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a b s t r a c t

Data interpolation is a fundamental data processing tool in scientific studies and engineering

applications. However, when interpolating data points on an equidistant grid using polynomi-

als, the so-called Runge phenomenon may occur, making polynomial interpolation unreliable.

Although there are some methods proposed to defeat the Runge phenomenon, it is still an

open problem which parameter sequence is the globally optimal for overcoming the Runge

phenomenon. In this paper, we develop an immunity genetic algorithm based method to

solve this problem. Specifically, we first model the Runge-phenomenon-defeating problem

as an optimization in which the objective function is the energy of the parametric curve.

An immunity genetic algorithm is then devised to determine the best IGA parameter se-

quence, which minimizes the objective function. The resulting parametric curve overcomes

the Runge phenomenon. By performing the proposed immunity genetic searching algorithm

starting with some groups of randomly generated parameter sequences, the resulted param-

eter sequences closely oscillate around the Chebyshev parameter sequence. Therefore, the

Chebyshev parameter sequence is most likely the globally optimal sequence conquering the

Runge phenomenon.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Data interpolation is a fundamental tool in scientific studies and engineering applications. However, polynomial interpolation

on equidistant grids is unreliable because of the famous Runge phenomenon, which was discovered independently by Carl Runge,

C. Méray, and Emilie Borel more than a century ago [1–5]. Specifically, given an analytical function f(x) = 1/(1 + 25x2), x � [−1,

1], we sample some points at the following equidistant nodes:

xi,N = −1 + 2i/N, i = 0, 1, . . . , N, N = 1, 2, . . . , (1)

and interpolate these sampling points with the Lagrange interpolation polynomial fN(x), i.e.,

fN(x) =
N∑

i=0

f (xi,N)Li(x), (2)
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Fig. 1. Runge phenomenon generated by Lagrange interpolation at N = 7 and N = 11 equidistant sampling points, respectively. In this figure, the blue curve

is the function f(x) = 1/(1 + 25x2), x � [−1, 1], the purple curve is the Lagrange interpolation polynomial fN(x) (2) for N = 7, and the red curve is the Lagrange

interpolation polynomial fN(x) (2) for N = 11).
where,

Li(x) =
∏

j �=i(x − xj,N)∏
j �=i(xi,N − xj,N)

.

The Runge phenomenon means that fN(x) will diverge near the endpoints x = ±1 when N → �. Fig. 1 illustrates the Runge

phenomenon for the Lagrange interpolation polynomial fN(x) (2), where N = 7 and N = 11, respectively.

Currently, there are a number of methods for defeating the Runge phenomenon (refer to Section 2). Nearly all of them deal with

a polynomial function interpolator (2). To the best of our knowledge, no work has considered defeating the Runge phenomenon

using a parametric curve interpolator. In fact, after sampling some points equidistantly,

Pi = (xi,N, f (xi,N)) =
(

xi,N, 1/
(

1 + 25x2
i,N

))
, i = 0, 1, . . . , N, N = 1, 2, . . . ,

and assigning a parameter ti to each of these points, where −1 = t0 < t1 < ��� < tN = 1, they can be interpolated by a parametric

curve P(t), i.e.,

P(t) =
N∑

i=0

PiLi(t), t ∈ [−1, 1],

where Li(t) is the Lagrange basis function,

Li(t) =
∏

j �=i(t − tj,N)∏
j �=i(ti,N − tj,N)

, i = 0, 1, . . . , N. (3)

The parametric curve P(t) is just the interpolator of the sampling points Pi, i.e., P(ti) = Pi, i = 0, 1, . . . , N.

As stated in Section 2, the existing methods for defeating the Runge phenomenon usually design or calculate a sequence

of suitable sampling points so that the Runge phenomenon disappears for the polynomial interpolating these sampling points.

However, they cannot answer the following question: Which is the globally optimal parameter sequence for defeating the Runge

phenomenon?

In this paper, we endeavor to find the optimal parameters that make the shape of the parametric interpolation curve as

desirable as possible, thus defeating the Runge phenomenon in interpolating equidistant sampling points. Specifically, we employ

an energy (refer to Section 3) to measure the quality of the shape of the interpolation curve. Thus, searching for optimal parameters

to make the interpolation curve as desirable as possible is equivalent to minimizing the energy of the curve. Because the energy

of the interpolation curve is highly non-linear, traditional optimization methods are either inefficient or invalid. Therefore, we

develop an immunity genetic algorithm (IGA)-based approach to solve this highly non-linear optimization problem. Moreover,

by investigating dozens of groups of optimal parameters, we find the interesting result that they oscillate closely around the

Chebyshev parameters.

The structure of this paper is as follows. In Section 2, we survey the related work on defeating the Runge phenomenon, and

genetic algorithm. After introducing the parametric curve interpolator and fitness function in Section 3, the IGA-based optimal

parameter search algorithm is developed in Section 4. Moreover, some best IGA parameter sequences are presented and discussed

in Section 5. Finally, this paper is concluded in Section 6.

