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Abstract

Although the isogeometric collocation (IGA-C) method has been successfully utilized in prac-
tical applications due to its simplicity and efficiency, only a little theoretical results have been
established on the numerical analysis of the IGA-C method. In this paper, we deduce the con-
vergence rate of the consistency of the IGA-C method. Moreover, based on the formula of the
convergence rate, the necessary and sufficient condition for the consistency of the IGA-C method
is developed. These results advance the numerical analysis of the IGA-C method.

Keywords: Isogeometric collocation, consistency, necessary and sufficient condition,
convergence rate

1. Introduction

In order for the integration of CAD and CAE, Hughes et. al. [1] developed the isogeometric
analysis (IGA) method. Since it is based on non-linear NURBS basis functions, the IGA method
can directly process the CAD models represented by NURBS, and avoid the tedious mesh trans-
formation procedure.

Because the degree of the non-linear NURBS basis function is relatively high, it is possible
to seek a numerical solution, i.e., a NURBS function, by applying the collocation method on the
strong form of a differential equation. In this way, the isogeometric collocation (IGA-C) method
was proposed [2]. Then unknown coefficients of the NURBS function can be determined by
solving a linear system of equations, which is constructed by holding the strong form of the
differential equation at some discrete points, called collocation points.

The IGA-C method is a simple and efficient method for solving the unknown coefficients of the
NURBS function. A comprehensive study [3] revealed its superior behavior over the Galerkin
method in terms of accuracy-to-computational-time ratio. Due to these merits, the IGA-C method
has been successfully applied in some practical applications. However, the thorough numerical
analysis for the IGA-C method is far from being established. Auricchio et. al. developed nu-
merical analysis of the IGA-C method in one-dimensional case [2]. In the generic case, only
some sufficient conditions were presented for the consistency and convergence of the IGA-C
method [4].
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In this paper, we first develop the convergence rate of the consistency of the IGA-C method,
and then present the necessary and sufficient condition for the consistency of the IGA-C method.
Specifically, for a given boundary (or initial) problem withDT = f (refer to Eq. (1)), whereD is
its differential operator. Suppose Tr is its numerical solution, represented by a NURBS function,
and I is an interpolation operator such that I f = DTr. The IGA-C method is consistency, if and
only ifD and I are both uniformly bounded when the knot grid size tends to 0.

The structure of this paper is as follows. In Section 1.1, some related work is briefly reviewed.
After introducing some preliminaries in Section 2, an introductory example is presented in Sec-
tion 3. Moreover, the convergence rate of the consistency of the IGA-C method is deduced in
Section 4, and the necessary and sufficient condition is developed in Section 5. In addition, some
numerical examples are presented in Section 6. Finally, Section 7 concludes the paper.

1.1. Related work

As stated above, the IGA method [1] was proposed to advance the seamless integration of CAD
and CAE, by avoiding mesh transformation. Moreover, since it has much less freedom than the
traditional finite element method, the IGA method can not only save lots of computation, but also
greatly improve the computational precision. Additionally, owing to the knot insertion property
of the NURBS function, the shape of the computational domain represented by NURBS can be
exactly kept in the mesh refinement. Due to these merits, the IGA method draws great interests
in both practical applications and theoretical studies. On one hand, the IGA method has been
successfully applied in lots of simulation problems, such as elasticity [5, 6], structure [7–9], and
fluid [10–12], etc. On the other hand, some research on the computational aspect of the IGA
method has been developed to improve the accuracy and efficiency by using reparameterization
and refinement, etc. [13–18]. Recently, an optimal and totally robust multi-iterative method was
developed for solving IgA Galerkin linear system [19]. For more details on the IGA method,
please refer to Ref. [20] and the references therein.

Since a NURBS function has a relatively high degree, its unknown coefficients can be deter-
mined by making the strong form of the PDE hold at some collocation points, that leads to the
IGA-C method [2]. Schillinger et. al. presented a comprehensive comparison between the IGA-
C method and the Galerkin method, revealing that the IGA-C method is superior to the Galerkin
method in terms of accuracy-to-computational-time ratio [3]. Lin et. al. developed some suf-
ficient conditions for the consistency and convergence of the IGA-C method [4]. Moreover,
Lorenzis et. al. proposed the IGA-C method for solving the boundary problem with Neumann
boundary condition [21].

The IGA-C method has been successfully applied in some practical applications. For instance,
the IGA-C method was employed in solving Timoshenko beam problem [22] and spatial Tim-
oshenko rod problem [23], showing that mixed collocation schemes are locking-free indepen-
dently of the choice of the polynomial degrees for unknown fields. Moreover, the IGA-C method
was extended to multi-patch NURBS configurations, various boundary and patch interface con-
ditions, and explicit dynamic analysis [24]. Recently, the IGA-C method was exploited to settle
the Bernoulli-Euler beam problem [25] and the Reissner-Mindlin plate problem [26]. However,
only very limited theoretical results for the IGA-C method were developed [2, 4] currently, and
the numerical analysis for the IGA-C method is still far from being established.
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2. Preliminaries

Suppose the IGA-C method is employed to solve the following boundary problem, DT = f , in Ω ⊂ Rd,

GT = g, on ∂Ω,
(1)

where Ω ⊂ Rd is a physical domain of d dimension, D : V → W is a bounded differential
operator, where V and W are two Hilbert spaces, GT is a boundary condition, and f : Ω → R,
g : ∂Ω → R are two given continuous functions defined on their domains. Suppose the analyt-
ical solution T ∈ Cm(Ω), where m is larger than or equal to the maximum order of derivatives
appearing in the operatorD.

