an infinite number of unique scenes when
repeatedly being flipped over. However, little work has been done on attempting to simulate the process of picture formulation. In this
paper, we present an approach capable of generating images in the style of moving sand pictures. Our system defines moving sand
pictures in a few steps, such as initialization, segmentation and physical simulation, so that a variety of moving sand pictures including
mountain ridges, desert, clouds and even regular patterns can be generated by either automatic or semi-automatic via interaction
during initialization and segmentation. Potential applications of our approach range from advertisements, posters, post cards,
packaging, to digital arts.

Index Terms—Moving sand picture, tessellation, segmentation, color arrangement, physical simulation.

F

1 INTRODUCTION

MOving sand pictures are made by filling several kinds
of silicon carbides (sand grains) with specific weights

and colors, and a small amount of water between the two
pieces of glass. Although the moving sand picture device
is simple, when flipped over repeatedly, it can be used to
generate an unlimited number of beautiful images of moun-
tains, rivers, and deserts, etc, as shown by two examples in
Fig. 1 (a) and (b).

Fig. 1: Real life moving sand pictures: satisfactory results (a) and (b),
and unsatisfactory results (c) and (d).

Real life moving sand pictures are attractive due to
their interactive and visual appealing. However, the random
properties involved in the interactions between sand grains

• M. Zhang is with the State Key Lab. of CAD&CG, Zhejiang University,
Hangzhou, 310058, China.

• H. Lin is with the Department of Mathematics, and State Key Lab. of
CAD&CG, Zhejiang University, Hangzhou, 310027, China.

• K. Zhang is with the Department of Computer Science, The University of
Texas at Dallas, Richardson, TX 75080-3021, USA.

• J. Yu is with the State Key Lab. of CAD&CG, Zhejiang University,
Hangzhou, 310058, China. He is also a guest professor at the Department
of Computer Science, Harbin Finance University, Harbin, 150030, China.

and air bubbles formed by the water inside the devices
make the resulting pictures unpredictable, as shown in Fig. 1
(c) and (d). One usually has to flip over the device many
times to obtain a beautiful picture. Computer simulation
of moving sand pictures could, however, support various
controls over the generated results and offer almost unlim-
ited room for creativity and imagination. For example, one
could easily change sand colors and/or granularities, insert
virtual obstacles, and possibly extend to three dimensions.
Research in this direction could potentially generate a new
type of visual communication media for a wide range of
applications in design industry, such as card, desktop, pack-
aging and textile pattern design.

In this study, we develop an approach that is able to gen-
erate moving sand pictures, ranging from mountain ridges,
clouds, desert, to regular patterns. The main contributions of
this study include: (1). Two means (halftoning and rectangle
tessellation) to initialize the upper part of the drawing win-
dow; (2). Tools for users to effectively control the resulting
pictures to suit various application needs; (3). Accelerated
simulation with three layers of sand grains (dynamic, static
and fixed layers).

2 RELATED WORK

Moving sand pictures are different from traditional arts
because no strokes are involved in making pictures, the
result of a moving sand picture is very much like non-
photorealistic rendering, while its forming process is purely
physical as a result of sand-bubble-liquid interaction. It is
these similarities that inspired the proposed methodology,
that contains both physical simulation of sand collision and
falling, and artistic control over the layout and texture of
sand pile shapes.

In this section we just review some works upon that our
work draws, and omit the work fallen in non-photorealistic
rendering where the traditional media simulation is the
main concern, notably the choices of stroke placement and
the mixing of paint. In addition, moving sand pictures show



1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2779799, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 15, NO. 9, SEPTEMBER 2016 2

Fig. 2: Overview of our system. (a) Tessellation of initialization region. (b) Filling tessellation cells with sand grains. (c) Input the moving
sand image. (d) Halftoning. (e) Segmentation of initialization region. (f) Input the sketch (optional). (g) Simulation of sand grains falling and
piling. (h) Determination of sand grains falling order. (i) Three layer model. (j) Result.

surprisingly complex behaviors since they involve compli-
cated interactions among sand grains, water and bubbles
which are hard to simulate accurately by physical means.

A related work, which is relatively simpler than moving
sand picture simulation, granular simulation has been stud-
ied extensively in geophysics and physics to engineering
analysis and computer graphics. In the following we mainly
comment on the most representative works from these com-
munities. Existing works related to the granular materials
can largely be divided as the following.

For visual applications, continuum methods which sim-
ulate granular materials as fluid can give fairly convinc-
ing results. The Smoothed Particle Hydrodynamics (SPH)
method was proposed originally to model fluid dynamics
in astrophysics [1]. Zhu and Bridson [2] modeled granular
materials as incompressible fluid with the fluid-implicit-
particle algorithm, and their approach relied on identifying
rigidly moving regions of material to obtain stable piles.
Lenaerts and Dutré [3] unified SPH framework where fluids
and granular materials are two-way coupled. Improving the
method of [2], Narain et al [4] developed a new fluid solver
combining the strengths of both particles and grids with
enhanced flexibility and efficiency. In addition, Wilkinson
and Willemsen [5] developed the Invasion Percolation (IP)
method to model complex fluids. Hawick and Ken [6]
adapted the IP model to experiment with flow of immis-
cible fluids in model reservoir systems. A versatile and
robust SPH simulation approach for multiple-fluid flow
was proposed [7], and later extended to cover solid phases,
including deformable bodies and granular materials [8].

Natural methods have also been proposed for animating
granular materials that directly simulate the interactions
between individual grains. Luciani et al [9] developed a
particle system model for granular materials using damped
nonlinear springs. An efficient discrete element method
(DEM) was proposed to capture granular phenomena in
[10], and Bell et al [11] exhibited a two-way coupling be-
tween granular materials and rigid bodies by using DEM.
Alduán et al [12] used an adaptive resolution version of the
method [11] to improve performance. Furthermore, DEM
and smoothed particle hydrodynamics were utilized to sim-

ulate the intersection of fluids and granular materials [13].
Recently, Macklin et al [14] presented a unified dynamics
framework for real-time visual effects that can be applied
by casting granular interactions as hard constraints.

Combining aspects of particle-based and grid-based
methods, Sulsky et al [15] developed the Material Point
Method that uses two representations of the continuum, one
based on a collection of material points and the other on a
computational grid. It has been used in modeling granular
materials, such as snow [16] and sand [17]. Recently, Gergely
et al. [18] used the material point method to discretize the
governing equations for its natural treatment of contact,
topological change and history dependent constitutive re-
lations. Built upon this method, Gilles et al. [19] derived a
compact model for the rheology of the material.