2. Related work

In this section, we will briefly review some methods of defeating the Runge phenomenon and related work on genetic

algorithms.
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Methods for defeating the Runge phenomenon: As stated above, some techniques for defeating the Runge phenomenon

have been presented. The regularization method defeats the Runge phenomenon by minimizing a cost function, which is the

sum of a residual item and a smoothness item [6,7]. Because the Runge phenomenon never occurs when the interpolation points

are sampled according to Chebyshev nodes, the mock-Chebyshev method re-samples the equidistant interpolation points to

a subset, which approximates the distribution of the Chebyshev grid [8,9]. The three-interval method proposed by Boyd is an

efficient approach to conquering the Runge phenomenon. This technique employs one method on the interval [−1 + ε, 1 − ε],

and a different method on [−1, −1 + ε] and [1 − ε, 1] [10,11]. In addition, the least-squares fitting method can also weaken the

Runge effect by fitting n samples with a polynomial of degree d (d � n −1) [8,12].

There are many other methods of defeating the Runge phenomenon, including those based on radial basis functions [13,14]

and methods that overcome the Gibbs phenomenon [15,16]. For more details on Runge phenomenon-defeating methods, please

refer to [7,17,18].

However, these methods aforementioned focus on developing sampling rules for sampling suitable points so that the Runge

phenomenon is defeated in polynomial interpolation. In this paper, we study the problem on defeating the Runge phenomenon in

interpolating the equidistant sampling points using parametric curves, and devise an IGA-based algorithm to search the globally

optimal parameter sequence.

Genetic algorithm: Proposed by John Holland [19], genetic algorithms (GAs) have been widely employed in machine learn-

ing, artificial intelligence, and adaptive control [20,21]. In particular, GAs have been successfully applied to highly non-linear

optimization problems [21–23]. Unlike traditional optimization methods, which always handle single points in the search space,

GAs maintain a collection of solutions, and perform a multidirectional search. The collection of solutions is a population of

individuals, each of which is represented by a chromosome. The population of individuals evolves via selection mechanisms. The

fittest individuals are selected to reproduce, and the weaker individuals are eliminated. In each generation, new individuals are

generated from one or two parents by mutation and crossover. This evolution process terminates when the best solution has

been found.

An IGA [24] is an improved version of the classical GA. Based on the biological theory of immunity, the IGA constructs an

immune operator by vaccination and immune selection, thus greatly improving the search ability and convergence speed.

GA and IGA have been extensively employed in nonlinear optimization. In [25], a hybrid approach combining two heuristic

optimization techniques, particle swarm optimization and GA, is introduced to solve nonlinear optimization problem. In [26],

GAs are employed in settling large-scale nonlinear optimization problems encountered in earth sciences. Moreover, in data fitting

with B-spline curve or surface, GAs are utilized to solve the nonlinear optimization problems for selecting the desirable B-spline

knot sequence [27,28]. Moreover, in Ref. [29], the problem of minimizing the fitting error by choosing suitable knot sequences is

modeled as a nonlinear optimization problem, and figured out using IGA.

In this paper, we devise an IGA-based optimal parameter search algorithm for defeating the Runge phenomenon. To our

knowledge, this approach has never been used to search for optimal parameters to defeat the Runge phenomenon.

3. Parametric curve interpolator and the fitness function

As stated above, if we interpolate the points sampled from the analytical function, f(x) = 1/(1 + 25x2), x � [−1, 1], at

the equidistant nodes (1), using the Lagrange polynomial interpolator (2), the Runge phenomenon will appear when N → �
(Fig. 1), due to the divergence of the Lagrangian basis functions Li(x) (2) when N → �. Nearly all methods of defeating the Runge

phenomenon strive to avoid it using the polynomial interpolator (2) to interpolate the equidistant sampling points.

However, when we sample the function f(x) = 1/(1 + 25x2), x � [−1, 1] on the Chebyshev grid

xc
i = cos(π i/N), i = 0, 1, . . . , N, N = 1, 2, . . . , (4)

and apply the Lagrange interpolation polynomial f c
N(x) defined on (4), i.e.,

f c
N(x) =

N∑
i=0

f (xi,N)Lc
i (x), where, Lc

i (x) =
∏

j �=i

(
x − xc

j,N

)
∏

j �=i

(
xc

i,N
− xc

j,N

) , (5)

the Runge phenomenon does not occur.

Clearly, the Runge phenomenon is caused by the divergence of the Lagrangian basis functions, which are determined by the

distribution of the nodes on which they are defined. Therefore, the key to defeating the Runge phenomenon is to make the

Lagrangian basis functions non-divergent.

In this paper, a parametric curve is employed to interpolate the sampling points. Suppose the sampling points for the function

f(x) = 1/(1 + 25x2), x � [−1, 1] at equidistant nodes are

Pi = (xi,N, f (xi,N)) = (−1 + 2i/N, f (−1 + 2i/N)),
i = 0, 1, . . . , N, N = 1, 2, . . . .

(6)

Each sampling point Pi can be assigned a parameter ti, i = 0, 1, . . . , N. The parameter for each sampling point can be chosen

arbitrarily, with the prerequisite that the parameter sequence

T = {t0, t1, . . . , tN} (7)
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is strictly increasing, i.e., t0 < t1 < ��� < tN. In our implementation, we fix t0 = −1 and tN = 1. A parametric Lagrange interpolation

curve is then constructed:

P(t) =
N∑

i=0

PiLi(t), t ∈ [−1, 1], where, Li(t) =
∏

j �=i(t − tj)∏
j �=i(ti − tj)

. (8)

The parametric curve P(t) (8) interpolates the sampling points, i.e., P(ti) = Pi, i = 0, 1, . . . , N.