In the IGA method, the physical domain Ω is represented by a NURBS mapping,

F : Ωp → Ω, (2)

where Ωp is a parameter domain. Replacing the control points of F by unknown control coeffi-
cients, we get the representation of the numerical solution to the boundary problem (1), denoted
as Tr(η), η ∈ Ωp. Meanwhile, by the inverse mapping F−1, the physical domain Ω can be mapped
into the parameter domain Ωp, and then, the numerical solution Tr is still defined on the physical
domain Ω through the mapping F−1. Additionally, by the mapping F, the function f can be
defined on Ωp, and G on ∂Ωp.

In isogeometric analysis, while the physical domain of the boundary problem (1) is Ω, the
computational domain is the parameter domain Ωp (2). Although the operators D and G in
Eq. (1) are performed on the variables in the physical domain, the generated formulae will be
transformed into the parameter domain Ωp for computation. Therefore, the functions in the
function approximation problem in the IGA-C method should be considered to be defined on the
parameter domain Ωp.

Definition 1 (Stable operator [27]). Let V, W be Hilbert spaces and D : V → W be a differ-
ential operator. If there exists a constant CS > 0 such that

‖Dv‖W ≥ CS ‖v‖V , for all v ∈ D(D),

where D(D) represents the domain of D, then the differential operator D is called a stable
operator.

[Remark 1:] In this paper, we suppose that the L∞ norm ‖·‖L∞ is equivalent to the norm ‖·‖W
in W and the norm ‖·‖V in V. In other words, there exists nonnegative constants cv,Cv, and cw,Cw

satisfying,

cv ‖·‖V ≤ ‖·‖L∞ ≤ Cv ‖·‖V

cw ‖·‖W ≤ ‖·‖L∞ ≤ Cw ‖·‖W

Suppose Tr(η) is an unknown NURBS function defined on the knot grid T ρ ∈ Rd, d = 1, 2, 3.
Specifically, T ρ is a knot sequence in 1D case, a rectangular grid in 2D case, and a hexahedral
grid in 3D case, where ρ is the knot grid size defined as the following definition.

3



Definition 2. Given a set Φ ⊂ Rd, its diameter diam(Φ) is defined by

diam(Φ) = sup{d(x, y), x, y ∈ Φ},

where d(x, y) denotes the Euclidean distance between x and y. And we call ρ as the knot grid
size of T ρ, which is defined as the maximum of the diameters of the knot intervals of T ρ. That
is, ρ = maxi{diam([ui, ui+1))} in 1D case, ρ = maxi j{diam([ui, ui+1) × [v j, v j+1))} in 2D case, and
ρ = maxi jk{diam([ui, ui+1) × [v j, v j+1) × [wk,wk+1))} in 3D case.

Definition 3. Let T : Ωp → R, T ∈ C0(Ωp) be a continuous function on the parameter domain
Ωp, where C0(Ωp) is the space of continuous functions on Ωp. The modulus of continuity [28]
of the function T , denoted as ω(T, h), is defined by

ω(T, h) = max{|T (x) − T (y)| , d(x, y) < h}, h ∈ R. (3)

The modulus of continuity ω(T, h) satisfies the property [28],

ω(T, h + k) ≤ ω(T, h) + ω(T, k), h, k ∈ R,

and then
ω(T,Kρ) ≤ Kω(T, ρ), K ∈ Z. (4)

Definition 4. Let Iρ be an interpolation operator, and Iρg be a spline interplant of a function g
defined on the knot grid T ρ. Suppose P is a spline space composed of the splines with the same
knot grid and degree as those of Iρg. The distance of the function g to P, i.e., dist(g,P), is
defined by

dist(g,P) = min{‖g − p‖L∞ , p ∈ P}. (5)

3. An introductory example

Consider the following one-dimensional boundary problem: T ′(x) = f (x), x ∈ [a, b],
T (a) = g1, T (b) = g2,

(6)

where f (x) ∈ C[a, b] is a continuous function, T (x) ∈ C1[a, b] is an analytical solution, and
g1, g2 ∈ R.

The physical domain [a, b] in Eq. (6) is modeled as,

x(t) =

N∑
i=0

(a +
i
N

(b − a))Bi,k(t), t ∈ [0, 1], (7)

where Bi,k(t) is a B-spline basis function of order k, defined on the knot sequence,

G : 0, 0, · · · , 0︸      ︷︷      ︸
k

,
1
N
,

2
N
, · · · ,

N − 1
N

, 1, 1, · · · , 1︸      ︷︷      ︸
k

. (8)

Eq. (7) maps [0, 1] to [a, b], i.e.,
F1 : [0, 1]→ [a, b]. (9)
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Then, the numerical solution Tr(t) to the boundary problem (6) can be generated by replacing
the coefficients a + i

N (b − a) in x(t) (7) by the unknowns coefficients pi i = 0, 1, · · · ,N, i.e.,

Tr(t) =

N∑
i=0

piBi,k(t). (10)

Note that, by the inverse mapping F−1
1 (9), Tr(t) is defined on the physical domain [a, b] (6), i.e.,

Tr(t(x)), x ∈ [a, b].
Because,

dTr(t)
dt

= (k − 1)
N−1∑
i=0

pi+1 − pi
i+k−1

N − i
N

Bi,k−1(t) = N
N−1∑
i=0

(pi+1 − pi)Bi,k−1(t),

and,
dx(t)

dt
= b − a,

substituting Eq. (10) into Eq. (6) yields, dTr
dx = dTr

dt
dt
dx = dTr

dt
1
dx
dt

=
∑N−1

i=0
N

b−a (pi+1 − pi)Bi,k−1(t) = f (x(t)),

Tr(0) = p0 = g1, Tr(1) = pN = g2.

