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Abstract Visual curve completion is a fundamental
problem in understanding the principles of the human
visual system. This problem is usually divided into two
problems: a grouping problem and a shape problem.
On one hand, though perception of the visually
completed curve is clearly a global task (for example,
a human perceives the Kanizsa triangle only when
seeing all three black objects), conventional methods
for solving the grouping problem are generally based
on local Gestalt laws. On the other hand, the shape
of the visually completed curve is usually recovered
by minimizing shape energy in existing methods.
However, not only do these methods lack mechanisms
to adjust the shape of the recovered visual curve using
perceptual, psychophysical, and neurophysiological
knowledge, but it is also difficult to calculate an explicit
representation of the visually completed curve. In this
paper, we present a systematic computational model for
generating a visually completed curve. Firstly, based
on recent studies of perception, psychophysics, and
neurophysiology, we formulate a grouping procedure
based on the human visual system by seeking a
minimum Hamiltonian cycle in a graph, solving the
grouping problem in a global manner. Secondly, we
employ a Bézier curve-based model to represent the
visually completed curve. Not only is an explicit
representation deduced, but we also present a means
to integrate knowledge from related areas, such as
perception, psychophysics, and neurophysiology, and
so on. The proposed computational model has been
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validated using many modal and amodal completion
examples, and desirable results were obtained.
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1 Introduction

When a human sees an object with boundary
fragments, such as the Kanizsa triangle in Fig. 1(a),
the human visual system fills in the missing
parts between boundary fragments, making observer
perceive a complete object. This phenomenon is
called visual curve completion, and understanding
it is fundamental to understanding the mechanisms
of the human visual system [1]. Geometrically, the
shape of the completed visual curve is determined by
the dominant points, including feature points in the
boundary fragments, and end points of the boundary
fragments. Generally, there are two kinds of visual
curve completion problem. When the boundary
fragments are generated by occlusion, completion is
called amodal [2] (see Fig. 1(b)); while when the
object is illusory and its boundary is subjective,
completion is known as modal [3] (see Fig. 1(a)).

It is widely recognized that there are two problems
in visual curve completion: the first is the grouping
problem, and the second is the shape problem [4].
While the grouping problem determines which two
end points of the boundary segments can be paired to
form a visual boundary segment, the shape problem
generates the shape of the visual boundary segment.
In other words, the grouping problem recovers the
topological structure from the end points of the
boundary segments, i.e., which two end points are
adjacent to each other, and the shape problem
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(a) (b)

Fig. 1 Modal completion and amodal completion. (a) Kanizsa
triangle: an example of modal completion. (b) An example of amodal
completion.

retrieves the geometric shape of the visual boundary
segment.

Conventional methods for solving the grouping
problem are usually based on the Gestalt
grouping laws [5], such as the principle of
nonaccidentalness [6] and relatability [7]. These rely
on local geometric properties, including proximity,
similarity, continuity of direction, good continuation,
tendency to convexity, closure, shared regions, and
connectedness, to determine which end points
can be paired. However, visual curve completion,
especially the grouping problem, is clearly not
performed locally by the human visual system.
Take the Kanizsa triangle illustrated in Fig. 1(a)
as an example. If one black object in Fig. 1(a)
were occluded, we would not think that the other
two black objects form an illusory shape. The
Kanizsa triangle in Fig. 1(a) appears only when we
see all three black objects. Therefore, visual curve
completion is global behavior, and local grouping
laws do not embody the true working of the human
visual system.

Recent neurophysiological studies have shown that
curve completion is predominantly an early visual
process [4]. It takes place as early as the primary
visual cortex (or V1), which contains orientation-
selective cells in all orientations (and at various
scales) for all retinal positions or for each “pixel”
in the visual field. In the so-called ice cube model,
V1 is continuously divided into full-range orientation
hypercolumns, each associated with a different image
(or retinal) position [8]. The orientation-selective
neurons in two hypercolumns are able to interact
through long-range horizontal connections [9, 10] to
facilitate contextual computations.

Actually, the orientation-selective neurons and the

connections between them topologically constitute a
graph structure [11], with the orientation-selective
neurons acting as vertices and the long-range
horizontal connections between them acting as edges.
Because each dominant point of a boundary segment
in the grouping problem is a “pixel” in the visual field
and corresponds to an orientation-selective neuron,
the dominant points and the possible connections
between them accordingly make up a graph. This
graph takes the dominant points as vertices and
the possible connections between them as edges.
Because the significance of each edge (connection)
in the grouping problem is different, the edges
in the graph should be weighted according to
rules deduced by perceptual, psychophysical, and
neurophysiological studies, turning the graph into a
weighted graph.