Note that the Lagrange basis functions (8) are determined by the parameter sequence (7). If appropriate parameters are

selected, the Lagrange basis functions are non-divergent, and then the Runge phenomenon is defeated. It is well known that if

the Chebyshev grid (4) is taken to give the parameters, i.e., ti = xc
i
, i = 0, 1, . . . , N (named the Chebyshev parameter sequence),

the Runge phenomenon is defeated even if the sampling points (6) are at the equidistant nodes (1). In this paper, we study the

Runge phenomenon-defeating problem from a new perspective, i.e., we seek an optimal parameter sequence that satisfies the

following conditions:

(1) The distance between the parametric curve P(t) (8) and the curve of the analytical function f(x) = 1/(1 + 25x2), x � [−1, 1]

is as small as possible;

(2) P(t) (8) is as smooth as possible.

Clearly, if the curve P(t) (8) meets the conditions stated above, the Runge phenomenon is defeated.

Specifically, the first condition guarantees that P(t) (8) is not divergent when N → �. This is ensured by the minimization of

Eerror(T) =
∫ tN

t0

‖P(t)− I(t)‖2 dt, (9)

where T is the unknown parameter sequence, and I(t) is the polyline generated by connecting the sampling points, defined as

I(t) =
(

1 − t − ti

ti+1 − ti

)
Pi + t − ti

ti+1 − ti

Pi+1, t ∈ [ti, ti+1], i = 0, 1, . . . , N − 1. (10)

The second condition is satisfied by minimizing the following function:

Esmooth(T) =
∫ tN

t0

∥∥P′′(t)
∥∥2

dt. (11)

Consequently, to satisfy these conditions simultaneously, we must minimize the following energy function E with variables

t1, t2, . . . , tN −1:

E(T) = E(t1, t2, . . . , tN−1) = αEerror(T)+ βEsmooth(T), (12)

where α > 0 and β > 0 are weights for balancing the two items Eerror and Esmooth. On one hand, if the weight α is fixed, the

larger the weight β is, the smoother the curve P(t) (8) is. On the other hand, with the fixed weight β , the larger the weight α
is, the smaller the distance between P(t) (8) and f(x) = 1/(1 + 25x2), x � [−1, 1] is. However, because the object function E (12)

is highly non-linear, traditional optimization methods are inefficient or invalid. Therefore, we develop an IGA-based algorithm

to search for optimal parameters by minimizing E(T) = E(t1, t2, . . . , tN −1) (12), which is taken as the fitness function in the IGA.

Interestingly, lots of experimental data show that the optimal parameter sequence T fluctuates closely around the Chebyshev

parameter sequence.

4. Optimal parameter search algorithm based on IGA

Although IGA and GA have been extensively employed in solving nonlinear optimization, the applications of IGA and GA are

problem-oriented. Therefore, the algorithms of IGA and GA are different for different problems. For example, in Ref. [29], IGA

is utilized to solve the nonlinear optimization problem, which minimizes the B-spline surface fitting error by selecting suitable

bidirectional B-spline knot sequences. In the IGA method developed in Ref. [29], the fitness function is the fitting error of the

B-spline surface, and the initial population consists of the bidirectional knot sequences that are generated by randomizing an

initial bidirectional knot sequence produced by the accumulated chord length method. Consequently, the crossover, mutation,

vaccination, and the probability-regulating formula (15) are all different from those in the IGA algorithm developed in this paper.

To our knowledge, it is the first time for IGA to be employed in defeating the Runge phenomenon.

The IGA-based optimal parameter search algorithm is outlined in Algorithm 1, and will be explained step by step in this

section.

Step 1: Generation of the initial random population:

The first step of the IGA is to generate the initial random population. Each individual of the population is a parameter sequence

T (7). As the Runge phenomenon occurs near the end points, the parametric domain [−1, 1] is divided into three subintervals,

i.e.,

[−1,−tm], (−tm, tm), and [tm, 1], where 0 < tm < 1. (13)
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Algorithm 1: Outline of the optimal parameter search algorithm based on IGA

1 Generate the initial random population;

2 while The termination condition is not satisfied do

3 Calculate the fitness function for each individual;

4 Choose individuals with duplication restraining;

5 Perform crossover, mutation, and vaccination operations;

6 end

Fig. 2. Structure of an individual.
In each of the two end subintervals [−1, −tm] and [tm, 1], we assign Ne initial random parameters; in the middle subinterval (−tm,

tm), N − 2Ne + 1 initial random parameters are generated. Therefore, each individual T consists of three segments, i.e.,

T I = {t0, t1, . . . , tNe−1},
T II = {tNe

, tNe+1, . . . , tN−Ne
},

T III = {tN−Ne+1, tN−Ne+2, . . . , tN},
(14)

located in the respective subintervals (Fig. 2). The total number of parameters in each individual T is N + 1. In our implementation,

we employ the Mersenne Twister algorithm [30] to generate pseudo-random numbers.

Step 2: Calculation of the fitness function:

The fitness function E(t1, t2, . . . , tn −1) (12) includes two items, Eerror (9) and Esmooth (11). The smaller the fitness value, the

better the individual. Because the curve I(t) in the integrand of Eerror (9) is defined piecewise, we calculate Eerror (9) piece by

piece, i.e.,

Eerror(T) =
∫ tN

t0

‖P(t)− I(t)‖2 dt =
n−1∑
i=0

∫ ti+1

ti

‖P(t)− I(t)‖2 dt.