In order for solving the unknown coefficients in Eq. (10) using the IGA-C method, a linear
system is generated by sampling N − 1 points τ1, τ2, · · · , τN−1 in the interval (0, 1), i.e.,

dTr(τ j)
dx =

∑N−1
i=0

N
b−a (pi+1 − pi)Bi,k−1(τ j) = f (x(τ j)), τ j ∈ (0, 1), j = 1, 2, · · · ,N − 1,

Tr(0) = p0 = g1,

Tr(1) = pn = g2.

(11)

When the knot grid size ρ = 1
N of the knot sequence G (8) tends to 0, it follows N → +∞.

If the control points N
b−a (pi+1 − pi) → ∞, (ρ → 0), too, we have dTr(τ j)

dx → ∞, (ρ → 0), j =

1, 2, · · · ,N − 1. However, because f (x(t)) is continuous on the close interval [0, 1], f (x(τ j)) is
bounded. Therefore, if the linear system (11) has a solution, there should exist Tr(t) so that the
control points N

b−a (pi+1 − pi) of dTr
dx are bounded when ρ = 1

N → 0. It results in that dTr
dx is also

bounded when ρ → 0. All of such B-spline functions Tr(t) constitute a B-spline subspace, and
the first order derivative operator in Eq. (6) should be bounded on the B-spline subspace when
ρ→ 0.

4. The convergence rate

Suppose the NURBS function Tr(η), η ∈ Ωp ⊂ Rd defined on the knot grid T ρ has n unknown
control coefficients pi, i.e.,

Tr(η) =
∑

i

pi
wiBi(η)
W(η)

=
P(η)
W(η)

, η ∈ Ωp ⊂ Rd, (12)

where wi > 0 are known weights, Bi(η) are the B-spline basis functions, the weight function W(η)
is a known polynomial spline function, and P(η) is a polynomial spline function with n unknown

5



control coefficients pi. Moreover, the subscript i in Eq. (12) is an index vector, i = (i1, i2, · · · , id).
According to the IGA-C method, these unknown coefficients pi can be determined by solving
the following linear system of equations, DTr(ηk) = f (ηk), k = 1, 2, · · · , n1,

GTr(ηl) = g(ηl), l = n1 + 1, · · · , n,
(13)

where ηk(k = 1, 2, · · · , n1) are collocation points inside Ωp, and ηl(l = n1 + 1, · · · , n) are collo-
cation points on ∂Ωp. Note that, throughout this paper, the operators D and G are performed on
the variable in the physical domain Ω (Eq. (1)).

[Remark 2:] In this paper, we assume that the coefficient matrix of the above linear sys-
tem (13) is of full rank and then it has a unique solution. Otherwise, the IGA-C method is
invalid.

According to the result developed in Ref. [4],DTr can be represented by

DTr(η) =
∑

i

piD
wiBi(η)
W(η)

=
∑

i

pi
B̄i(η)
W̄(η)

=
P̄(η)
W̄(η)

, (14)

where B̄i(η) is the result by applying the differential operator D to wiBi(η)
W(η) , W̄(η) is the power

of W(η), and P̄(η) is a polynomial B-spline function with n unknowns pi. By Ref. [4], P̄(η)
and W̄(η) both have the same break point sequence and the same knot intervals as Tr(η). To
determine these unknowns pi in P̄(η), let DTr(η) interpolate DT (η) = f (η) at n1 collocation
points inside the domain Ωp (refer to Eq. (13)), i.e.,

DTr(ηk) − f (ηk) =
P̄(ηk)
W̄(ηk)

− f (ηk) =
P̄(ηk) − W̄(ηk) f (ηk)

W̄(ηk)
= 0, k = 1, 2, · · · , n1. (15)

Note that W̄(η) , 0 is a known function, Eq. (15) is equivalent to

P̄(ηk) =
∑

i

piB̄i(ηk) = W̄(ηk) f (ηk), k = 0, 1, · · · , n1. (16)

Similarly, GTr(η) in Eq. (13) can be written as

GTr(η) =
∑

i

piG
wiBi(η)
W(η)

=
∑

i

pi
B̃i(η)
W̃(η)

=
P̃(η)
W̃(η)

, (17)

where B̃i(η) are the result generated by applying the operator G to wiBi(η)
W(η) , W̃(η) , 0 is a known

B-spline function, and P̃(η) is an unknown B-spline function with n unknowns pi. Then the
linear equations GTr(ηl) = g(ηl) in Eq. (13) are equivalent to

P̃(ηl) =
∑

i

piB̃i(ηl) = W̃(ηl)g(ηl), l = n1 + 1, n1 + 2, · · · , n, (18)

where ηl ∈ ∂Ωp, l = n1 + 1, · · · , n.
Therefore, combining Eqs. (16) and (18), the linear system (13) becomes P̄(ηk) =

∑
i piB̄i(ηk) = W̄(ηk) f (ηk), k = 0, 1, · · · , n1,

P̃(ηl) =
∑

i piB̃i(ηl) = W̃(ηl)g(ηl), l = n1 + 1, n1 + 2, · · · , n.
(19)
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Since the linear system of equations (19) is equivalent to (13), then the coefficient matrix of (19)
is of full rank, and it also has a unique solution.

[Remark 3:] In Eq. (13), let the functions f and g vary in Cm(Ωp) and Cm(∂Ωp), respectively,
and the differential operator D be fixed. In addition, let the weight function W(η) in Tr (12) be
fixed as well. Then, all the numerical solutions Tr(η) (12) generated by the IGA-C method (13)
constitute a linear spline space Sρ(Ωp), where ρ is the knot grid size of Tr. It should be pointed
out that, all the NURBS functions Tr in the linear space Sρ(Ωp) have the same weight function
W(η), the same knot grid with knot grid size ρ and the same degree. In order for ρ → 0, the
knot grid of the spline functions in Sρ(Ωp) is refined by knot insertion, thus resulting in a series
of spline spaces. Moreover, because all the numerical solutions Tr(η) constitute the linear space
Sρ(Ωp), all ofDTr(η) compose a linear spline space Sd

ρ,e(Ωp), where e is the continuity order of
the splines in Sd

ρ,e(Ωp). As aforementioned, DTr has the same break point sequence with that of
Tr (12), so they have the same knot grid size ρ.