Therefore, the grouping problem can be solved by
seeking a cycle in the weighted graph that satisfies
the following conditions (refer to Fig. 2):
• the cycle visits each vertex exactly once;
• the sum of the weights of the edges in the cycle is

a minimum, and
• the edge between an end point and a feature point,

or between two adjacent feature points, along a
boundary segment is constrained in the cycle.
A cycle with such properties is called a constrained

minimum Hamiltonian cycle [11] (CMHC), in which
the topological structure of the end points of
the boundary segments (i.e., the adjacency
relationship between the end points of different
boundary segments) can be recovered by the
connections of the end points. If two end points

(a) (b)

Fig. 2 Voronoi diagram, constrained Delaunay triangulation,
and constrained minimum Hamiltonian cycle. (a) Voronoi diagram
and constrained Delaunay triangulation (CDT). In this figure, the
diagram in light blue is the Voronoi diagram. Its dual graph is
the constrained Delaunay triangulation, in which the red points are
the feature points, the blue points are the end points, and the line
segments in blue are the constrained edges. (b) Constrained minimum
Hamiltonian cycle (CMHC). The two end points of two different
boundary segments can be paired by their adjacency relationship in
the CMHC.
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in two different boundary segments are adjacent,
they are paired, and a visual curve is formed
between them. In this way, the grouping problem is
solved in a global manner. Moreover, the solution
based on a CMHC supports the Gestalt theory
that the principles of perception are the outcome
of “development in the direction of minimum
energy” [12]. The proposed computational model
for solving the grouping problem has been applied
in both amodal and modal completion, resulting in
desirable solutions.

After determining the adjacency relationships of
the end points, the next problem is to recover
the shape of the visual curve between pairs of
end points. In the shape recovery problem, all
we have is a two-dimensional image. However,
the generation of the shape in the image is a
complicated procedure, influenced by a number
of factors including the reflection and refraction
of the medium, the imaging system, and the
human visual system. They are difficult to model
entirely mathematically. A practical approach is to
introduce a factor that reflects the influences of
the aforementioned elements on the visual curve
generation model, adjusting its shape. However,
traditional methods have constructed the visually
completed curve mainly by minimizing an energy
function [13–15], such as total curvature or total
change in curvature, or by flow evolution [16]. Once
the shape of the visual curve has been generated,
it cannot be changed. Critically, the shape of the
visual curve that is produced by most traditional
methods often deviates from the real shape [17,
18]. Although the method proposed in Ref. [4]
introduces a factor to adjust the shape of the visually
completed curve, the visual curve is produced by a
numerical method, and its closed form representation
is hard to generate. This makes the computation
complicated, and analysis of the visually completed
curve inconvenient.

In the human visual system, the shape of the
visually completed curve between each pair of end
points is mainly suggested by the two outward
tangent vectors of the two boundary segments at
their end points. Coincidentally, the shape of a
cubic Bézier curve [19], which is widely employed
in geometric design, is predominantly determined
by its tangent vectors at its end points. In this
paper, we thus use a Bézier curve-based visual curve

construction method. The cubic Bézier curve P (t),
with the constraint that P (t) is tangent to the two
boundary segments at their end points, is generated
by minimizing an energy function, which is designed
by taking knowledge from perception, psychophysics,
and neurophysiology into account.

The benefit of using a Bézier curve is that a
closed form solution to the constrained minimization
problem described above can be deduced, giving
an explicit representation of the visually completed
curve. Due to the explicit representation, new
principles that are proposed for the visually
completed curve generation can be verified easily.
Moreover, the Bézier curve-based model presents
an opportunity to integrate knowledge from related
areas, such as perception, psychophysics, and
neurophysiology, by introducing a function and a
weight in the energy to be minimized. By choosing
an appropriate weight and function by taking
into account the complicated imaging procedure,
especially the perceptual, psychophysical, and
neurophysiological principles, the shape of the
visually completed curve can be made more and more
faithful to the real shape.

The rest of this paper is organized as follows. In
Section 1.1, related work is briefly reviewed. In
Section 2, we develop a graph theory-based model,
based on recent perceptual, psychophysical, and
neurophysiological studies, to solve the grouping
problem. In Section 3, a Bézier curve-based model
is presented to calculate the shape of a visually
completed curve, by integrating knowledge from
perception, psychophysics, and neurophysiology in
the energy function. After presenting and discussing
the results of the application of the proposed
systematic computational model to modal and
amodal completion in Section 4, this paper is
concluded in Section 5.

1.1 Related work

In this section, we briefly review related work on
grouping and visual curve generation methods.

Grouping. As stated above, many grouping
methods are based on the Gestalt laws [20],
including the principle of proximity, continuity of
direction, good continuation, connectedness, etc.
Specifically, the good continuation law was employed
in Ref. [21] to develop a perceptual organization
model for a restricted domain of patterns with
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minimal regularity. By incorporating the inducer
configuration with distance information, as well as
the relative probability of perceiving an organization,
dots on a lattice grid were grouped by the proximity
law [22, 23].