In our implementation, the integrals in Eerror (9) and Esmooth (11) are calculated by the Gauss–Lobatto method [31].

The weights α and β in the fitness function E(t1, t2, . . . , tn −1) (12) are used to balance the two items Eerror and Esmooth. When

interpolating points sampled from the function f(x) = 1/(1 + 25x2), x � [−1, 1], desirable results are generated by taking α =
1000 and β = 1 in a set of experiments with different combinations of α and β .

[Remark:] If several adjacent parameters in an individual are very close, the calculation of the fitness function (12) may lead

to an arithmetic overflow or NaN fault. Once such an individual is found in the IGA iterations, it is immediately re-initialized.

Step 3: Individual selection with duplication restraining:

In our implementation, we employ roulette-wheel selection [32] to choose individuals. Suppose ei is the fitness value (9) of the

ith individual. To perform the roulette-wheel selection, let

fi = emax − ei, for each individual in the current generation,

where emax = max i{ei}. The probability gi of the ith individual being selected is then defined as

gi = fi∑
i fi

.

Moreover, the concentration of an individual is the number of individuals in a similar set, in which the distance between any

two individuals T (i) and T (j) satisfies

d(T(i)
, T(j)) =

√√√√ N∑
l=0

(
t(i)

l
− t

(j)
l

)2

< εs.

The threshold εs should be small enough to ensure that an individual is not contained in two or more similar sets. In our

implementation, εs is taken as 10−6. If there are k individuals in a similar set, the concentration of each individual in the similar

set is taken as k. We denote the concentration of the ith individual as ki, and the average concentration as ka.

It is well-known that high concentrations of some individuals may lead to premature convergence of the algorithm. To

overcome this problem and improve the performance of the algorithm, the duplication of individuals with high concentrations
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Fig. 3. Two crossover operators. (a) Weighted average operator: If the three segments of one individual are all better than those of the other individual, the new

individual is generated as their weighted average. (b) Extraction operator: If not all of the segments of one individual are better than those of the other individual,

we extract the better segments from the two individuals to form the new individual.

Table 1

Parameters employed in the IGA-based searching algorithm.

Parameters N = 20 N = 30

Population size 200 200

The maximum generation 300 500

Selection rate 0.6 0.6

Cross rate 0.3 0.3

Mutation rate 0.3 0.3

tm (13) 1
3

1
3

Ne (14) 8 12

α, β (12) 1000, 1 1000, 1

αr (15) 0.05 0.05

εt 50 50
should be restrained to suppress the number of identical or similar individuals. To this end, the probability gi is further regulated

as

pi =
{

αrka

ki
gi, ki > ka,

gi, ki ≤ ka,
(15)

where αr is a weight (refer to Table 1).

Furthermore, supposing the population size in one generation is M, 	 M
100 
 individuals with small fitness values are selected

to be stored in the immunological memory.

Step 4: Crossover, mutation, and vaccination:

Because each individual T is an ascending parameter sequence, the basic requirement for the crossover and mutation operators

is that the sequence generated by them is also ascending.

Moreover, to measure the fitness of each segment of the individual T, we define the fitness functions EI, EII, and EIII for the

segments TI, TII, and TIII as follows:

EI(T I) = α

∫ tNe−1

t0

‖P(t)− I(t)‖2 dt + β

∫ tNe−1

t0

∥∥P′′(t)
∥∥2

dt, (16)

EII(T II) = α

∫ tN−Ne

tNe

‖P(t)− I(t)‖2 dt + β

∫ tN−Ne

tNe

∥∥P′′(t)
∥∥2

dt, (17)

EIII(T III) = α

∫ tN

tN−Ne+1

‖P(t)− I(t)‖2 dt + β

∫ tN

tN−Ne+1

∥∥P′′(t)
∥∥2

dt. (18)

Crossover: First, the individuals chosen for crossover are randomly distributed into two arrays with the same size. Then, the

two individuals in the two arrays with the same index are paired for the crossover operation. Suppose the individuals (T(1), T(2))

are paired for the crossover operation. We develop two crossover operators. The first is the weighted average operator (Fig. 3(a)),

and the second is the extraction operator (Fig. 3(b)). If the three segments of one individual, for example T(1), are all better than
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Fig. 4. Chebyshev parameter sequence and 30 best IGA parameter sequences with N = 20 (a) and N = 30 (b), respectively. The parameter sequences are illustrated

as the points on the vertical line segments, and parameters with the same index are connected as a polyline.
those of the other individual T(2), the new individual Tavg is generated as the weighted average of them (Fig. 3), i.e.,

Tavg =
(

1 − E(T(1))

E(T(1))+ E(T(2))

)
T(1) + E(T(1))

E(T(1))+ E(T(2))
T(2)

.

On the other hand, if not all of the segments of one individual are better than those of the other, we extract the better segments

from the two individuals to form the new individual Text. For example, segment T(1)
I of T(1) is better than segment T(2)

I of T(2), but

segments T(1)
II and T(1)

III of T(1) are worse than segments T(2)
II and T(2)

III of T(2). Thus, we extract segment T(1)
I of T(1), and segments

T(2)
II and T(2)

III of T(2), to constitute the new individual Text (Fig. 3(b)).