The following Lemma 1 estimates the distance from a continuous function f ∈ C0(Ωp) to the
linear space Sd

ρ,e(Ωp), i.e., dist( f ,Sd
ρ,e). In Ref. [28, pp.146], an inequality to estimate the distance

is proposed for univariate functions, and the inequality can be extended to our case.

Lemma 1. IfDT = f ∈ C0(Ωp), and T ∈ Cm(Ωp) (Eq. (1)), then we have

dist( f ,Sd
ρ,e) = dist(DT,Sd

ρ,e) ≤ ‖D‖Kω(T, ρ),

where K is an integer related to the degree of the NURBS functions in the spline space Sρ(Ωp).

Proof: As stated above, the NURBS functions approximating the analytical solution T con-
stitute the linear space Sρ(Ωp) defined on the knot grid T ρ. We select a special function from the
space Sρ(Ωp), i.e.,

Tr(η) =
∑

i

T (τi)
wiBi(η)
W(η)

,

and construct a spline function (A f )(η) to approximate the function f ∈ C0(Ωp), i.e.,

(A f )(η) = DTr(η) = D
∑

i

T (τi)
wiBi(η)
W(η)

=
∑

i

T (τi)D
wiBi(η)
W(η)

,

where T is the analytical solution of Eq. (1), and A f = DTr ∈ Sd
ρ,e(Ωp) (defined in Remark 3).

The point sequence {τi ∈ Ωp} is sampled in such a way that each knot interval of the knot grid
T ρ contains at least one point, and τi is in the non-zero region of Bi(η).

Suppose u(η), v(η) ∈ Cm(Ωp). The function u(η) is an arbitrary function in Cm(Ωp), and,

v(η) = T (η) −
∑

i

T (τi)
wiBi(η)
W(η)

, η ∈ Ωp. (20)

Note that
∣∣∣v(η)

∣∣∣ is continuous in the close set Ωp, so
∣∣∣v(η)

∣∣∣ can take its maximum value in Ωp.
Namely, there exists η∗ ∈ Ωp such that∣∣∣v(η∗)

∣∣∣ = max
η

∣∣∣v(η)
∣∣∣ = ‖v‖L∞ , η ∈ Ωp.
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For an arbitrary value η̂ ∈ Ωp, it holds,

‖D‖ = max
u∈Cm(Ωp)

‖Du‖L∞
‖u‖L∞

≥
‖Dv‖L∞
‖v‖L∞

≥

∣∣∣Dv(η̂)
∣∣∣∣∣∣v(η∗)
∣∣∣ ,

which is equivalent to, ∣∣∣Dv(η̂)
∣∣∣ ≤ ‖D‖ ∣∣∣v(η∗)

∣∣∣ . (21)

Suppose J is the index vector set satisfying Bi(η∗) , 0, i ∈ J. Because∑
i

wiBi(η∗)
W(η∗)

=
∑
i∈J

wiBi(η∗)
W(η∗)

= 1, and then T (η∗) =
∑

i

T (η∗)
wiBi(η∗)
W(η∗)

=
∑
i∈J

T (η∗)
wiBi(η∗)
W(η∗)

,

together with Eq. (21), we have,

∣∣∣ f (η̂) − (A f )(η̂)
∣∣∣ =

∣∣∣∣∣∣∣DT (η̂) −D
∑

i

T (τi)
wiBi(η̂)
W(η̂)

∣∣∣∣∣∣∣
=

∣∣∣Dv(η̂)
∣∣∣ ≤ ‖D‖ ∣∣∣v(η∗)

∣∣∣ (Eq. (21))

= ‖D‖

∣∣∣∣∣∣∣T (η∗) −
∑

i

T (τi)
wiBi(η∗)
W(η∗)

∣∣∣∣∣∣∣ (Eq. (20))

= ‖D‖

∣∣∣∣∣∣∣∑i

T (η∗)
wiBi(η∗)
W(η∗)

−
∑

i

T (τi)
wiBi(η∗)
W(η∗)

∣∣∣∣∣∣∣
= ‖D‖

∣∣∣∣∣∣∣∑i∈J

(T (η∗) − T (τi))
wiBi(η∗)
W(η∗)

∣∣∣∣∣∣∣
≤ ‖D‖

∑
i∈J

∣∣∣T (η∗) − T (τi)
∣∣∣ wiBi(η∗)

W(η∗)

≤ ‖D‖max
i∈J

∣∣∣T (η∗) − T (τi)
∣∣∣ (Definition 3)

≤ ‖D‖ω(T,Kρ),

where K is an integer related to the degree of Tr(η). It is because that the non-zero region of
Bi(η) is determined by the degree of Tr(η). By Eq. (4), we get∣∣∣ f (η̂) − (A f )(η̂)

∣∣∣ ≤ ‖D‖Kω(T, ρ).

Because A f = DTr ∈ Sd
ρ,e(Ωp), and η̂ ∈ Ωp is an arbitrary value, it can be so chosen that

dist( f ,Sd
ρ,e) = min{‖ f − s‖L∞ , s ∈ Sd

ρ,e} ≤
∣∣∣ f (η̂) − (A f )(η̂)

∣∣∣ ≤ ‖D‖Kω(T, ρ).