The principle of non-accidentalness, introduced in
Refs. [6, 24], claims that every spatial relation which
is unlikely to have arisen by accident should create
a group. Based on this principle, Desolneux et
al. [25, 26] formulated the Gestalt grouping laws as
independent detectors for geometrical events.

The other commonly used criterion is relatability
law, which is defined in terms of whether or not the
linear extensions of the inducing contour intersect,
and whether the interior angle of intersection is
obtuse [7]. It has been shown that the relatability
law is equivalent to the existence of a smooth
curve with no inflection points connecting the two
inducers [27].

For more literature on grouping, please refer to
Refs. [5, 28]. As noted, these grouping methods are
mainly based on local geometric rules, even though
grouping is clearly not performed locally by the
human visual system.

Visual curve generation. The biarc curve
model [15] was first introduced to generate the
visual curve between two inducers. It constructs two
circular arcs, usually by solving a one-dimensional
nonlinear optimization problem [29]; each is tangent
both to an inducer and to the other circular arc.
Kimia et al. [13] employed Euler spirals to produce
the visual curve. By minimizing the total change
in curvature, the shortest Euler spiral is selected as
the completed visual curve. While the Euler spiral
model generates the visual curve by minimizing the
total change in curvature, there are other methods
that construct the visual curve by minimizing the
total curvature, known as the elastica model [30–
32]. Recently, the visual curve was constructed
by finding minimum-length admissible curves in
the unit tangent bundle [4], where a factor was
introduced in the numerical solution to adjust the
shape of the completed visual curve. Though these
methods can produce desirable results in some cases,
closed-form solutions are difficult to obtain, and
usually only numerical solutions can be found.

Unlike the aforementioned methods, which
construct visual curves piece by piece, partial
derivative equation (PDE) based models generated

visual curves via global evolution. In Ref. [16], a
fixation point was selected inside the region bounded
by the illusory contour, and then a surface on the
image domain was constructed based on the fixation
point. The surface was evolved under a speed
law dependent on the image gradient, and finally
connected to the non-existing edges. In Ref. [33],
the illusory surface was determined by minimizing a
proposed energy and then selecting the best image
organization. Recently, a level-set based model was
proposed in Ref. [34] to capture illusory contours
regardless of whether the missing boundaries are
straight lines or curves.

A stochastic model has also been developed to
generate visual curves, by formulating the problem
as a random walk in a 3D discrete lattice of positions
and orientations [35].

2 Recovery of topological structure

Given several boundary segments, the grouping
problem determines which end points taken from two
different boundary segments can be paired to form
a visual curve between them. This is equivalent to
establishing the adjacency relationships of these end
points or the topological structure of the visually
completed curve.

As is well known, the shape of a curve is mainly
influenced by its feature points and end points.
We call them dominant points. The feature points
embody the salient shape features of the boundary
segment, and include any tangent discontinuity
points, curvature discontinuity points, or other
points that selected interactively. In Fig. 2(a),
feature points are illustrated in red and end points
are illustrated in blue.

As has been described in recent neurophysiological
studies, each dominant point of a boundary
segment in an image space forms a “pixel” in
the visual field; it corresponds to an orientation-
selective neuron. The orientation-selective neurons
in two hypercolumns interact through long-range
horizontal connections [9, 10]. These neurons and
the connections between them make up a graph
structure. It is most likely that one neuron will be
connected to its closest neighbor in some direction.
Therefore, for an arbitrary neuron, we need to
determine its nearest neighbor along an arbitrary
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direction.
Taking these neurons as discrete vertices, an

efficient way to solve this computational task is to
compute the Voronoi diagram [36] of the discrete
vertex set. The Voronoi diagram of a vertex set is
composed of a series of Voronoi cells (see Fig. 2(a)).
Each Voronoi cell cp corresponds to a vertex p. The
Voronoi cell cp consists of the points which are nearer
to the vertex p than to other vertices in the vertex
set. Consequently, if one cell cp̄, which corresponds
to a vertex p̄, is adjacent to cell cp, p̄ is the closest
vertex to p in some direction, and they should be
connected. Therefore, the connections between these
vertices can be constructed by the dual graph of
its Voronoi diagram, which is called the Delaunay
triangulation [37] (see Fig. 2(a)).

Let us return to the image space. We need
to remember that each neuron corresponds to a
dominant point. Similarly, the connections between
these dominant points can also be constructed by
Delaunay triangulation. It should be noted that,
because the end points and feature points belonging
to a boundary segment are naturally connected along
the boundary segment, the connections between
them are constrained in the Delaunay triangulation.
For example, the innermost apple in Fig. 2(a) has
two boundary segments, which are represented by
the two blue polylines. While the upper segment
contains two feature points in red and the three blue
edges are constrained in the Delaunay triangulation,
the lower segment has just one blue edge between its
end points, and it too is constrained in the Delaunay
triangulation. Such a Delaunay triangulation with
constrained edges is called a constrained Delaunay
triangulation (CDT) [37] (see Fig. 2(a)). Given
a vertex set in the plane together with a set of
prescribed noncrossing, straight-line edges, the CDT
is that triangulation of the vertices with the following
properties:
• it includes the prescribed noncrossing, straight-

line edges, and
• it is as close as possible to the Delaunay

triangulation of the vertex set.
In our implementation, we employed the

triangulation source code in CGAL [38] to calculate
the CDT, and a result is demonstrated in Fig. 2(a).