Other works in granular materials focus on improving
computational efficiency. Granular materials were modeled
using height fields in [20] and [21]. Sumner et al [22] took
a similar height fields approach with simple displacement
and erosion rules to model footprints, track, etc. Pla et al [23]
applied cellular automata to model granular terrains inter-
actively. In the work by Bouchaud et al [24] two populations
of grains, immobile and rolling, are recognized so that only
rolling grains need to be calculated. The model proposed
by Bouchaud et al [24] was later used for improving the
efficiency of the granular materials [25], [26] and [27].

In contrast to granular simulation, only a few attempts
have been made on moving sand picture simulation. The
first attempt was by Pearce et al [28] who constructed a
lattice-based simulation of a sand picture based around the
Kawasaki spin-exchange model [29] and IP model [6] with
empirical couplings between cells. The generated pictures
however visually differ greatly from those in Fig. 1. In this
study, we develop an approach for generating moving sand
pictures, which are visually similar to those in Fig. 1, and
also aesthetically pleasing.

3 APPROACH OVERVIEW

The overall architecture of our system is presented in Fig.
2. First, at the initialization stage, we arrange sand grains
with different attributes, such as weight, size, and color in



1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2779799, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 15, NO. 9, SEPTEMBER 2016 3

the working window. We offer users two options at this
stage. One is to take a moving sand picture or a photograph
as input (Fig. 2(c)) and then apply halftoning on the input
image (Fig. 2(d)). The other is to tessellate the entire region
with small rectangles (called cells) of varying sizes (Fig. 2(a))
and fill the cells with sand grains of different colors (Fig.
2(b)). Users may further edit colors in the cells for personal
preferences.

Next, at the segmentation stage, we segment the entire
region using ellipses of varying sizes. Fig. 2(e) shows the
result of segmenting the image in Fig. 2(d). Adoption of
ellipses aims at simulating holes where sand grains fall
through, and the ellipses eventually correspond to moun-
tains in the resulting pictures. Thus, in order to offer more
control over the composition of mountains, users may op-
tionally input a sketch (red lines in Fig. 2(f)) to guide the
placement of ellipses (black lines in Fig. 2(f)) for the desired
composition .

Finally, at the physical simulation stage, we set the
falling order of sand grains in each segmented cell in Fig.
2(e). In each cell, our approach sorts sand grains in a fixed
order of falling (Fig. 2(h)) and calculates each sand grain by
Physx library [30](Fig. 2(g)). We use a three-layer model to
speed up the simulation process (Fig. 2(i)). When all sand
grains fall down the final moving sand picture (Fig. 2(j)) is
obtained.

4 INITIALIZATION OF SAND GRAINS

Since the gap between the enclosing glass plates in the
moving sand picture device is usually small, it is sufficient
for us to simulate moving sand pictures on a two dimen-
sional space [28]. The first step of simulation is to arrange
sand grains of different attributes such as weight, size and
color in the so-called initialization region over the upper
part of the simulation window. This section describes the
working window, the initialization region in the window,
and attributes of sand grains (Section 4.1). We offer two
initialization strategies, i.e. halftoning (Sections 4.2) and
tessellation (Section 4.3), and then describe how to fill the
colored sand grains in the tessellated region (Section 4.4).

4.1 Working window and attributes of sand grains
We set the size of the working window at 1000×700 pixels,
which is enough to produce aesthetically pleasing moving
sand pictures. The initialization region is a sub-window in
the upper part of the working window, thus of the same
width as the working window, but varying height, subject
to the user’s aesthetic preference. The default height of the
initialization window is set at 350 pixels.

To simulate sand grains of different weights in moving
sand pictures, we employ four classes of sand grains, as
suggested in [31], and denote them by S1, S2, S3, and S4, re-
spectively. Inspired by [31] and [32], we assign the following
densities, 3.2g/cm3, 3.2g/cm3, 2.7g/cm3, and 2.7g/cm3,
and diameters, 0.2mm, 0.2mm, 0.1mm, and 0.1mm to S1−4

to model the sand grains as small spheres. The number of
sand grains corresponding to S1−4 is set at 3/8, 3/8, 1/8,
and 1/8 of the total sand grains, as suggested in [31]. The
colors of sand grains corresponding to S1−4, denoted by
C1−4, can be specified by the user.

4.2 Initialization by halftoning
One strategy of initialization is to take a moving sand pic-
ture or a photograph with the same size of the initialization
region as input. Since pixel values in the input image are
usually much larger than the 4 color options used in our
system, we first convert the input image (Fig. 3(a)) into gray
scale one (Fig. 3(b)), and then perform halftoning on the
gray scale image to obtain an image with pixel values of
four classes (Fig. 3(c)), and assign corresponding attributes,
such as weights, sizes, and colors, to the halftone image (Fig.
3(c)), finally obtain color halftone image as in Fig. 3(d).

(a) (b)

(c) (d)

Fig. 3: Initialization by halftoning. (a) Input an image. (b) Convert
the input image into gray scale. (c) Halftoning the gray scale image.
(d) Colored halftoning image.

Halftoning has been an active research area for many
years, and thus several halfoning algorithms are available,
such as Floyd-Steinberg error diffusion [33], ordered dither-
ing [34], and Knuth’s dot-diffusion [35], etc. We employ
the Floyd-Steinberg error diffusion algorithm that achieves
dithering using error diffusion. The algorithm pushes the
residual quantization error of a pixel onto its neighboring
pixels, to be handled later. Specifically, it spreads the resid-
ual quantization errors out using the following distribution
mask: �

0 P
7

16
3

16

5

16

1

16

�

where P represents the pixel currently being scanned, and
the numbers represent the portion of the error that is dis-
tributed to the pixel in the specified position. The algorithm
scans the image top down and left to right, quantizing
pixel values one by one. When the quantization error is
transferred to the neighboring pixels, the pixels that have
already been quantized are not affected. For more details on
the Floyd-Steinberg algorithm, please refer to [33].

When the moving sand pictures are not available, our
approach offers an alternative solution to initialize sand
grains. Unlike initializing sand grains by halftoning on
an input image, where the distribution of sand grains is
provided by the input image itself, our new method of sand
grains initialization must solve the following two problems:
(1) tessellating the initialization region with small cells and
(2) filling the cells with sand grains of different attributes.
We propose two simple strategies for tessellating and filling
sand grains to generate scenes similar to those seen in the
moving sand picture device, described in the following two
sections.