Then the Lemma is proved. 2

Furthermore, we have

Lemma 2. If T (η) ∈ C1(Ωp), then it holds

ω(T, ρ) ≤ ρmax
η∈Ωp

‖∇T‖E ,

8



where ∇T is the gradient of T , and the norm ‖·‖E is defined as
∥∥∥η∥∥∥E = ‖(η1, η2, · · · , ηd)‖E =√

η2
1 + η2

2 + · · · + η2
d.

Proof: Let x, y ∈ Ωp, d(x, y) = ‖x − y‖E ≤ ρ, and c ∈ (0, 1). According to the mean value
theorem, it follows that

|T (x) − T (y)| =
∣∣∣∇T |(1−c)x+cy · (x − y)

∣∣∣ ≤ ∥∥∥∇T |(1−c)x+cy
∥∥∥

E · ‖x − y‖E
≤ ρ

∥∥∥∇T |(1−c)x+cy
∥∥∥

E ≤ ρmax
η∈Ωp

‖∇T‖E .

Then, by the definition of ω(T, ρ) (Eq. (3)), we have

ω(T, ρ) = max{|T (x) − T (y)| , d(x, y) < ρ} ≤ ρmax
η∈Ωp

‖∇T‖E .

2

Moreover, we denote by Iρ an interpolation operator, which maps a continuous function to a
spline function defined on the knot grid T ρ with knot grid size ρ. Specifically, for the continuous
function f = DT ∈ C0(Ωp)(refer to Eqs. (1) and (13)), we have

Iρ f = DTr ∈ Sd
ρ,e(Ωp), (22)

and the following Lemma.

Lemma 3. SupposeDT = f ∈ C0(Ωp) (Eq. (1)), and Tr ∈ Sρ(Ωp) (Refer to Eq. (12) and Remark
3) is the NURBS function approximating the analytical solution T . Then,

‖DTr −DT‖W ≤ (1 + ‖Iρ‖)dist( f , Sd
ρ,e), (23)

where Iρ is the interpolation operator defined by Eq. (22), and Sd
ρ,e is defined as in Remark 3.

Proof: On one hand, given an arbitrary known NURBS function Tq(η) ∈ Sρ(Ωp) expressed as

Tq(η) =
Q(η)
W(η)

=
∑

i

qi
wiBi(η)
W(η)

, η ∈ Ωp, (24)

where the weight function W(η) and the weight wi are the same as those in (12), two functions
h(η) and hb(η) can be generated by performing the operators D and G on Tq (see Eq. (1)),
respectively, i.e.,

h(η) = DTq(η) =
∑

i

qiD

(
wiBi(η)
W(η)

)
, hb(η) = GTq(η) =

∑
i

qiG

(
wiBi(η)
W(η)

)
. (25)

We construct an unknown NURBS function Tx(η) ∈ Sρ(Ωp) with n unknown control coeffi-
cients xi, the same knot grid and degree with Tq,

Tx(η) =
X(η)
W(η)

=
∑

i

xi
wiBi(η)
W(η)

, (26)

9



where the weight function W(η) and the weight wi are the same as those in Eqs. (12) and (24).
The n unknown coefficients xi in Tx(η) can be obtained by makingDTx and GTx interpolate h(η)
and hb(η) at some sampling points, respectively, similar as (13), i.e., DTx(ηk) = h(ηk), k = 1, 2, · · · , n1,

GTx(ηl) = hb(ηl), l = n1 + 1, · · · , n.
(27)

Therefore, Iρh = DTx.
The aforementioned linear system of equations (27) can be rewritten as

∑
i(xi − qi)D

(
wiBi(η)
W(η)

)∣∣∣∣
η=ηk

= 0, k = 1, 2, · · · , n1,∑
i(xi − qi)G

(
wiBi(η)
W(η)

)∣∣∣∣
η=ηl

= 0, l = n1 + 1, · · · , n.
(28)

Obviously, the coefficient matrix of (28) is the same as that of the linear system (13), and is of
full rank, too. Then the linear system of equations (28) has only zero solution, i.e., xi = qi,
meaning that

Iρh = DTx = DTq = h. (29)

Therefore, we have

‖DTr −DT‖W = ‖Iρ f − f ‖W = ‖Iρ f − Iρh + h − f ‖W = ‖Iρ( f − h) − ( f − h)‖W (30)
≤ ‖ f − h‖W + ‖Iρ‖ ‖ f − h‖W = (1 + ‖Iρ‖) ‖ f − h‖W
= (1 + ‖Iρ‖)dist( f ,Sd

ρ,e). (explained in the following paragraph)

Because Tq(η) (24) is an arbitrary NURBS function in the spline space Sρ(Ωp), the func-
tion h(η) = DTq (25) is also an arbitrary NURBS function in the linear space Sd

ρ,e(Ωp). So in
Eq.(30), the function h can be chosen from Sd

ρ,e(Ωp) to make ‖ f − h‖W as small as possible, that
is, dist( f ,Sd

ρ,e). 2

Based on Lemma 1 and 3, it follows:

Lemma 4. SupposeDT = f ∈ C0(Ωp) (Eq. (1)), and Tr ∈ Sρ(Ωp) (Refer to Eq. (12) and Remark
3) is the NURBS function approximating the analytical solution T . Then,

‖DTr −DT‖W ≤ K ‖D‖ (1 + ‖Iρ‖)ω(T, ρ),

where Iρ is the interpolation operator defined by Eq. (22), and K is an integer related to the
degree of the splines in the spline space Sρ(Ωp).

Moreover, due to Lemma 2 and 4, the convergence rate ofDTr toDT when ρ→ 0 is obtained
as follows.