The so-constructed CDT is a mathematical model
of the early visual neurons and possible connections

between them, in which each dominant point
corresponds to a neuron and each edge corresponds
to a possible connection. Undoubtedly, the
significance of the edges (possible connections) in
the CDT is different in recovering the topological
structure. In our model, the significance of the edge
is measured by a weight, which can be determined by
perceptual, psychophysical, and neurophysiological
principles. Because proximity is a basic principle
in perceptual theory, as well as in Gestalt theory,
we set the weight of each edge as the length of the
edge in the image space. The so-selected weights
generated desirable results in all of our experiments
of modal and amodal completion. The assignment of
weight could be further improved by incorporating
more visual principles.

Thus, we obtain a weighted graph. To recover
the topological structure, we need to calculate a
cycle that visits each vertex of the graph exactly
once and visits the constrained edges. This is a
constrained Hamiltonian cycle. However, there can
be many constrained Hamiltonian cycles in a graph.
Based on the Gestalt theory that the principles
of perception are the outcome of “development in
the direction of minimum energy” [12], we chose
the Hamiltonian cycle with the minimum weight
sum, which is called the CMHC, as the topological
structure of the dominant points. The problem of
seeking the minimum Hamiltonian cycle is actually
the traveling salesman problem, which is solved
by a dynamic programming approach [39] in our
implementation.

Figure 2(b) illustrates a CMHC, in which the
two adjacent end points of two different boundary
segments are paired. Moreover, a visual curve is
generated between the two paired end points.

It is worth mentioning that the assignment of
appropriate weights to the edges of the CDT is a
key factor in generating the correct CMHC. In this
paper, the lengths of the edges are assigned as the
weights, which lead to correct CMHCs in all of our
experiments. However, if the assignment of weights
is inappropriate, incorrect CMHCs will be generated.
For example, Fig. 10(b) illustrates the correct CMHC
with edge lengths as weights. However, if uniform
weights are assigned to the edges of the CDT as
in Fig. 10(b), there will be more than ten thousand
CMHCs, and only one of them is correct. In Fig. 3,
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(a) (b)

Fig. 3 Two incorrect CMCHs. If we assign uniform weights to the
edges of the CDT, there will be more than ten thousand CMCHs.
Only one of them is correct, and the others are all incorrect.

two such incorrect CMHCs are illustrated. Please
compare them with the correct CMHC in Fig. 10(b),
which is the sole CMHC of the weighted CDT with
edge lengths as weights.

3 Recovery of geometric shape

With the CMHC, the topological structure of the
dominant points can be recovered: the end points
of different boundary segments can be paired. We
next consider the shape problem, determining the
geometric shape of the visual curve between these
paired end points.

Based on the findings of neurophysiological
studies, an image contour is represented in V1
as an activation pattern of all of the cells that
correspond to the oriented tangents along the curve’s
arclength [4]. This means that the tangent vectors
at the end points of the boundary segment play an
important role in recovering the shape of a visual
curve. Because the shape of a cubic Bézier curve
is determined by its tangent vectors at its two end
points, we use a Bézier curve that interpolates the
the tangent vectors of two boundary segments at
their two end points to represent the shape of a visual
curve.

A Bézier curve is a fundamental tool in geometric
design [19]. It is generated by blending a set of
Bernstein basis functions and a series of control
points which make up a control polygon. The shape
of a Bézier curve is controlled by its control polygon.
It interpolates the two end points of its control
polygon, and it is tangent to the two end edges of
its control polygon at its two end points. Figure
4 illustrates in blue a cubic Bézier curve with four
control points; its control polygon is shown in purple.

Suppose the end points are P0 and P3, and the unit
tangent vectors of two boundary segments at the end

Fig. 4 A Bézier curve (blue) and its control polygon (purple).

points are v0 and v3, respectively. To generate the
Bézier curve-represented visually completed curve,

P (t) =
3∑

i=0
PiBi(t), t ∈ [0, 1] (1)

where Bi(t) =
(

3
i

)
(1− t)3−iti and i = 0, 1, 2, 3, are

the Bernstein basis functions [19], we must determine
the two unknown control points P1 and P2. The
two control points lie on the tangent lines, which
pass through the end points and the corresponding
tangent vectors are given as directional vectors, i.e.,{

P1 = P0 + l0v0

P2 = P3 + l3v3
(2)

Therefore, the problem of calculating the control
points P1 and P2 is transformed into how to
determine l0 and l3 in Eq. (2). From the principles
of perception in Gestalt theory, that is, the outcome
of “development in the direction of minimum
energy” [12], we model this problem as an energy
minimization problem.