1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2779799, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 15, NO. 9, SEPTEMBER 2016 4

4.3 Tessellation of initialization region

The first issue associated with tessellation is the choice of
cell shapes. Tessellating the initialization region with cells
of irregular shapes is extremely difficult because it requires
that the user manually draws a picture at the quality of
actual moving sand pictures. Because the initialization re-
gion is a large rectangle occupying the upper part of the
working window, it is natural to choose small rectangles as
tessellation cells, as shown by the black lines in Fig. 4(a).
After all cells are filled with different kinds of sand grains
(sand grains filling strategy will be described in Section 4.4),
sand grains from the cells fall downward to form a scene
which looks like mountain ranges (the sand grains falling
procedure will be described in Sections 6 and 7), as shown
in Fig. 4(b). However, the ranges appear unnatural and even
mechanical.

(a) (b)

Fig. 4: Tessellation of initialization region by uniform rectangles (a)
and corresponding simulation result (b).

Since sand grains fall down cell by cell in our approach,
sand grains falling from their corresponding cell pile up
at the bottom part of the working window to form a
sandpile. Obviously, the larger the cell is, the larger the
corresponding sandpile. It can then be expected that more
natural mountain ranges could be obtained with varied
sizes of rectangular cells in the tessellation region. For
instance, because distant mountains may appear lower than
the mountains nearby, we tessellate the initialization region
using rectangles with heights that increase progressively
from the top to the bottom. On each row, widths vary
randomly, as illustrated by the black lines in Fig. 5(a). The
corresponding generated result is given in Fig. 5(b), where
mountain sizes change more naturally.

(a) (b)

Fig. 5: Tessellation of initialization region by rectangles of varying
sizes (a) and corresponding simulation result (b).

4.4 Filling tessellation cells with sand grains of differ-
ent colors

After the initialization region is tessellated, all tessellation
cells must be filled with the four classes of sand grains,
S1−4, rendered with the corresponding four colors C1−4.
Fig. 1 shows that in the moving sand picture device the

four classes of sand grains are distributed in such a complex
way that different patterns and shapes can be formed. Thus,
simply filling all rectangular cells with uniformly mixed
S1−4 sand grains is not a good idea, because the resulting
scene may be generated without visible patterns. Therefore,
it is necessary to fill tessellation cells with mixed sand
grains, S1−4, yet with notably dominant colors, from cell
to cell so that visible patterns can be generated after sand
grains move down from the cells.

We propose the following strategy to fill S1−4 in tessella-
tion cells. A cell is filled in such a way that it appears to have
one color dominant over other three colors, and the ratio
between sand grains with dominant color and sand grains of
the other three colors is set empirically to 0.8:0.2 in one cell.
The four classes of sand grains S1−4 are set to 3

8 , 3
8 , 1

8 , and
1
8 of the total amount of sand grains, respectively (Section
4.1). The algorithm that determines the color of a tessellation
cell’s sand grains is given in the following pseudo code:

Algorithm 1 Fill tessellation cells

1: for each cell in the tessellation region do
2: Select Sm ∈ S1−4 with probabilities 3

8 , 3
8 , 1

8 , 1
8 ;

3: Choose Cm as the dominant color;
4: Select Sn ∈ {S1−4

Sm with probabilities 1
3 , 1

3 , 1
3 ;

5: choose Cn as the non-dominant color;
6: for each sand grain s in the rectangle cell do
7: if a random number R ∈ [0, 1] ≤ 0.8 then
8: Assign s with color Cm;
9: else

10: Assign s with color Cn;
11: end if
12: end for
13: end for

5 SEGMENTATION OF TESSELLATED REGION

In a physical moving sand picture device, the falling process
of sand grains is complex due to interactions among sand
grains, bubbles and water. Accurate simulation of this pro-
cess is almost impossible. Sand grains falling directly from
rectangular tessellation cells one by one would be a simple
strategy to simulate the process, and two simulated results
shown in Fig. 4(b) and Fig. 5(b) are not satisfactory, due
to the lack of strip patterns seen in Fig. 1. It is necessary
then to re-segment the tessellated region with different
geometric primitives so that strip patterns can be produced
over mountain shapes.

5.1 Segmentation with varying ellipses

We adopt ellipses to approximate shapes formed by sand
grains falling downward and use them to re-segment the
tessellated region. Most of ellipses are bigger in area than
those of rectangular cells, thus one ellipse may overlap with
several rectangular cells, as shown in Fig. 6(a). We take each
ellipse as the unit and let sand grains located in the ellipse
unit fall, sand grains with different dominant colors in the
small tessellation cells covered by an ellipse produce strip
patterns over the mountain shapes formed by over all sand
grains in the ellipse. We continue this procedss until all



1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2779799, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 15, NO. 9, SEPTEMBER 2016 5

ellipses are visited, the resulting picture shown in Fig. 6(b)
looks similar in style to those in Fig. 1.

(a) (b)

Fig. 6: Segmentation of the tessellated region with varying ellipses
(a) and corresponding simulation result (b).

When halftoning is used for initialization (Section 4.2),
tessellating the initialization region with varying rectangles
is unnecessary because the distribution of different sand
grains is irregular in the input image. We therefore skip
the tessellation step and perform segmentation with ellipses
directly on the halftoned input image.

5.2 Sketch based segmentation
Our goal is to reproduce moving sand pictures similar to
those in Fig. 6(b), and also to generate moving sand pictures
which are aesthetically pleasing. It would be desirable then
to arrange mountains so that they can show mountain
ridges often seen in a natural scene. To this end, we design
a tool in our UI that allows users to draw a sketch as in
Fig. 7(a), where long lines suggest mountain ridges, thus are
called as ridge lines, while arc-like curves along the ridge
lines suggest mountain profiles, they also depict how close
mountains are to each other in depth. Next, we detail how
to place ellipses of varying sizes according to the sketch.

(a)

(b) (c)

(d) (e)

Fig. 7: Segmentation guided by the sketch. (a) The sketch. (b)
Segmentation without long and narrow ellipses. (d) Corresponding
simulation result. (c) Segmentation with long and narrow ellipses. (e)
Corresponding simulation result.

Detection of intersections in the sketch. Intuitively, an
ellipse should be placed under an arc-like curve crossing
the ridge lines so that a mountain like pattern could be
produced in the scene. It is necessary then to detect the
intersections between ridge lines and arc-like curves first in

the sketch, this can be done with traditional line intersection
detection algorithm, and intersection points detected are
put into ΨP {P1, P2, ...Pn}, where n is the total number of
intersection points detected.