Mutation: In this paper, we develop two mutation operators. The number of individuals selected for each mutation operation

is one second of the total number of individuals for mutation.
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Fig. 5. Error distribution curves of the 30 best IGA parameter sequences with N = 20 (a) and N = 30 (b), respectively. The error distribution curve of a parameter

sequence is a polyline. In this figure, the points on the x-axis indicate the indices of the parameters, and the y-axis denotes the error between each parameter of

an best IGA parameter sequence and the parameter of the Chebyshev parameter sequence that has the same index.
The first mutation operator increases the diversity of the population. We randomly choose some parameters ti from a selected

individual T, avoiding the two end points t0 and tN, and perform the linear combination

tnew
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − λ)ti−1 + λ(−tm), i = Ne − 1,

(1 − λ)(−tm) + λti+1, i = Ne,

(1 − λ)ti−1 + λtm, i = N − Ne,

(1 − λ)tm + λti+1, i = N − Ne + 1,

(1 − λ)ti−1 + λti+1 otherwise,

where 0 < λ < 1 is a random number.

The second mutation operator is intended to interpolate the symmetric data point set, e.g., the point set {Pi, i = 0, 1, . . . ,

N} (6) considered in this paper. Specifically, for a selected individual T, we first check the fitness of segments TI and TIII, using

Eqs. (16) and (18), respectively. If the fitness of segment TI is less than that of segment TIII, segment TIII is replaced by the mirror

transformation of TI, i.e.,

tnew
N−i = −ti, i = 0, 1, . . . , Ne − 1.

However, if the fitness of segment TIII is less than that of TI, segment TI is replaced by the mirror transformation of TIII, i.e.,

tnew
i = −tN−i, i = 0, 1, . . . , Ne − 1.

Vaccination:

Finally, a vaccination operation is performed on the resulting individuals to generate the next iteration of the population.

Vaccination means that individuals with higher fitness values are replaced by some individuals in the immunological memory.

In this way, the next iteration of the population is generated.

Step 5: Termination condition:

If the maximum generation is reached, or the smallest fitness value of the current generation is less than a predefined

threshold εt, the algorithm terminates. Otherwise, we return to Step 2.

5. Results and discussion

The IGA-based optimal parameter search algorithm described above has been tested using different numbers of sampling

points, i.e., different values of N in Eq. (6). In this section, we present experimental data with N = 20 and N = 30.
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Table 2

The six best IGA parameter sequences and Chebyshev parameter sequence when N = 20.

Sequence Chebyshev T1 T2 T3 T4 T5 T6

−1.0000 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000

−0.9777 −0.9612 −0.9614 −0.9632 −0.9662 −0.9652 −0.9587

−0.9335 −0.9201 −0.9227 −0.9219 −0.9280 −0.9272 −0.9134

−0.8685 −0.8766 −0.8822 −0.8703 −0.8814 −0.8843 −0.8597

−0.7840 −0.8273 −0.8350 −0.7979 −0.8206 −0.8341 −0.8004

−0.6821 −0.7621 −0.7682 −0.6902 −0.7375 −0.7679 −0.7359

−0.5649 −0.6524 −0.6443 −0.5631 −0.6203 −0.6556 −0.6516

−0.4351 −0.4803 −0.4797 −0.4427 −0.4722 −0.4751 −0.5004

−0.2956 −0.3294 −0.3233 −0.3174 −0.3280 −0.3128 −0.3253

−0.1495 −0.1819 −0.1712 −0.1684 −0.1816 −0.1582 −0.1883

0.0000 −0.0069 −0.0031 0.0095 −0.0141 0.0144 −0.0488

0.1495 0.1685 0.1715 0.1778 0.1666 0.1826 0.1304

0.2956 0.3238 0.3311 0.3188 0.3231 0.3273 0.3057

0.4351 0.4803 0.4853 0.4424 0.4722 0.4769 0.5020

0.5649 0.6524 0.6448 0.5646 0.6203 0.6556 0.6491

0.6821 0.7621 0.7684 0.6900 0.7381 0.7677 0.7354

0.7840 0.8273 0.8346 0.7980 0.8203 0.8341 0.8004

0.8685 0.8766 0.8820 0.8703 0.8810 0.8844 0.8597

0.9335 0.9201 0.9229 0.9218 0.9280 0.9272 0.9136

0.9777 0.9612 0.9616 0.9632 0.9662 0.9652 0.9590

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Eerror 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005

Esmooth 1069 91.96 98.47 99.24 100.4 103.3 103.9

Table 3

The six best IGA parameter sequences and Chebyshev parameter sequence when N = 30.