The objective function to be minimized should
take account of the following factors. Firstly, the
visual curve should be smooth, which is ensured by

minimizing E1(l0, l3) =
∫ 1

0
‖P ′′(t)‖2 dt. Secondly,

the shape of the visual curve is affected by both the
angle α0 ∈

[
0, π2

]
formed by the two vectors −−−→P0P3

and v0, and the angle α3 ∈
[
0, π2

]
formed by the

two vectors −−−→P3P0 and v3. The larger the angles, the
longer the two lengths l0 and l3. This objective is
attained by minimizing the following energy:

E2(l0, l3) =
(
l0−f

(
α0

π/2

)
L

)2
+
(
l3−f

(
α3

π/2

)
L

)2

(3)
where the function f is taken as f(x) = x, and L is
the length of the line segment P0P3.

Combining these two factors gives the objective
function to be minimized:
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Fig. 5 The curve of the sigmoid function β(L) (Eq. (5)).

E(l0, l3) = βE1(l0, l3) + (1− β)E2(l0, l3)

= β

∫ 1

0
‖P ′′(t)‖2 dt

+(1−β)
[(
l0−

α0

π/2L
)2

+
(
l3−

α3

π/2L
)2
]

(4)

where β is a weight. With fixed angles α0 and α3,
the larger the weight β, the shorter the two lengths
l0 and l3 that result, and the flatter the shape of the
curve (see Figs. 6(b) and 7(a)).

Note that the shape of the visual curve is also
related to the length L of the line segment P0P3.
The longer L, the shorter the two lengths l0 and l3,
and the smoother the curve P (t) (Eq. (1)) appears.
To incorporate this effect into the objective function
(Eq. (4)), the weight β is chosen as a sigmoid
function [40] of L, i.e.,

(a) (b)

Fig. 6 Generation of a visually completed curve. (a) The two end
points (blue) of a visual curve and the two end tangent vectors (red).
(b) Two visually completed curves with different β weights, β = 0
(yellow curve), and β = 0.1899 (purple curve). Larger β leads to
shorter l0 and l3, and a flatter generated visual curve. The visual
curve with β = 0.1899 more faithfully conforms to the real shape of
the edge of the rainbow.

(a) (b)

Fig. 7 Generating a desirable visually completed curve by
minimizing the energy function (Eq. (4)). (a) Two visually completed
curves with different β weights, β = 0 (purple) and β = 0.6225
(black). The black curve with β = 0.6225, generated by Eq. (5),
is more desirable as it conforms to the actual shape better. (b) The
visually completed curves with β = 0.3018 (left) and β = 0.3233
(right) for the amodal completion example shown in Fig. 1(b).

β(L) = 1
1 + e−aL+b

(5)

where a = 0.0203, b = 6.9848. To determine the
two constants a and b in Eq. (5), we selected two
visual curves to be completed, the right curve in
Fig. 7(b), and the leftmost curve in Fig. 12(b),
and manually adjusted the weight β in Eq. (4)
until a desirable visual curve was generated by
minimizing Eq. (4). This gave two pairs of numbers
for (L, β(L)), (307.70, 0.3233) and (106.76, 0.0080).
Making the sigmoid function (Eq. (5)) interpolate
the two pairs of numbers requires a = 0.0203, b =
6.9848 (see Table 1). The so-generated sigmoid
function β(L) (Eq. (5)) works well for all of other
visual curve completion examples illustrated in this
paper. Figure 5 shows the sigmoid function β(L).
It is a monotonically increasing function: the longer
the length L, the larger β(L), so the shorter the two
lengths l0 and l3, if the two angles α0 and α3 are
fixed.

Minimizing the energy objective function in Eq. (4)
leads to explicit formulae for l0 and l3:

l0 = (2 + 70β)X + 36β(v0 · v3)Y
[36β(v0 · v3)]2 − (2 + 70β)2

l3 = 36β(v0 · v3)X + (2 + 70β)Y
[36β(v0 · v3)]2 − (2 + 70β)2

(6)

where
X = 36β(v0 ·

−−−→
P3P0) + 2(β − 1) α0

π/2L

Y = 36β(v3 ·
−−−→
P0P3) + 2(β − 1) α3

π/2L

The derivation of the formulae for l0 and l3 can be
found in Section 3.1.
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In this way, the explicit representation of the
visually completed curve (Eq. (1)) is generated.
In all of our experimental examples, the Bézier
curve-based model generated a visual curve whose
shape faithfully conforms to the given boundary
segment. Moreover, the explicit representation
makes it is very easy to verify the proposed
perceptual, psychophysical, and neurophysiological
principles for the generation of visually completed
curve. More importantly, new knowledge from
perceptual, psychophysical, and neurophysiological
fields could be integrated into the developed Bézier
curve-based model by improving the functions f(α)
in Eq. (3) and β(L) in Eq. (4).