Placement of ellipses. To place an ellipse under the
ith arc-like curve, we need to determine the center, major
and minor axes of the ellipse. Also, considering that nearby
mountains appear larger than those further away, we should
place ellipses such that their sizes decreasing progressively
bottom up. In our implementation, we set the semi-major
axis of the ellipse by ai = 0.5 ∗ Am − αPi(y), where Am is
the maximum major axis estimated by dividing the width
of the initialized region by the number of ridge lines near
the bottom of the sketch, Pi(y) is the y coordinate of the
ith detected intersection point, i = 1, 2, 3, ...n, and α is a
parameter set at 0.3. We let the eccentricity of ellipses vary
in the range [0.45,0.65], with which the semi-minor axis bi
for all ellipses to be used in segmentation can be obtained.

The center (Oi(x), Oi(y)) of the ith ellpise placed un-
der the detected intersection point (Pi(x), Pi(y)) can be
obtained by Oi(x) = Pi(x) and Oi(y) = Pi(y) − bi, as
illustrated by the lower ellipse in Fig. 8.

Sketch-guided elliptical segmentation. With all at-
tributes obtained for n ellipses, we can place them in the
initialization region for segmentation, as illustrated by two
black ellipses centered at Oi and Oj in Fig. 8. Via experi-
ments we find that, when the distance between centers of
two intersection points along one ridge line is larger than
1.2 times of the semi-minor axis of the ellipse to be placed,
the sand pile shapes generated are away from the ridge line
in the sketch, as shown by Fig. 7(b) and Fig. 7(d). In order
to preserve the ridge line in the generated sand pile shapes,
the long and narrow ellipses should be inserted on the left
and right sides on the top of the lower ellipse, so that sand
grains inside these two ellipses may produce strip patterns
beside the sand pile shape produced by sand grains in the
lower ellipse.

Fig. 8: Blue line indicates the mountain ridge, green lines indicate
arc-like curves in the sketch, and red ellipses indicate inserted ellipses.

The two inserted ellipses are highlighted in red in Fig. 8,
we determine their centers Q1 and Q2 on the lower ellipse
simply by letting θ varying in the predefined ranges, their
orientations are the same as the tangent at Q1 and Q2 on the
lower ellipse, the semi-major axes of two inserted ellipses
are set at 0.6 times of the semi-major axis of the lower ellipse,
and their eccentricities are set in the range [0.96,0.98]. With
the elliptical segmentation modified by inserting two long
and narrow ellipses (red ones in Fig. 7(c)), the ridge line



1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2779799, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 15, NO. 9, SEPTEMBER 2016 6

in the sketch can be preserved in the generated sand pile
shapes as expected (Fig. 7(e)).

6 DETERMINATION OF SAND GRAINS FALLING OR-
DER

After the tessellated region is segmented by a set of ellipse
cells, we sort the segmentation cells by row order according
to the y-coordinates of their centers and then place the
segmentation cells on each row randomly, until all cells in
the row have been visited.

For each cell, we must determine the falling order of
sand grains in the cell. There are many possible orders for
thousands of sand grains to fall. We thus observe how sand
grains fall in a physical moving sand picture device and
choose a method that is able to mimic the natural falling
order.

When the moving sand picture device is flipped over,
the air bubbles formed by water rise from the bottom. When
rising up, large air bubbles begin to break into small ones.
Due to the gravity of sand grains above large air bubbles,
small gaps begin to appear between air bubbles, and sand
grains above air bubbles begin to fall through the gaps. An
accurate physical simulation of the air bubble’s rising and
breaking is beyond the scope of this paper. Nevertheless,
this behavior inspires us to propose a simple strategy to set
the order of sand grains falling as follows.

In each segmentation cell that is selected, we first take
the center of the bottom line of the cell as a reference, and
then we sort sand grains in the cell in ascending order of the
distances between each sand grain and this center. For sand
grains with equal distance between their static positions and
the center, they are randomly sorted one by one until they
are all visited. Fig. 10 shows a half circle with a radius d
equal to the distance between a sand grain and the center of
the bottom line of the segmentation cell.

7 SIMULATION OF SAND GRAINS FALLING AND PIL-
ING

Our approach simulates the process of sand-piling physi-
cally. All sand grains fall as solid bodies toward the ground
due to gravity. When a collision between sand grains occurs
while falling, we consider it an elastic collision or inelastic
collision depending on the weights assigned to the sand
grains. We simulate the falling, collision, and piling of sand
grains using Physx [30].

In Physx, all physical objects have at least one mate-
rial, which defines the friction and restitution properties
used to resolve a collision with the objects. Friction uses
the Coulomb Friction Model, which involves 2 coefficients,
i.e., static friction coefficient and dynamic friction coefficient
(sometimes called kinetic friction). Friction resists relative
lateral motion of two solid surfaces in contact. These two
coefficients define a relationship between the normal force
exerted by each surface on other surfaces and the amount of
friction force applied to resist lateral motion. Static friction
defines the amount of friction applied between non-moving
surfaces. Dynamic friction defines the amount of friction
applied between surfaces that are moving relative to each-
other.

The coefficient of restitution of two colliding objects is
a fractional value representing the ratio of speeds after
and before an impact, taken along the line of impact. A
coefficient of restitution of 1 is said to collide elastically,
while a coefficient of restitution < 1 is said to be inelastic.

In our implementation, we set the parameters of dy-
namic friction, static friction, and restitution to 0.4, 0.4, and
0.1, respectively, based on our experiments. Changing the
friction coefficient will affect the final look of generated
sandpile shapes, as demonstrated in Fig. 9, sandpile shapes
vary progressively from flatter to steeper when values of
friction coefficients increase. Moreover, the size of each grain
also affects the simulation, smaller sand grains may result
in flatter sand piles and bigger sand grains may result in
steeper sand piles.

Fig. 9: Sand pile shapes generated with dynamic friction and static
friction set to 0.1 in (a), 0.4 in (b), and 0.9 in (c). The restitution
remains to be 0.1 in (a), (b) and (c).

Fig. 10: Moving a sand grain from its current position to the outlet
in a segmentation cell.