Sequence Chebyshev T1 T2 T3 T4 T5 T6

−1.0000 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000

−0.9897 −0.9802 −0.9822 −0.9822 −0.9826 −0.9849 −0.9805

−0.9693 −0.9581 −0.9612 −0.9593 −0.9634 −0.9673 −0.9573

−0.9390 −0.9319 −0.9353 −0.9353 −0.9404 −0.9466 −0.9311

−0.8990 −0.8997 −0.9068 −0.9112 −0.9075 −0.9215 −0.8947

−0.8497 −0.8636 −0.8742 −0.8835 −0.8544 −0.8872 −0.8592

−0.7918 −0.8236 −0.8238 −0.8448 −0.8059 −0.8330 −0.8273

−0.7257 −0.7580 −0.7645 −0.7703 −0.7619 −0.7567 −0.7794

−0.6522 −0.6631 −0.7164 −0.6821 −0.7067 −0.6865 −0.6930

−0.5720 −0.6007 −0.6558 −0.6034 −0.6282 −0.6163 −0.6392

−0.4859 −0.5298 −0.5506 −0.4956 −0.5268 −0.5367 −0.5750

−0.3949 −0.4196 −0.4257 −0.4083 −0.4079 −0.4151 −0.4694

−0.2997 −0.3112 −0.3180 −0.3146 −0.2891 −0.2893 −0.3182

−0.2016 −0.2164 −0.2195 −0.2110 −0.1828 −0.2016 −0.2026

−0.1013 −0.1181 −0.1160 −0.1082 −0.0884 −0.1193 −0.0971

0.0000 −0.0174 −0.0189 0.0043 0.0020 −0.0359 0.0100

0.1013 0.08731 0.0869 0.1201 0.09333 0.06547 0.1126

0.2016 0.1865 0.1944 0.2241 0.1888 0.1700 0.2206

0.2997 0.2902 0.3062 0.3197 0.2977 0.2822 0.3231

0.3949 0.4196 0.4283 0.4083 0.4079 0.4187 0.4694

0.4859 0.5298 0.5504 0.4943 0.5268 0.5307 0.5750

0.5720 0.6007 0.6558 0.5934 0.6282 0.6163 0.6392

0.6522 0.6631 0.7163 0.6821 0.7067 0.6872 0.6930

0.7257 0.7580 0.7645 0.7703 0.7619 0.7641 0.7794

0.7918 0.8236 0.8238 0.8448 0.8059 0.8330 0.8273

0.8497 0.8636 0.8742 0.8835 0.8544 0.8874 0.8592

0.8990 0.8997 0.9068 0.9112 0.9075 0.9216 0.8947

0.9390 0.9319 0.9353 0.9353 0.9404 0.9466 0.9311

0.9693 0.9581 0.9612 0.9593 0.9634 0.9672 0.9573

0.9897 0.9802 0.9822 0.9822 0.9826 0.9847 0.9805

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Eerror 6.991e − 05 1.063e − 04 1.369e − 04 1.212e − 04 7.574e − 005 1.158e − 04 1.528e − 04

Esmooth 4619 181.8 197.9 243.0 261.4 281.7 284.8
In the case of N = 20, the 30 best IGA parameter sequences are generated by running the IGA-based search algorithm 30 times.

Each best IGA parameter sequence T is produced after 300 evolutions with a population size of 200. The three subintervals are

taken as [−1,− 1
3 ], (− 1

3 , 1
3 ), and [ 1

3 , 1], i.e., tm = 1
3 (13). The numbers of parameters in the three subsegments TI, TII, and TIII are

8, 5, 8, respectively, i.e., Ne = 8 (14). The parameters employed in the IGA-based search algorithm are listed in Table 1.
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Fig. 6. The parametric interpolation curves with the best IGA parameter sequence T30 (a) and Chebyshev parameter sequence when N = 20, and their curvature

plots (c,d). In this figure, the parametric interpolation curve is in red, and the curve of f(x) = 1/(1 + 25x2), x � [−1, 1] is in blue. (Note that the interpolation curve

(in red) totally overlaps the curve of f(x) (in blue).) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article).
Moreover, the Chebyshev parameter sequence and the 30 best IGA parameter sequences T1, T2, ���, T30 with N = 20 are

illustrated in Fig. 4(a). In this figure, the Chebyshev parameter sequence is represented by the points on the leftmost vertical line

segment, and the best IGA parameter sequence Ti is represented as the points on the vertical line segment, labeled Ti. The 30 best

IGA parameter sequences Ti, i = 1, 2, . . . , 30 are arranged in ascending order of their energy E(Ti) (12). Furthermore, parameters

with the same index are connected as a polyline, resulting in 21-piece polylines.

It can be seen from these 21-piece polylines that the best IGA parameter sequences closely oscillate around the Chebyshev

parameter sequence. This conclusion is more clearly validated by the error distribution of the deviation between the best IGA

parameter sequence Ti and the Chebyshev parameter sequence, as shown in Fig. 5(a). If the Chebyshev parameter sequence is

Tc = {tc
0, tc

1, . . . , tc
N}, and the best IGA parameter sequence Ti is T i = {ti

0, ti
1, . . . , ti

N}, the error distribution of Ti is defined as

errori =
{

ti
0 − tc

0, ti
1 − tc

1, . . . , ti
N − tc

N

}
. (19)

In Fig. 5(a), the points on the x-axis indicate the indices of the parameters in the parameter sequence, and the y-axis is the error

given by Eq. (19). Thus, the error distributions errori are illustrated as polylines in Fig. 5(a). These again indicate that the best IGA

parameter sequences Ti, i = 1, 2, . . . , 20 oscillate around the Chebyshev parameter sequence, and the errors are not more than

0.10. The error distribution curves presented in Fig. 5(a) exhibit a clear symmetrical structure, which is caused by the second

mutation operator.

Furthermore, in the case of N = 30, the IGA-based search algorithm is run 30 times to generate 30 best IGA parameter

sequences. Each best IGA parameter sequence is produced after 500 evolutions with a population size of 200. In this case of

N = 30, tm = 1
3 (13), i.e., the interval [−1, 1] is subdivided into three subintervals, [−1,− 1

3 ], (− 1
3 , 1

3 ), [ 1
3 , 1], and the numbers of

parameters in the three subsegments TI, TII, and TIII are 12, 7, 12, respectively. In other words, Ne = 12 (14). The parameters

employed in the IGA-based search algorithm for the case N = 30 can be found in Table 1.