Theorem 1. Suppose the analytical solution T ∈ C1(Ωp) (Eq. (1)). We have,

‖DTr −DT‖W ≤ ρK‖D‖(1 + ‖Iρ‖) max
η∈Ωp

‖∇T‖E .

Here,DT,Tr,I
ρ, and K are delineated as in Lemma 4.
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In addition, ifD is a stable operator (Definition 1), we can get the convergence rate of Tr to T
when ρ→ 0.

Corollary 1. Suppose the operatorD in Eq. (1) is a stable differential operator, and T ∈ C1(Ωp).
We have,

‖Tr − T‖V ≤
K

CS
‖D‖ (1 + ‖Iρ‖)ω(T, ρ) ≤

ρK
CS
‖D‖ (1 + ‖Iρ‖) max

η∈Ωp

‖∇T‖E ,

where CS is a positive constant, Tr,I
ρ, and K are delineated as in Lemma 4.

4.1. One dimensional case
In the one dimensional case, the convergence rate can be improved. In this section, suppose

the operatorD is a linear differential operator with constant coefficients.

Lemma 5. [28, pp. 148] Let g ∈ Cm(Ωp) be a univariate function, and Sd
ρ,e(Ωp) be defined as in

Remark 3. It holds,
dist(g,Sd

ρ,e) ≤ γρ dist(g′,Sd
ρ,e−1), (31)

where γ is a number related to the degree of the splines in Sd
ρ,e(Ωp), and g′ is the first order

derivative of g.

Repeatedly using Lemma 5 leads to:

Lemma 6. Suppose f = DT ∈ Cm(Ωp) (Eq. (1)) is a univariate function, the linear spline space
Sd
ρ,e(Ωp) is defined as in Remark 3, and the operator D is a linear differential operator with

constant coefficients. We have,

dist( f ,Sd
ρ,e) = dist(DT,Sd

ρ,e) ≤ Γ ‖D‖ ρν
∥∥∥T (ν)

∥∥∥
L∞ ,

where ν = min(m, e), Γ is a number related to ν and the degree of the splines in Sd
ρ,e(Ωp), and

T (ν) is the νth order derivative of T .

Proof: Because f = DT ∈ Cm(Ωp) is a univariate function, and D is a linear differential op-
erator with constant coefficients, we have (DT )(k) = DT (k), k = 1, 2, · · · ,m. By using Lemma 5
repeatedly, and denoting ν = min(m, e), it follows,

dist( f ,Sd
ρ,e) = dist(DT,Sd

ρ,e) ≤ γ1ρ dist((DT )′,Sd
ρ,e−1) ≤ γ1γ2ρ

2 dist((DT )′′,Sd
ρ,e−2)

≤ · · · ≤ γ1γ2 · · · γν−1ρ
ν−1 dist((DT )(ν−1),Sd

ρ,e−ν+1)

= γ1γ2 · · · γν−1ρ
ν−1 dist(DT (ν−1),Sd

ρ,e−ν+1)

≤ γ1 · · · γν−1ρ
ν−1Kν ‖D‖ω(T (ν−1), ρ), (Lemma 1)

where, γ1 is a number related to the degree of the splines in Sd
ρ,e (denoted as deg), γ2 is a number

related to the degree of the splines in Sd
ρ,e−1, i.e., deg − 1, · · · , and so on; Kν is a number related

to the degree of the splines in Sd
ρ,e−ν+1, i.e., deg − ν + 1. In conclusion, γi, i = 1, 2, · · · , ν − 1, and

Kν are all related to deg and ν = min(m, e), and then we denote Γ = γ1γ2 · · · γν−1Kν. Moreover,
by Lemma 2, we have,

dist( f ,Sd
ρ,e) ≤ Γρν−1 ‖D‖ω(T (ν−1), ρ) ≤ Γ ‖D‖ ρν

∥∥∥T (ν)
∥∥∥

L∞ ,
11



where, ν = min(m, e), and Γ is a number related to ν and the degree of the splines in Sd
ρ,e(Ωp). 2

Based on Lemma 3 and 6, the convergence rate for the consistency of the IGA-C method in
the one-dimensional case is deduced.

Theorem 2. Suppose f = DT ∈ Cm(Ωp) (Eq. (1)) is a univariate function, the spline space
Sd
ρ,e(Ωp) is defined as in Remark 3, and the operator D is a linear differential operator with

constant coefficients. We have,

‖DTr −DT‖W ≤ Γ(1 + ‖Iρ‖) ‖D‖ ρν
∥∥∥T (ν)

∥∥∥
L∞ ,

where ν = min(m, e), and Γ is a number related to ν and the degree of the splines in Sd
ρ,e(Ωp).

Moreover, if the operatorD is also a stable operator (Definition 1), it holds:

Corollary 2. Suppose f = DT ∈ Cm(Ωp) (Eq. (1)) is a univariate function, the spline space
Sd
ρ,e(Ω) is defined as in Remark 3, and the linear differential operator with constant coefficients
D is stable (refer to Definition 1). We have,

‖Tr − T‖V ≤
Γ

CS
(1 + ‖Iρ‖) ‖D‖ ρν

∥∥∥T (ν)
∥∥∥

L∞ ,

where CS is a positive constant, ν = min(m, e), and Γ is a number related to ν and the degree of
the splines in Sd

ρ,e(Ωp).

5. The necessary and sufficient condition

In this section, we will present the necessary and sufficient condition of the consistency of the
IGA-C method. BecauseDT = f ∈ C0(Ωp) and T is continuous (Eq. (1)), we have ω(T, ρ)→ 0,
when ρ → 0. Based on Lemma 4, if ‖Iρ‖ and ‖D‖ are bounded, it follows ‖DTr −DT‖W → 0
when ρ→ 0. That is, the IGA-C method is consistency. However, since Iρ f = DTr ∈ Sd

ρ,e (22),
and Tr ∈ Sρ is defined on the knot grid T ρ with knot grid size ρ, the norms ‖I‖ and ‖D‖ are
both related to the knot grid size ρ. Therefore, the sufficient condition for the consistency of the
IGA-C method is followed.