Fig. 10 shows a segmentation cell with a dashed line
ellipse laid on a local coordinate system with the origin in
the middle of the bottom line in the cell. To simulate a small
gap between air bubbles in the moving sand picture device,
we put an outlet in the middle of the bottom line in the cell
(orange line in Fig. 10), and set its width at 15 mm to ensure
that all four classes of sand grains are able to pass through
the outlet. We sort each sand grain in a cell according to
the distance di (i=1,...n, where n is the number of sand
grains contained in a cell) between its static position and
the origin of the coordinate system and, from the minimum
to the maximum values among di, we pick up a sand grain
si (red solid circle in Fig. 10) according to its di, and assign
a horizontal velocity vx, which starts at si and points to the
Y axis (For those sand grains having the same value in di,
we randomly pick up one until they all are picked up). For
si to fall out of the outlet from its static position, vx should
satisfy the following equations:�

∆x = vxt

∆y = gt2/2
(1)



1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2779799, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 15, NO. 9, SEPTEMBER 2016 7

where ∆x and ∆y are coordinates of si in the local coor-
dinate system, t is time, and g is the acceleration due to
gravity. Using equations in Eq. 1, we can solve vx and find:

vx = ∆x

É
g

2∆y
(2)

The vertical velocity vy , pointing downwards, is as-
signed to si with vy = gt, where t starts when si begins
to move. As t increases, the sand grain s moves to the outlet
along the trajectory indicated by the blue line in Fig. 10.

8 ACCELERATION OF SIMULATION

In Physx, the simulation of sand grain’s falling, colliding,
and piling up must take all sand grains in the scene into
account. Thus, as more sand grains come into the scene,
the time involved in the simulation calculations increases
dramatically. To reduce the computational cost, the BCRE
model was proposed in [24]. The model treats the sand
pile as two layers, the dynamic layer and the static layer
(described later on). The visible and rolling part of the sand
flow is simulated using the discrete element method and the
invisible and static layer is represented by a height field.

Because the number of sand grains used in our system is
about 3 ∼ 5 times that used in the BCRE model [27], it may
take more than 2 hours to complete the moving sand picture
simulation even when the two layer BCRE model is used
(see statistics in Table. 1 in Section 10). As such, we desire to
reduce the simulation time. In this section, we introduce an
additional layer, the fixed layer, to the BCRE model in order
to accelerate the simulation process:

• dynamic layer: consists of sand grains that can move
and are fully controlled by Physx, as indicated by the
red circles in Fig. 11;

• static layer: consist of sand grains that are almost
immobile due to their speeds and are also fully
controlled by Physx, shown by the blue circles in
Fig. 11;

• fixed layer: consists of sand grains that are immobile
because they are under the static layer, shown by the
black circles in Fig. 11.

Fig. 11: A sand pile subdivided into three layers.

8.1 Classification of three layers
In order to classify the piled sand grains into three layers, we
first map the four classes of sand grains S1−4 from the scene,
handled in Physx, to the pixels in the working window. We
then use an array Hs[j], (j = 1, ..., n ), initialized with zeros,
to record the maximum height of the static layer, where j
corresponds to the jth pixel in the working window, and n
is the width of the window. In our implementation, n is also
equal to the width of the scene handled in Physx.

We devise several simple rules to determine whether a
specific sand grain on the sand pile belongs to the dynamic,
static, or fixed layer. A sand grain is in the dynamic layer
when it is moving in space (falling). When it falls on the
sand pile, it is added to a set Ψd.

In Physx, the time step is controlled by the parameter
elapsed time. In our implementation we adopt the default
setting provided in Physx, 0.016s, which is adequate for
both simulation and rendering in our application. We realize
that updating all data used in the three layers at every time
step slows down the simulation significantly. Based on our
experiments, we take 40 Physx time steps as a simulation
cycle, and update all the data in the three layers a the end of
each cycle.

After Ψd is filled with sand grains that have fallen
on the sand pile during one simulation cycle, we traverse
sand grains in Ψd. For a sand grain si, (i = 1, ...,md,
where md is the number of sand grains in Ψd), at position
(x, y) in Ψd (shown by a lower red solid circle, enlarged
in the upper right of Fig. 11), we first truncate x with
bx + 0.5c to obtain an index j, and then pick two sand
grains, recorded in Hs[j + 1], and Hs[j − 1] (shown by
the two blue solid circles near the lower red solid circle,
enlarged in the upper right of Fig. 11) to calculate an angle
defined by θ(x, y) = 0.5 ∗ (θ1 + θ2), where θ1 and θ2 are
calculated by θ1 = arctan(Hs[j + 1]− y)/((j + 1)− x) and
θ2 = arctan(y − Hs[j − 1])/(x − (j − 1)), respectively, as
illustrated by the two angles shown in Fig. 11. Here θ(x, y)
approximately describes the slope of the static layer atHs[j].
By setting a parameter α to confine θ(x, y) it is possible to
control the slope defined by Hs[j]. In our implementation
we set α at π/6 by default. Users can however tune it to
obtain desired effects.

If a sand grain s satisfies following two conditions:

• its velocity is below 3× 10−5m/s
• θ(x, y) is less than α

it should be in the static layer, and thus moved from Ψd to
a set Ψs. Furthermore, if the height of si is larger than the
current height Hs[j] of the static layer, i.e, y > Hs[j], we
update Hs[j] with y.

We use another array Hf [j], which is initialized to store
zeros, to record the maximum height of the fixed layer. Since
the fixed layer is below the static layer, we need to first
set a suitable static layer thickness before Hf [j] is updated.
Through experiments, we find that a thick static layer would
consume consierable time in the Physx simulation because
it would involve a large number of static sand grains in the
computation. A too thin static layer would, however, cause
sand grains from the dynamic layer go through small gaps
too fast. We therefore set the thickness of the static layer to
be 2.0mm.



1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2779799, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 15, NO. 9, SEPTEMBER 2016 8

For a sand grain si, (i = 1, ...,ms, where ms is the
number of sand grains in Ψs), at position (x, y) in Ψs, we
truncate x with bx + 0.5c to obtain an index j and. If the
following two conditions are satisfied:

• Hs[j]−Hf [j] > 2.0mm
• y < Hs[j]− 2.0mm

then the sand grain si is in the fixed layer, and moved from
Ψs to Ψf . We update Hf [j] to y if y > Hf [j].

We repeat the above procedure to update Ψd, Ψs, Ψf ,
Hs[j] and Hf [j] at the end of each simulation cycle in Physx
until all the sand grains in the initialized region fall down.
The above algorithm is outlined in the pseudo code below
(Algorithm 2).