Similarly, the 30 best IGA parameter sequences with N = 30 and the corresponding Chebyshev parameter sequence are

illustrated in Fig. 4(b), and their error distribution curves are shown in Fig. 5(b). These again validate the conclusion that the

optimal parameter sequences oscillate around the Chebyshev parameter sequence. Therefore, the Chebyshev parameter sequence

is most likely the globally optimal parameter sequence for defeating the Runge phenomenon.
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Fig. 7. The parametric interpolation curves with the best IGA parameter sequence T30 (a) and Chebyshev parameter sequence (b) when N = 30, and their

curvature plots (c, d). In this figure, the parametric interpolation curve is in red, and the curve of f(x) = 1/(1 + 25x2), x � [−1, 1] is in blue. (Note that the

interpolation curve (in red) totally overlaps the curve of f(x) (in blue).) (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article).
The six best IGA parameter sequences, i.e., T1, T2, . . . , T6, and Chebyshev parameter sequence, with N = 20 and N = 30,

respectively, are listed in Tables 2 and 3.

To give an intuitive impression, we illustrate the parametric interpolation curves P(t) with best IGA parameter sequence T30

and Chebyshev parameter sequence, when N = 20 (in Fig. 6), and N = 30 (in Fig. 7), respectively. In Figs. 6 and 7(a) and (b)

are the parametric curves with optimal parameter sequence T30 and Chebyshev parameter sequence, respectively, and (c) and

(d) are the curvature plots of the parametric curves in (a) and (b). Curvature plot is a frequently-used tool in geometric design

and related fields to evaluate the smoothness of a parametric curve [33]. While the smoothness of the parametric curve with

the best IGA parameter sequence T30 (Fig. 6(c)) is better than that of the parameter curve with Chebyshev parameter sequence

(Fig. 6(d)) when N = 20, the smoothness of the curve with T30 (Fig. 7(c)) is worse than that of the curve with Chebyshev parameter

sequence (Fig. 7(d)) when N = 30.

Finally, it should be pointed out that an important factor influencing the parametric interpolation curve is the numbers of

parameters assigned to the three subsegments TI, TII, and TIII. For the Chebyshev parameter sequence, the three subsegments

have 8, 5, 8 parameters (Ne = 8) when N = 20, and 12, 7, 12 parameters (Ne = 12) when N = 30. The best IGA parameter sequences

obtained in this paper are determined for Ne = 8 and Ne = 12, same as Chebyshev parameter sequences. However, if we change

the numbers of parameters in the three subsegments a little, the best IGA parameter sequence generated by the IGA-based search

algorithm makes the shape of the parametric interpolation curve unsatisfactory. For example, in the case of N = 20, we change

the numbers of parameters in the three subsegments TI, TII, and TIII to 7,7,7 (Fig. 8(a)); in the case of N = 30, we change them to

11,9,11 (Fig. 8(b)). As illustrated in Fig. 8, the best IGA parameter sequences generated with so little changes make the shapes of

the parametric interpolation curves unsatisfactory near the two end points of TII.

5.1. Influence of the parameters used in IGA

To demonstrate the influence of the parameters used in IGA, we take the experiment with parameters listed in the second

column of Table 1 (i.e., the column beginning with N = 20) as a benchmark, and change the parameters one by one while the

other parameters are fixed. The data Eerror and Esmooth of the generated solution corresponding to each set of parameters are listed

in Tables A.4–A.12 in Appendix A. Specifically, for each set of parameters, we run the IGA 10 times, generating 10 solutions with
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Fig. 8. The shape of the parametric interpolation curve is made unsatisfactory if the numbers of the parameters in the three subsegments are different from

those of the Chebyshev parameter sequence.

Fig. 9. The result of the mock-Chebyshev method with Eerror = 0.0014 and Esmooth = 368.1010.
10 sets of Eerror and Esmooth. The data Eerror and Esmooth which are the closest to the averages of the 10 sets of Eerror and Esmooth are

listed in Tables A.4–A.12.

From the data listed in Tables A.4–A.12, we can see that the parameter with the most influence on IGA is the number of

parameters (N) (i.e., number of samples). Refer to Table A.4, when N changes from 20 to 40, Eerror varies from 4.7531 × 10−4 to

1.4223 × 1018, and Esmooth from 2.1732 × 102 to 1.2601 × 1023. Next, the parameter with the second most influence on IGA is Ne,

the number of parameters in the two end subintervals. Refer to Table A.9, when Ne varies from 5 to 9, Eerror alters from 94.339 to

5.0184 × 104, and Esmooth from 1.6438 × 106 to 1.1771 × 102. In addition, the other parameters have relatively small influences

on IGA. With them, Eerror is in the order of magnitude of 10−4, and Esmooth is in the order of magnitude of 102.

5.2. Comparison with existing methods

In general, the Runge phenomenon defeating methods can be categorized into the following classes [7]: regularization

methods [6], least-squares fitting methods [8], methods using non-polynomial basis [13,14] (such as radial basis functions, Fourier

extensions, etc.), methods mimicking the Chebyshev sampling [8] (such as mock-Chebyshev method), etc. The aforementioned

methods usually construct a definite solution that can defeat the Runge phenomenon. However, they cannot answer the question

which the best solution for defeating the Runge phenomenon is. For this purpose, the objective of the IGA-based method developed

in this paper is to search the best solution for defeating the Runge phenomenon.