Lemma 7 (Sufficiency). If the interpolation operator Iρ (22) and differential operator D (1)
are both uniformly bounded when ρ → 0, then the IGA-C method applied on the boundary
problem (1) is consistency.

Furthermore, the following lemma presents the necessary condition for the consistency of the
IGA-C method.

Lemma 8 (Necessity). If the IGA-C method applied on the boundary problem (1) is consistency,
then the interpolation operator Iρ (22) and the differential operator D (1) are both uniformly
bounded when ρ→ 0.

Proof: We employ the method of proof by contradiction to show that DTr is bounded when
ρ→ 0.

The consistency of the IGA-C method means that

DTr → DT = f , when ρ→ 0. (32)
12



By contradiction, suppose DTr is not uniformly bounded when ρ → 0, i.e., ‖DTr‖W → ∞,
when ρ → 0. Because f is continuous, it is bounded on its domain Ωp ∪ ∂Ωp. However, DTr is
unbounded when ρ → 0. This violates the consistency condition (32). So the hypothesis is not
true, DTr is uniformly bounded when ρ → 0. That is, there exists a positive constant Cr such
that

‖DTr‖W ≤ Cr, when ρ→ 0.

Therefore, we have

‖D‖ = sup
‖Tr‖V=1

{‖DTr‖W} ≤ Cr, when ρ→ 0,

and (refer to Eq. (22))

‖Iρ‖ = sup
‖ f ‖L∞=1

{‖Iρ f ‖W} = sup
‖ f ‖L∞=1

{‖DTr‖W} ≤ Cr, when ρ→ 0.

It means that the interpolation operator Iρ (22) and the differential operator D (1) are both
uniformly bounded when ρ→ 0. 2

Based on Lemmas 7 and 8, the necessary and sufficient condition for the consistency of the
IGA-C method is followed.

Theorem 3 (Necessity and Sufficiency). The IGA-C method applied on the boundary prob-
lem (1) is consistency, if and only if the interpolation operator Iρ (22) and differential operator
D (1) are both uniformly bounded when ρ→ 0.

6. Numerical examples

In this section, some numerical examples are presented to illustrate the necessary and sufficient
condition of the consistency of the IGA-C method.

Example 1: Consider the following one-dimensional source problem: −T ′′ + T = (1 + 4π2)sin(2πx), x ∈ Ω = [0, 1],
T (0) = 0, T (1) = 0.

(33)

The analytical solution to the source problem is T (x) = sin(2πx). The physical domain is mod-
eled by a cubic B-spline curve with control points {0, 1

3 ,
2
3 , 1} and knot vector {0 0 0 0 1 1 1 1}.

So the initial knot grid size is ρ0 = 1. To reduce the knot grid size, we uniformly insert
k, (k = 1, 2, · · · ) knots in (0, 1). And then, the knot grid size sequence is ρk = 1

k+1 , k = 0, 1, 2, · · · .
In Fig. 1, three diagrams are demonstrated, that is,

• the norm of numerical solution Tr, i.e., ‖Tr‖L∞ v.s. the logarithm of knot grid size, i.e., ln ρk

(Fig. 1(a)),

• ‖DTr‖L∞ v.s. ln ρk (Fig. 1(b)), and,

•
‖DTr‖L∞

‖Tr‖L∞
v.s. ln ρk (Fig. 1(c)).

13



(a) Diagram of ‖Tr‖L∞ v.s. ln ρi for the 1D problem. (b) Diagram of ‖DTr‖L∞ v.s. ln ρi for the 1D problem.

(c) Diagram of ‖DTr‖L∞
‖Tr‖L∞

v.s. ln ρi for the 1D problem.

Figure 1: In the case of one-dimensional source problem (33), ‖Tr‖L∞ , ‖DTr‖L∞ , and the ratio ‖DTr‖∞
‖Tr‖L∞

are all uniformly
bounded when the knot grid size sequence ρk → 0, (k → ∞).

It can be seen from the diagrams in Fig. 1 that, when k → ∞ and ρk → 0, the norm of
the numerical solution ‖Tr‖L∞ tends to the norm of the analytical solution, i.e., ‖T (x)‖L∞ =

‖sin(2πx)‖L∞ = 1 (Fig. 1(a)), and ‖DTr‖L∞ tends to the norm of f (x) = (1 + 4π2)sin(2πx) (33),
i.e.,

∥∥∥(1 + 4π2)sin(2πx)
∥∥∥

L∞ = 1 + 4π2 (Fig. 1(b)). Moreover, refer to Fig. 1(c), as an indicator of

‖D‖L∞ , the ratio ‖DTr‖∞
‖Tr‖L∞

tends to ‖
(1+4π2)sin(2πx)‖L∞

‖sin(2πx)‖L∞
= 1 + 4π2, when ρk → 0, (k → ∞). Therefore,

it is uniformly bounded as ρk → 0, (k → ∞), which validates Theorem 3.
Example 2: The next example is a two-dimensional source problem: −∆T + T = f , (x, y) ∈ Ω

T |∂Ω = 0,
(34)

where,
f = (3x4 − 67x2 − 67y2 + 3y4 + 6x2y2 + 116) sin(x) sin(y)

+(68x − 8x3 − 8xy2) cos(x) sin(y)

+(68y − 8y3 − 8yx2) cos(y) sin(x).
14



(a) Diagram of ‖Tr‖L∞ v.s. ln ρi for the 2D problem. (b) Diagram of ‖DTr‖L∞ v.s. ln ρi for the 2D problem.