Figure 6 illustrates the geometric shape recovery
method presented in this paper. Two end points
(blue) of a visual curve are selected, and two tangent
vectors (red line segments) at these two points of the
boundary curve of the rainbow are generated. Two
visual curves, with β = 0 and β = 0.1899, are shown,
demonstrating the effect of the weight β in Eq. (4).
The larger the weight β, the shorter the two lengths
l0 and l3, and the flatter the shape of the generated
visual curve. The shape of the purple visual curve
with β = 0.1899, generated by the sigmoid function
in Eq. (5), is in agreement with the actual boundary
of the rainbow.

Figure 7(a) demonstrates another example where
two visual curves with β = 0 and β = 0.6225 are
generated. We can see that the black curve with β =
0.6225 conforms to the boundary of the orange very
well. Moreover, the two blue curves in Fig. 7(b) are
reasonable visually completed curves for the amodal
completion example presented in Fig. 1(b), with β =
0.3018 (left curve) and β = 0.3233 (right curve).

The cubic Bézier curve based-model can generate
two types of visual curves: C-shaped and S-shaped
curves. The examples in Figs. 6 and 7 are C-shaped
curves. An S-shaped curve is demonstrated in Fig. 8;
Fig. 8(a) has β = 0.0711, while Fig. 8(b) shows the
same visual curve and its control polygon.

Based on these examples, it can be concluded that:
• With fixed angles α0 and α3, the larger the weight
β (defined in Eq. (4)), the flatter the shape of the
visually completed curve, while the lower β, the
more the curve bends.
• A reasonable visually completed curve can be

generated by choosing an appropriate weight

(a) (b)

Fig. 8 Generating an S-shaped visual curve using the Bézier curve-
based model. (a) An S-shaped visual curve with β = 0.0711. (b) The
same S-shaped visual curve and its control polygon (blue).

function β(L) (Eq. (5)).
• Our Bézier curve-based model provides an

extensible model into which new knowledge from
perception, psychophysics, and neurophysiology
can be integrated by improving the functions f(α)
in Eq. (3) and β(L) in Eq. (4).

3.1 Derivation of l0 and l3

We now derive the formulae for l0 and l3 in
Eq. (6). Suppose the Bézier curve-represented
visually completed curve is

P (t) =
3∑

i=0
PiBi(t), t ∈ [0, 1]

where Bi(t) =
(

3
i

)
(1 − t)3−iti and i = 0, 1, 2,

3, are the Bernstein basis functions. The two
unknown control points P1 and P2 lie on the
tangent lines, which pass through the end points;
the corresponding tangent vectors are given by
directional vectors:

P1 = P0 + l0v0

P2 = P3 + l3v3

where v0 and v3 are two unit tangent vectors. To
determine P1 and P2, we need to derive formulae
for l0 and l3. They are obtained by minimizing the
following energy function:

E(l0, l3) = β

∫ 1

0
‖P ′′(t)‖2 dt

+(1− β)
[(
l0 −

α0

π/2L
)2

+
(
l3 −

α3

π/2L
)2
]

(7)

As
P ′′(t) = 6[(P2 − 2P1 + P0)(1− t)

+ (P3 − 2P2 + P1)t] (8)

substituting Eq. (8) into Eq. (7), together with v2
0 =

v2
3 = 1, we have
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E(l0, l3) = β

∫ 1

0
[6(l3v3 − 2l0v0 +−−−→P0P3)(1− t)

+ 6(l0v0 − 2l3v3 +−−−→P3P0)t]2dt

+ (1− β)
[(
l0 −

α0

π/2L
)2

+
(
l3 −

α3

π/2L
)2
]

= 36β
[
l20v2

0

∫ 1

0
(3t− 2)2dt+ l23v2

3

∫ 1

0
(1− 3t)2dt

+ 2l0l3(v0 · v3)
∫ 1

0
(3t− 2)(1− 3t)dt

+ 2l0(v0 ·
−−−→
P0P3)

∫ 1

0
(3t− 2)(1− 2t)dt

+ 2l3(v3 ·
−−−→
P0P3)

∫ 1

0
(1− 3t)(1− 2t)dt

+(−−−→P0P3)2
∫ 1

0
(1− 2t)2dt

]
+ (1− β)

[(
l0 −

α0

π/2L
)2

+
(
l3 −

α3

π/2

)2
]

= (1 + 35β)(l20 + l23)− 36β(v0 · v3)l0l3

+ l0

[
36β(v0 ·

−−−→
P3P0) + 2(β − 1) α0

π/2L
]