Algorithm 2 Three-layer model

1: for all sand grains si(x, y) ∈ Ψd do
2: index j ⇐ bx+ 0.5c;
3: angle θ1 ⇐ arctan(Hs[j + 1]− y)/((j + 1)− x);
4: θ2 ⇐ arctan(y −Hs[j − 1])/(x− (j − 1));
5: slope θ(x, y)⇐ 0.5 ∗ (θ1 + θ2);
6: if its velocity vs < 3× 10−5m/s & θ(x, y) < α then
7: move si from Ψd to Ψs;
8: if y > Hs[j] then
9: update Hs[j]⇐ y;

10: end if
11: end if
12: end for
13: for all sand grains si(x, y) ∈ Ψs do
14: index j ⇐ bx+ 0.5c;
15: if Hs[j]−Hf [j] > 2.0mm & y < Hs[j]−2.0mm then
16: move si from Ψs to Ψf ;
17: if y > Hf [j] then
18: update Hf [j]⇐ y;
19: end if
20: end if
21: end for

8.2 Comparison between BCRE model and our three
layer-model
Once a sand grain s is considered part of the fixed layer, it
is no longer part of the Physx computation. Since most of
sand grains are in the fixed layer while the moving sand
picture is being formed, our three-layer model can reduce
the computational cost significantly. Fig. 12 compares the
time costs against the number of sand grains in the scene
using the BCRE model and our three-layer model, where
the run-time data is recorded using our three-layer model
and the (two-layer) BCRE model respectively when the
number of sand grains increases from 5000 to 225000 with
the interval of 20000.

In the BCRE model, much time is spent on the generation
of the height field and the mesh as sand grains enter the
scene. The simulation time increases almost linearly as the
number of sand grains in the scene increases, as shown
by the blue line in Fig. 12. In our three-layer model, the
simulation time also tends to converge to a constant when
the number of sand grains increases, as shown by the red
line in Fig. 12. This is because most of sand grains in

Fig. 12: Number of sand grains in the scene v.s. Time cost in
generating moving sand picture with BCRE model and our three-
layer model.

the scene is in the fixed layer, not involved in the Physx
computations. We can find the time cost of BCRE is larger
than time cost of three-layer model when the number of
sand grains is more than 45000. Since the number of sand
grains ranges from 3.5 × 105 to 5 × 105, which is much
larger than 45000, introducing the fixed layer can reduce the
simulation time dramatically.

(a) (b)

Fig. 13: Sand simulation using the BCRE model (a) and our approach
(b).

Fig. 13 shows mountain like patterns generated by the
the BCRE model (left) and our three-layer model. The results
show that the two methods achieve very similar simulation
effects.

9 HEURISTIC SETTING RULES

In our approach, sand moving pictures are composed of
sand piles covered by ellipses used for segmentation, thus,
the sizes of ellipses have direct effects on sizes of sand
piles and. Semi-major axes and semi-minor axes of ellipses
determine the shapes of sand piles, specifically, steep sand
piles could be generated by ellipses of smaller eccentricities,
and flat sand piles by ellipses of large eccentricities.

Strip patterns appearing as textures in sand piles are
produced by sand grains inside rectangular cells covered
by ellipses. Hence if more strip patterns are desired in
sand piles, rectangular cells used for tessellation should be
smaller than ellipses used for segmentation. Additionally,
the colors of sand grains inside rectangular cells have effects
on the contrasts of textures inside sand piles.

We could use the above observations as heuristic rules to
in creating desired moving sand pictures. For instance, we
could set large ellipses of smaller eccentricities to generate
mountains and use smaller ellipses of large eccentricities to
generate scenes like sea surfaces and deserts.



1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2779799, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 15, NO. 9, SEPTEMBER 2016 9

Although our approach is originally designed for gener-
ating irregular mountain-like patterns, it is able to generate
interesting regular patterns with intricate details, as shown
in the next section. This is achieved using rectangles with
horizontal sides equaling the width of the initialization
window and vertical sides of varying sizes at the tessellation
stage, and curves of varying widths and heights repetitively
along the horizontal axis at the segmentation stage.

10 RESULTS

This section presents several results of moving sand pictures
generated using the aforementioned approach.

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 14: Mountain ranges. (a) The sketch. (b) Initialization and seg-
mentation. (c) ∼ (d) Two screen shots captured during the generation
process. (e) Generated mountain ranges. (f) Background picture. (g)
Generated mountain ranges with the background picture added.

Mountain ranges. Fig. 14 shows a sketch (Fig. 14(a)),
segmentation cells drawn in black lines over the tessel-
lated cells in (Fig. 14(b)), with colors of sand grains set
to (51,55,56), (98,102,105), (90,190,120) and (190,198,200),
respectively (RGB). Two screen shots of our working win-
dow captured during the simulation process are shown in

Fig. 14(c) and 14(d), and the moving sand picture generated
in Fig. 14(e)). Some moving sand picture devices enhance
the realism by overlaying a background picture in the upper
part of the image, rather than leaving it blank after all the
sand grains have fallen to the bottom part. We could also
add a background image, such as that in Fig. 14(f), to the
generated moving sand pictures to enhance the realism. The
enhanced result is shown in Fig.14(g).

(a) (b)

(c)

Fig. 15: Mountains in sunset. (a) Initialization with a moving sand
picture and segmentation. (b) Sketch. (c) Final moving sand picture
with a sun background picture added.

Mountains in sunset. Fig. 15 shows a moving sand
picture generated by taking another moving sand pic-
ture of size 1000 × 350 pixels (Fig. 3(a)) as input im-
age for initialization. After halftoning is performed on
Fig. 3(a), colors of sand grains in C1−4 are set at
(10, 10, 10), (63, 63, 63), (198, 53, 59), and (240, 182, 40), re-
spectively. We segment the resulting image (Fig. 3(d)) by
several ellipse cells (black lines in Fig. 15(a)) on the basis
of sketch in Fig. 15(b). Fig. 15(c) shows the moving sand
picture generated with a sunset image added.

Desert with camels. Fig. 16 presents a desert-
like moving sand picture generated using halfton-
ing on an input image of a desert photograph of
Fig. 16(a), the colors of sand grains in C1−4 are set to
(26, 12, 10), (100, 30, 10), (200, 100, 20), and (250, 140, 30).
In order to obtain flatten sand piles to depict desert surfaces,
we adopt small segmentation cells as indicated by the black
lines in Fig. 16(a) and place them over the input photograph
in an automatic manner.

To make it aesthetically pleasing, we add figures/objects
to the generated moving sand pictures. In order to offer
additional control over the scene, we propose a simple
method that places a binary mask on the scene, calculates
the bounding box of the mask, and then scans the area
covered by the box from top down left to right. We then
render sand grains fallen on the mask using two dark colors
within C1−4, C1 and C2 with a probability of 0.7 and 0.3,
respectively.



1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2779799, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 15, NO. 9, SEPTEMBER 2016 10

(a)

(b)

Fig. 16: Desert with camels. (a) Initialization with a photograph and
segmentation. (b) Generated moving sand picture-desert with camels
and human figures added.