Because the IGA-based method developed in this paper and the mock-Chebyshev method [8] both interpolate the sam-

ples using polynomials, we compared the IGA-based method with the mock-Chebyshev method. The mock-Chebyshev method

chooses a subset from equidistant samples where the samples in the subset approach the Chebyshev samples with the same

number as close as possible. And then, the polynomial interpolator to the samples in the subset can defeat the Runge phe-

nomenon. In our implementation, we equidistantly take 100 samples from the interval [−1, 1], and select 21 samples that are

closest to the the 21 Chebyshev samples. Fig. 9 illustrates the results of the mock-Chebyshev method with Eerror = 0.0014 and

Esmooth = 368.1010. As stated above, the solution of the mock-Chebyshev method can defeat the Runge phenomenon, but it

is not the best solution for defeating the Runge phenomenon. Compare with the result generated by the IGA-based method
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Table A.4

The influence of the number of parameters (N) (i.e., the number of samples).

#Parameters N = 20 N = 25 N = 30 N = 35 N = 40

Eerror 4.7531e−04 4.2432e−02 2.1303e+04 2.603e+09 1.4223e+18

Esmooth 2.1732e+02 3.136e+03 1.7744e+08 3.0125e+15 1.2601e+23

Table A.5

The influence of the population size (M).

Population size M = 150 M = 200 M = 250 M = 300 M = 350

Eerror 3.9040e−04 4.7531e−04 4.1485e−04 4.5459e−04 4.3165e−04

Esmooth 1.7099e+02 2.1732e+02 1.7401e+02 1.7870e+02 1.6215e+02

Table A.6

The influence of the maximum generation.

Max. generation 200 250 350 400 450

Eerror 4.7531e−04 3.8225e−04 3.9804e−04 3.8673e−04 4.2971e−04

Esmooth 2.1732e+02 2.3100e+02 1.7318e+02 1.4968e+02 1.5958e+02

Table A.7

The influence of the selection rate, cross rate and mutation rate.

Selection rate 0.2 0.3 0.4 0.6 0.8

Cross rate 0.1 0.15 0.2 0.3 0.4

Mutation rate 0.1 0.15 0.2 0.3 0.4

Eerror 6.1174e−04 4.6655e−04 4.1482e−04 4.7531e−04 4.2988e−04

Esmooth 3.1001e+02 2.7779e+02 2.1412e+02 2.1732e+02 1.4328e+02

Table A.8

The influence of tm (Eq. (13)).

tm 1/6 1/3 1/2 2/3 5/6

Eerror 4.7145e−04 4.7531e−04 3.9713e−04 4.1331e−04 3.9450e−04

Esmooth 3.0343e+02 2.1732e+02 2.2611e+02 1.6654e+02 2.1222e+02

Table A.9

The influence of Ne (Eq. (14)).

Ne 5 6 7 8 9

Eerror 9.4339e+01 7.6948e−02 1.6742e−03 4.7531e−04 5.0184e−04

Esmooth 1.6438e+06 2.1672e+03 5.9903e+02 2.1732e+02 1.1771e+02

Table A.10

The influence of (α, β) (Eq. (12)).

(α, β) (10,1) (100,1) (1000,1) (10000,1) (100000,1)

Eerror 4.8626e−04 5.7086e−04 4.7531e−04 4.8865e−04 4.9179e−04

Esmooth 2.5860e+02 2.8965e+02 2.1732e+02 2.8043e+02 2.7554e+02
(Fig. 6(a) and (c)), which interpolates 21 equidistant samples, with Eerror = 0.0008 and Esmooth = 152.6. Clearly, the solution

generated by the IGA-based method is better than that by the mock-Chebyshev method.

6. Conclusion

In this paper, we developed an IGA-based optimal parameter search algorithm for defeating the Runge phenomenon. Unlike

traditional methods, which attempt to defeat the Runge phenomenon using polynomial interpolation, we employed a parametric

interpolation curve. First, the Runge phenomenon was modeled as an optimization problem, with the objective function given

by the energy of the parametric curve. Because this objective function is highly non-linear, traditional optimization methods are

inefficient or invalid. Thus, we developed an IGA-based search algorithm to seek the globally optimal parameter sequence that

allows the parametric curve to defeat the Runge phenomenon. It is shown that the optimal parameter sequences oscillate closely
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Table A.11

The influence of αr (Eq. (15)).

αr 0.02 0.03 0.04 0.05 0.06

Eerror 4.0078e−04 3.8653e−04 4.2457e−04 4.7531e−04 6.5504e−04

Esmooth 1.5467e+02 1.8305e+02 1.7349e+02 2.1732e+02 1.9344e+02

Table A.12

The influence of the number of individuals in the immunological memory.

#Individuals 1 2 3 4 5

Eerror 4.6612e−04 4.7531e−04 4.0224e−04 3.9845e−04 4.6836e−04

Esmooth 1.7466e+02 2.1732e+02 1.8200e+02 1.3966e+02 1.9034e+02
around the Chebyshev parameter sequence. So the Chebyshev parameter sequence is most likely the globally optimal parameter

sequence.
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Appendix A. The influence of the parameters in IGA

In this appendix, we list the data Eerror and Esmooth of the solutions generated by changing the parameters employed in IGA

one by one in Tables A.4–A.10.
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