+ l3

[
36β(v3 ·

−−−→
P0P3) + 2(β − 1) α3

π/2L
]

+ 1
3(−−−→P0P3)2 +(1−β)

[(
α0

π/2L
)2

+
(
α3

π/2L
)2
]

Thus, E(l0, l3) is a quadratic function of l0 and l3.
Differentiating with respect to l0 and l3 leads to a
pair of linear equations:

∂E

∂l0
= (2 + 70β)l0 − 36β(v0 · v3)l3

+
[
36β(v0 ·

−−−→
P3P0) + 2(β − 1) α0

π/2

]
= 0

∂E

∂l3
= (2 + 70β)l3 − 36β(v0 · v3)l0

+
[
36β(v3 ·

−−−→
P0P3) + 2(β − 1) α3

π/2

]
= 0

Explicit formulae for l0 and l3 can be obtained by
solving the above linear system (refer to Eq. (6)).

4 Results and discussion
In the following, we present some examples of
modal and amodal completion determined by our
systematic computational model. Figures 9 and 10
are two modal completion examples; Figs. 11 and 12
are two amodal completion examples. The lengths
L and the corresponding weights β(L) for these

(a) (b)

(c)

Fig. 9 Visual curve completion for a Kanizsa triangle. (a) CDT
and the constrained edges (red). (b) CMHC: the two end points of
two different boundary segments are paired through their adjacency
relationships in the CMHC. (c) The visually completed curves.

(a) (b)

(c)

Fig. 10 Visual curve completion for a dumb bell model. (a) The
original dumb bell model. (b) CDT and CMHC (red). (c) The
visually completed curves.

examples are given in Table 1.
In Fig. 9, the Kanizsa triangle is completed. In

this example, there are three boundary segments,
whose corresponding edges (red) are constrained in
the CDT (see Fig. 9(a)). Furthermore, the CMHC
is sought (see Fig. 9(b)), and the two adjacent end
points in the CMHC are paired. Finally, three visual
curves are constructed between the three pairs of end
points (see Fig. 9(c)).
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Table 1 The length L (the distance between the pixels at the end points of a line segment) and the value of β(L) used in the visual curve
completion examples

L β(L) L β(L) L β(L)

Fig. 6(b) 272.62 0.1899 131.82 0.0132

Fig. 11(d)

56.32 0.0029

Fig. 7(a) 368.72 0.6225 129.80 0.0127 147.98 0.0183

Fig. 7(b) 302.76 0.3018 81.40 0.0048 54.04 0.0028

307.70 0.3233 75.11 0.0042 100.02 0.0070

Fig. 8(a) 217.45 0.0711 Fig. 10(c) 26.91 0.0016 169.64 0.0282

288.01 0.2426 72.07 0.0040 Fig. 12(b) 106.76 0.0080

Fig. 9(c) 284.43 0.2296 78.03 0.0045 55.15 0.0028

240.00 0.1079 27.80 0.0016

108.30 0.0083

(a) (b)

(c) (d)

Fig. 11 Visual curve completion for an artificially occluded model.
(a) The Apple logo. (b) The artificially occluded Apple logo. Red
edges are constrained edges; green line segments indicate tangent
vectors at the end points. (c) CDT and CMHC (red). (d) Four
visually completed curves (red).

Figure 10 is a further example of modal
completion. Figure 10(a) shows a dumb bell model.
Fig. 10(b) illustrates the CDT of the end points of
the boundary segments and the CMHC (red), by
which the end points are paired. Between each pair
of end points, a piece of visual curve is constructed
and represented by a Bézier curve. All of the
visually completed curves and the existing boundary
segments constitute the whole boundary of a dumb
bell (see Fig. 10(c)).

Figure 11 is an example of amodal completion of an

artificially occluded shape. The original Apple logo
is illustrated in Fig. 11(a); it is artifically occluded
in Fig. 11(b), where red edges are constrained edges
and the short green line segments indicate the
tangent vectors at the end points of the boundary
segments. After calculating the CDT and CMHC
(see Fig. 11(c)), the end points of the boundary
segments can be paired. Finally, four visual curves
(red) (Fig. 11(d)) are constructed between the four
pairs of end points.

The final example in Fig. 12 shows naturally
occluded amodal completion. Figure 12(a), shows
the CDT and CMHC. In Fig. 12(b), three visual
curves are constructed, with β = 0.0282, β = 0.0080,
and β = 0.0028. It can be seen that they agree with
the shape of the existing boundary segments.

The lengths L and the corresponding β(L)
employed in the visual curve completion examples
are listed in Table 1. For Fig. 6(b), only the data for
the curve in purple are listed; for Fig. 7(a), only the
data for the curve in black are listed. For Fig. 7(b),
the data for the left curve and right curve are listed.
For the three visually completed curves in Fig. 9(c),
the data are arranged in the order: left curve, right
curve, top curve. For the curves in Figs. 10(c)
and 11(d), the data are listed from the top left curve,
counter-clockwise. Finally, for the three curves in
Fig. 12(b), the data are listed from the rightmost
curve, counter-clockwise.