Mountains & clouds. Fig. 17 shows an example in
which different kinds of objects can be generated in a single
picture, such as mountains in different distances, and the
clouds between them. This is be achieved by simply divid-
ing the initialization region into several areas for mountains
and clouds, and then using large rectangles with big color
variations to initialize the mountain areas and small rectan-
gles with small color variations to initialize the cloud areas,
and finally segment mountain areas with large ellipses and
cloud areas with small ellipses, as indicated in Fig. 17(a). The
resulting moving sand picture with a bright moon added is
shown in Fig. 17(b).

Regular patterns. In addition to images of natural scenes
depicted by previous moving sand pictures, our approach is
also able to generate regular patterns via simple settings at
the tessellation and segmentation stages, as shown in Fig.
18. At the tessellation stage, we place several horizontal
rectangles of the same width and varied heights one by one
vertically. At the segmentation stage, we first arrange two
neighboring ellipses of different major and minor axis as
a pattern unit and copy the unit along the horizontal axis
(such a row corresponds to a pattern strip in the generated
moving sand picture). Next, we repeat the above procedure
upward to form the second row composed of different
pattern units. This procedure continues until the entire
initialization region is covered. To separate neighboring
patterns, thin rectangles could be inserted between them.

During the generation process, each row produces a
horizontal patterned strip which is asymmetric. To obtain
a symmetric pattern, we could simply copy the asymmetric
pattern and flip it vertically, and place flipped asymmetric
pattern over the asymmetric pattern just produced. This can
be done automatically in our system as indicated by Fig.

(a)

(b)

Fig. 17: Mountains & clouds. (a) Initialization and segmentation. (b)
Final generated moving sand picture with a moon background picture
added.

(a)

(b) (c)

(d)

Fig. 18: Regular patterns. (a) Initialization and segmentation.
(b)∼(c) Two screen shots captured during the generation process. (c)
Final patterns produced.

18(b) and Fig. 18(c).
As discussed before, the sizes of ellipses have direct

effects on the patterns of generated moving sand pictures.
A rich variety of patterns could therefore be obtained by



1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2779799, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 15, NO. 9, SEPTEMBER 2016 11

simply changing the sizes of ellipses at the segmentation
stage. The regular patterns generated by our approach may
be hard to make using any existing painting software, thus
could be used widely for textile or decorative patterns on
various products, such as hats, carpets and mugs.

Our simulation system is implemented using Microsoft
Visual C++, NVIDIA Physx and OpenGL, and run on a
PC with 2.60 GHz CPU (Intel (R) Core), 4GB memory
and NIVDIA GeForce GT 750M. Table 1 lists the statistics
associated with our simulation model and the BCRE model
for the previous 5 examples, where Type is the type of
initialization, Initial is the time spent in initialization in
seconds (s), 3LM and BCRE are the time spent in our
three-layer model in minutes (min) and BCRE models in
hours (h), respectively. The table shows that introducing the
fixed layer in our model, the simulation time is reduced by
2 to 4 folds compared with the BCRE model.

TABLE 1: Summary of processing time with different mod-
els and types of initialization.

#of sand grains Type Initia 3LM BCRE

Fig. 14 3.5 × 105 Tessellation 2.373s 55m 153m

Fig. 15 3.5 × 105 Halftoning 0.17s 61m 169m

Fig. 16 3.5 × 105 Halftoning 0.145s 40m 176m

Fig. 17 4.3 × 105 Halftoning & Tessellation 3.223s 97m 271m

Fig. 18 2.6 × 105 Tessellation 2.935s 47m 83m

11 CONCLUSIONS AND FUTURE WORK

This paper has demonstrated how moving sand pictures
could be simulated graphically with parameterization and
control. The modules described in different sections could
be used alone or in a combinational manner. Thus, users
could generate moving sand pictures similar to a moving
sand picture device, and also highly artistic ones. Potential
applications of our approach range from advertisements,
posters, postcards, packaging, to digital arts. As a future
work, we plan to extend the current method to three dimen-
sional, so that sand sculptures in the style of moving sand
pictures could be generated.

ACKNOWLEDGMENTS

This paper is supported by Natural Science Foundation of
China (No. 61772463) and (No. 61379069).

REFERENCES

[1] J. J. Monaghan, “Smoothed particle hydrodynamics,” Reports on
Progress in Physics, vol. 68, no. 8, p. 1703, 2005.

[2] Y. Zhu and R. Bridson, “Animating sand as a fluid,” ACM Trans-
actions on Graphics, vol. 24, no. 3, pp. 965–972, 2005.

[3] T. Lenaerts and D. Philip, “Mixing fluids and granular materials,”
Computer Graphics Forum, vol. 28, no. 2, pp. 213–218, Apr. 2009.

[4] R. Narain, A. Golas, and M. C. Lin, “Free-flowing granular mate-
rials with two-way solid coupling,” ACM Transactions on Graphics,
vol. 29, no. 6, pp. 173:1–173:10, Dec. 2010.

[5] D. Wilkinson and J. F. Willemsen, “Invasion percolation: a new
form of percolation theory,” Journal of Physics A: Mathematical and
General, vol. 16, no. 14, p. 3365, 1983.

[6] K. Hawick, “Gravitational and barrier effects in d-dimensional in-
vasion percolation reservoir models,” in Proceedings of the IASTED
International Conference on Power and Energy Systems and Applica-
tions, Dec. 2011, pp. 259–266.

[7] B. Ren, C. Li, X. Yan, M. C. Lin, J. Bonet, and S.-M. Hu, “Multiple-
fluid sph simulation using a mixture model,” ACM Transactions on
Graphics, vol. 33, pp. 1–11, Aug. 2014.

[8] X. Yan, Y.-T. Jiang, C.-F. Li, R. R. Martin, and S.-M. Hu, “Mul-
tiphase sph simulation for interactive fluids and solids,” ACM
Transactions on Graphics, vol. 35, no. 4, pp. 79:1–79:11, Jul. 2016.

[9] A. Luciani, A. Habibi, and E. Manzotti, “A multi-scale physical
model of granular materials,” Graphics interface, pp. 136–146, Jan.
1995.

[10] N. Bićanić, “Discrete element methods,” ncyclopedia of Computa-
tional Mechanics, vol. 1, Oct. 2004.

[11] N. Bell, Y. Yu, and P. J. Mucha, “Particle-based simulation
of granular materials,” in Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, New York,
USA, 2005, pp. 77–86.