(c) Diagram of ‖DTr‖L∞
‖Tr‖L∞

v.s. ln ρi for the 2D problem.

Figure 2: In the case of two-dimensional source problem (34), ‖Tr‖L∞ , ‖DTr‖L∞ , and the ratio ‖DTr‖∞
‖Tr‖L∞

are all uniformly
bounded when the knot grid size sequence ρk → 0, (k → ∞).

And the analytical solution of the source problem (34) is

T = (x2 + y2 − 1)(x2 + y2 − 16) sin(x) sin(y).

The physical domain Ω in Eq. (34) is a quarter of an annulus, which is represented by a cubic
NURBS patch with 4 × 4 control points. The control points and weights of the cubic NURBS
patch are listed in Tables 1 and 2, respectively. The knot vectors of the cubic NURBS patch
along u− and v−direction are, respectively,

0 0 0 0 1 1 1 1,
0 0 0 0 1 1 1 1.

To make the knot grid size tend to 0, we uniformly insert knots in the interval (0, 1) along u− and
v−directions, respectively. So, the knot grid sizes are ρk = 1

k+1 , k = 0, 1, 2, · · · .
Fig. 2 shows the diagrams ‖Tr‖L∞ v.s. ln ρk (Fig. 2(a)), ‖DTr‖L∞ v.s. ln ρk (Fig. 2(b)), and

‖DTr‖L∞

‖Tr‖L∞
v.s. ln ρk (Fig. 2(c)) for the case of two-dimensional source problem (34). Similar as
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the case of one-dimensional problem, ‖Tr‖L∞ , ‖DTr‖L∞ , and ‖DTr‖L∞

‖Tr‖L∞
are all have limit when

ρk → 0, (k → ∞). So they are all uniformly bounded when ρk → 0, (k → ∞).

Table 1: Control points of the quarter of annulus
i Pi,1 Pi,2 Pi,3 Pi,4

1 (1,0) (2,0) (3,0) (4,0)
2 (1,2-

√
2) (2, 4-2

√
2) (3,6-3

√
2) (4,8-4

√
2)

3 (2-
√

2,1) (4-2
√

2,2) (6-3
√

2,3) (8-4
√

2, 4)
4 (0,1) (0,2) (0,3) (0,4)

Table 2: Weights for the quarter of annulus
i wi,1 wi,2 wi,3 wi,4

1 1 1 1 1
2 1+

√
2

3
1+
√

2
3

1+
√

2
3

1+
√

2
3

3 1+
√

2
3

1+
√

2
3

1+
√

2
3

1+
√

2
3

4 1 1 1 1

Example 3: The final example is a three-dimensional source problem: −∆T + T = f , (x, y, z) ∈ Ω,

T |∂Ω = 0,
(35)

where
f = (1 + 12π2) sin(2πx) sin(2πy) sin(2πz),

and the analytical solution is,

T = sin(2πx) sin(2πy) sin(2πz).

The physical domain Ω is modeled as a cubic trivariate B-spline solid with control points Pi jk =

( i
3 ,

j
3 ,

k
3 ), i, j, k = 0, 1, 2, 3, and knot vectors along u−, v−, and w−directions, respectively,

0 0 0 0 1 1 1 1,
0 0 0 0 1 1 1 1,
0 0 0 0 1 1 1 1.

Similar as the one and two dimensional cases, the intervals (0, 1) along u−, v−, and w−directions
are uniformly inserted knots, respectively. Therefore, the knot grid size ρk = 1

k+1 → 0, k =

0, 1, 2, · · · .
The three diagrams, i.e., ‖Tr‖L∞ v.s. ln ρk (Fig. 3(a)), ‖DTr‖L∞ v.s. ln ρk (Fig. 3(b)), and ‖DTr‖L∞

‖Tr‖L∞

v.s. ln ρk (Fig. 3(c)) for the case of three-dimensional source problem (35) are illustrated in Fig. 3.
From these diagrams, we can see that, when ρk → 0(k → +∞),

‖Tr‖L∞ → ‖T‖L∞ = 1, ‖DTr‖L∞ → ‖ f ‖L∞ = 1 + 12π2, and,
‖DTr‖L∞

‖Tr‖L∞
→ 1 + 12π2.

So they are all uniformly bounded when ρk → 0(k → ∞), too.
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(a) Diagram of ‖Tr‖L∞ v.s. ln ρi for the 3D problem. (b) Diagram of ‖DTr‖L∞ v.s. ln ρi for the 3D problem.

(c) Diagram of ‖DTr‖L∞
‖Tr‖L∞

v.s. ln ρi for the 3D problem.

Figure 3: In the case of three-dimensional source problem (35), ‖Tr‖L∞ , ‖DTr‖L∞ , and the ratio ‖DTr‖∞
‖Tr‖L∞

are all uniformly
bounded when the knot grid size sequence ρk → 0, (k → ∞).

7. Conclusions

In this paper, we developed the convergence order for the consistency and convergence of the
IGA-C method, and then, deduced the necessary-and-sufficient condition for the consistency of
the IGA-C method. Specifically, supposeD is the differential operator of a boundary value prob-
lem withDT = f (1), a NURBS function Tr is the numerical solution, and Iρ is an interpolation
operator such that Iρ f = DTr. First, the formula of the convergence order for the consistency
of the IGA-C method is developed, which includes the norms of the operator D and Iρ. Then,
the necessary-and-sufficient condition for the consistency of the IGA-C method is deduced. That
is, the IGA-C method is consistency if and only if D and Iρ are both uniformly bounded when
ρ→ 0. These results will advance the numerical analysis of the IGA-C method.
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