We next compare our Bézier curve-based model
with the Euler spiral completion method in
Ref. [13] and the tangent bundle-based model
in Ref. [4]. Figure 13(a) illustrates the visual
curves generated by the Euler spiral completion
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(a) (b)

Fig. 12 Visual curve completion for a naturally occluded model. (a) CDT and CMHC (shown in red). (b) Three visually completed curves
with β = 0.0282, 0.0080, 0.0028, respectively (starting with the rightmost curve in counter-clockwise direction).

(a) (b)

Fig. 13 Visual curves generated by (a) the Euler spiral completion method and (b) the tangent bundle-based model. Comparison with
Fig. 12(b) shows that the visual curves produced by our Bézier curve-based model are more faithful to the real boundaries than those produced
by Euler spiral completion and the tangent bundle-based model, particularly the visual curve in the blue circle.

method, using the code1 downloaded from
http://www.lems.brown.edu/vision/researchAreas
/EulerSpiral/. We also implemented the tangent
bundle-based model and performed several
experiments with different parameters. The best
result generated is demonstrated in Fig. 13(b), using
k0 = 14.9511, l = 1.11621, φ = −4.03944, and
~ = 1.0. Comparing the visual curves generated
by our Bézier curve-based model (Fig. 12(b)), and
those produced by the Euler spiral completion
method (Fig. 13(a)) and the tangent bundle-based
model (Fig. 13(b)), we can see that our visual curves
are more faithful to the real boundaries than those
in Fig. 13, especially the visual curve in the blue
circles in Fig. 13.

The above examples demonstrate the capability

1 There is a small bug in the downloaded version (downloaded in
September 2013): when drawing the Euler spiral with Eq. (6) in
Ref. [13], the function sign(γ) is replaced by sin(γ).

of the systematic computational model presented
in this paper. In all examples, the topological
structure of the end points of the boundary segments
was correctly recovered by exploiting the adjacency
relation of the end points in the CMHC of the
graph constructed by CDT. Moreover, a reasonable
visual curve that was in agreement with the
existing boundary segments was retrieved with a
Bézier curve-based model by minimizing the energy
function in Eq. (4). It should be pointed out
that the weight of the edge in the CDT and the
function f (Eq. (3)) and the weight β in the
energy (Eq. (4)) of the Bézier curve-based model
could potentially be improved by incorporating new
perceptual, psychophysical, and neurophysiological
knowledge.

Finally, a user study was performed through
the website http://www.sojump.cn. In total 91
participants took part. Table 2 lists the results.
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Table 2 User study statistics for examples generated by the model developed in this paper (Unit: %)

Very Satisfied Satisfied General Dissatisfied
Fig. 6(b) 62.64 20.88 15.38 1.10
Fig. 7(a) 68.13 24.18 7.69 0.00
Fig. 7(b) 52.75 28.57 12.09 6.59
Fig. 8(a) 59.34 16.48 18.68 5.49
Fig. 9(c) 69.23 20.88 8.79 1.10
Fig. 10(c) 59.34 17.58 20.88 2.20
Fig. 11(d) 71.43 20.88 6.59 1.10
Fig. 12(b) 59.34 29.67 9.89 1.10
Fig. 13(a) 28.57 41.76 23.08 6.59
Fig. 13(b) 27.47 19.78 28.57 24.18

* There are total 91 participants in the user study.

We can see that over 75% participants felt Very
Satisfied or Satisfied with the examples presented
in Figs. 6(b)–12(b). In comparison, while 89%
participants felt Very Satisfied or Satisfied with
the visual curve completion example in Fig. 12(b)
generated by the computational model developed in
this paper, only 70% felt Very Satisfied or Satisfied
with the visual curve completion result in Fig. 13(a)
produced by Euler spiral completion [13], and 47%
were Very Satisfied or Satisfied with the visual curve
in Fig. 13(b) generated by the tangent bundle-based
model [4].

5 Conclusions

This paper has proposed systematic methods to
solve the grouping and curve generation problems
in visual curve completion. Firstly, to solve the
grouping problem, a CDT is constructed by taking
the dominant points as vertices, and the CMHC
is sought which traverses every vertex only once.
Then, adjacent inducers in the CMHC are paired to
generate a visual curve between them. This solves
the grouping problem in a global manner. Secondly,
we presented a Bézier curve-based model to produce
the completed visual curve. Not only is a closed-
form representation of the visual curve obtained, but
also the Bézier curve-based model has the potential
to be improved by integrating further perceptual,
psychophysical, and neurophysiological knowledge.
As a result, the shapes of the generated visual curves
are faithful to the boundaries of the occluded or
illusory object.
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