[12] I. Alduán, A. Tena, and M. A. Otaduy, “Simulation of high-
resolution granular media,” in Proceedings of Congreso Español de
Informática Gráfica, 2009.

[13] I. Alduán and M. A. Otaduy, “Sph granular flow with friction and
cohesion,” in Proceedings of the 2011 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, New York, USA, 2011, pp. 25–
32.

[14] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim, “Unified
particle physics for real-time applications,” ACM Transactions on
Graphics, vol. 33, no. 4, pp. 153:1–153:12, Jul. 2014.

[15] D. Sulsky, S.-J. Zhou, and H. L. Schreyer, “Application of a particle-
in-cell method to solid mechanics,” Computer Physics Communica-
tions, vol. 87, pp. 236–252, Aug. 1995.

[16] A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle, “A
material point method for snow simulation,” ACM Transactions on
Graphics, vol. 32, no. 4, p. 102, 2013.

[17] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin,
“The affine particle-in-cell method,” ACM Transactions on Graphics,
vol. 34, pp. 1–10, Aug. 2015.

[18] G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and
J. Teran, “Drucker-prager elastoplasticity for sand animation,”
ACM Transactions on Graphics, vol. 35, no. 4, pp. 1–12, Jul. 2016.

[19] G. Daviet and F. Bertails-Descoubes, “A semi-implicit material
point method for the continuum simulation of granular materi-
als,” ACM Transactions on Graphics, vol. 35, no. 4, p. 13, Jul. 2016.

[20] X. Li and J. M. Moshell, “Modeling soil: Realtime dynamic models
for soil slippage and manipulation,” in Proceedings of the 20th
Annual Conference on Computer Graphics and Interactive Techniques,
New York, USA, 1993, pp. 361–368.

[21] B. Chanclou, A. Luciani, and A. Habibi, “Physical models of loose
soils dynamically marked by a moving object,” in Proceedings of
the Computer Animation, Washington, USA, 1996, pp. 27–35.

[22] R. Sumner, J. O’Brien, and J. Hodgins, “Animating sand, mud, and
snow,” Computer Graphics Forum, vol. 18, no. 1, pp. 17–26, Mar.
1999.

[23] M. Pla-Castells, I. Garcı́a-Fernández, and R. J. Martı́nez, Interac-
tive Terrain Simulation and Force Distribution Models in Sand Piles.
Berlin, Heidelberg: Springer, 2006, pp. 392–401.

[24] J.-P. Bouchaud, M. Cates, J. R. Prakash, and S. Edwards, “A model
for the dynamics of sandpile surfaces,” Journal de Physique I, vol. 4,
no. 10, pp. 1383–1410, 1994.

[25] A. Aradian, É. Raphaël, and P.-G. De Gennes, “Surface flows of
granular materials: a short introduction to some recent models,”
Comptes Rendus Physique, vol. 3, no. 2, pp. 187–196, 2002.

[26] K. Onoue and T. Nishita, “Virtual sandbox,” in Proceedings of
the 11th Pacific Conference on Computer Graphics and Applications,
Washington, USA, 2003, pp. 252–259.

[27] B. Zhu and X. Yang, “Animating sand as a surface flow,” in
Eurographics, 2010.

[28] B. Pearce and K. Hawick, “Interactive simulation and visualisation
of falling sand pictures on tablet computers,” in Proceedings of the
10th International Conference on Modeling, Simulation and Visualiza-
tion Methods, 2013.

[29] K. Kawasaki, “Diffusion constants near the critical point for time-
dependent ising models. iii. self-diffusion constant,” Physical Re-
view, vol. 150, no. 1, pp. 375–381, Oct. 1966.

[30] Nvdia, “Physx. http://developer.nvidia.com/physx,” Accessed
22 March 2012, Mar. 2012.

[31] B. Fusheng, “Method for making new moving sand picture,”
Patent, CN, 1172808 C., Oct. 2004.

[32] Wikipedia, “http://en.wikipedia.org/wiki/silicon carbide,” Ac-
cessed 2015, 2015.



1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2779799, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 15, NO. 9, SEPTEMBER 2016 12

[33] R. W. Floyd, “An adaptive algorithm for spatial gray-scale,” in
Proc. Soc. Inf. Disp., vol. 17, Jan. 1976.

[34] B. E. Bayer, “An optimum method for two-level rendition of
continuous-tone pictures,” SPIE MILESTONE SERIES MS, vol.
154, pp. 139–143, 1999.

[35] D. E. Knuth, “Digital halftones by dot diffusion,” ACM Transactions
on Graphics, vol. 6, no. 4, pp. 245–273, 1987.

Mohan Zhang received the BSc degree in
software engineering from Sichuan University,
China, in 2013. Currently, he is working toward
the PhD at the State Key Lab of CAD&CG, Zhe-
jiang University, China. His research interests
include computer animation, physically based
modeling and non-photorealistic rendering.

Hongwei Lin received the BSc degree from the
Department of Applied Mathematics at Zhejiang
University, China, in 1996, and the PhD degree
from Department of Mathematics at Zhejiang
University in 2004. He worked as a communica-
tion engineer from 1996 to 1999. He is a profes-
sor in the Department of Mathematics, State Key
Laboratory of CAD&CG, Zhejiang University. His
current research interests include geometric de-
sign, computer graphics, and computer vision.
He is a member of the IEEE.

Kang Zhang received the B.Eng. degree in com-
puter engineering from the University of Elec-
tronic Science and Technology, Chengdu, China,
in 1982, and the Ph.D. degree from the Uni-
versity of Brighton, Brighton, U.K., in 1990. He
is currently a Professor and Director of Visual
Computing Lab, Department of Computer Sci-
ence, University of Texas at Dallas (UT-Dellas),
Richardson. He is also an Adjunct Professor of
the UT-Dallas Computer Engineering Program
and GIS Program. Prior to joining UT-Dallas, he

held academic positions in the U.K., Australia, and China. His current
research interests include visual languages, aesthetic computing, and
software engineering. He has published more than 180 papers in these
areas. He has authored and edited five books.

Jinhui Yu received the BSc and MSc degrees in
electronics engineering from Harbin Shipbuilding
Engineering Institute, Harbin Engineering Uni-
versity, China, in 1982 and 1987, respectively.
He received the PhD degree in computer graph-
ics from the University of Glasgow in 1999. He is
a professor of computer science at the State Key
Lab of CAD&CG, Zhejiang University, China. He
is also a guest professor at the Department of
Computer Science, Harbin Finance University,
China. His research interests include image-

based modeling, non-photorealistic rendering, computer animation, and
computer graphics art.


