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The hexahedral mesh (hex mesh) is usually preferred to the tetrahedral mesh (tet mesh) in finite ele-
ment methods for numerical simulation. In finite element analysis, a valid hex mesh requires that the
scaled Jacobian value at each mesh vertex is larger than 0. However, the hex mesh produced by lots of
prevailing hex mesh generation methods cannot be guaranteed to be a valid hex mesh. In this paper, we
develop a constrained volume iterative fitting (CVIF) algorithm to fill a given triangular mesh model with
an all-hex volume mesh. Starting from an initial all-hex mesh model, which is generated by voxelizing
the given triangular mesh model, CVIF algorithm fits the boundary mesh of the initial all-hex mesh to
the given triangular mesh model by iteratively adjusting the boundary mesh vertices. In each iteration,
the movements of the boundary mesh vertices are diffused to the inner all-hex mesh vertices. After the
iteration stops, an all-hex volume mesh that fills the given triangular mesh model can be generated. In
the CVIF algorithm, the movement of each all-hex mesh vertex is constrained to ensure that the scaled
Jacobian value at each mesh vertex is larger than 0, etc. Therefore, the all-hex mesh generated by the CVIF
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algorithm is guaranteed to be a valid all-hex mesh.
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1. Introduction

In finite element methods for numerical simulation, the hex-
ahedral mesh (hex mesh) is usually preferred to the tetrahedral
mesh (tet mesh) owing to the reduced error and smaller num-
ber of elements [1,2]. However, generating a hex mesh with desir-
able qualities often requires significant geometric decomposition.
Therefore, hex mesh generation can be extremely difficult to per-
form and automate. As a result, it requires considerable user inter-
actions and may require days or even weeks in the case of complex
shapes [3].

Moreover, it is well known that a valid hex mesh in finite ele-
ment analysis should satisfy the requirement that, the scaled Jaco-
bian value at each mesh vertex is larger than 0 [4]. Unfortunately,
there is little work which can generate an all-hex mesh with the
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quality guarantee stated above. On the other hand, though bound-
ary representation models, especially triangular mesh models, are
popular in current computer graphics and computer aided design
applications, lots of existing all-hex mesh generation algorithms
need a tet mesh model as an input [5,6]. So they cannot handle tri-
angular mesh models directly, and it is inconvenient.

In this paper, we develop a constrained volume iterative fitting
algorithm (abbr. CVIF) which can fill a given triangular mesh
model using an all-hex volume mesh, with guaranteed quality that
the scaled Jacobian value at each mesh vertex is larger than 0.
Given a triangular mesh model, we first construct an initial all-
hex mesh model by voxelizing the given model, and extract the
boundary quadrilateral mesh of the initial all-hex mesh model.
Then, the initial all-hex mesh model is fitted to the given triangular
mesh model by the CVIF algorithm. In each iteration of the CVIF
algorithm, there are two steps:

(i) The adjustment of the vertices of the boundary quadrilateral
mesh, and

(ii) the diffusion of the movement of the boundary mesh vertices
to the inner mesh vertices.
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In the above two steps, the movement of the mesh vertices is so
constrained that the scaled Jacobian value at each mesh vertex
after movement is larger than 0. In this way, the mesh quality of
the all-hex mesh generated by our algorithm is guaranteed.

Specifically, the iterative adjustments of the boundary quadri-
lateral mesh vertices make up of the constrained surface iterative
fitting algorithm (abbr. CSIF), and we show its convergence in this
paper.

The structure of this paper is as follows. In Section 2, we briefly
review related work. In Section 3, we develop the constrained
volume iterative fitting algorithm. After presenting some results
and discussions in Section 4, we conclude the paper in Section 5.

2. Related work

In this section, we will briefly review previous work related to
our method, including hex mesh generation, subdivision fitting,
and volume subdivision.

Hex mesh generation: There is a great deal of literature on the
generation of volume meshes including tet [7,8] and hex meshes. In
this paper, we focus on hex mesh generation. According to Owen’s
classification [9], hex mesh generation methods can be categorized
into three classes, i.e., direct, indirect, and structured methods.
Usually, the quality of the generated hex volume mesh should be
improved by postprocessing [10,11].

Starting with a quadrilateral boundary surface mesh, direct
methods generate a hexahedron for each quadrilateral according to
a heuristically advancing-front approach. However, when the algo-
rithmic heuristics are exhausted, no additional hexahedra can be
placed. Consequently, this will leave void regions in the generated
hex mesh [12,13].

Indirect methods first generate a tet mesh, and then convert it
to a hex mesh by tetrahedral decomposition or combination. The
disadvantage of these methods is that the quality of resultant hex
mesh can be very poor owing to the high valence nodes [14,15].

A structured hex mesh is a mesh whose inner vertex valence
is only six. A popular structured method for hex mesh generation
is known as mapping [16], by which a map from the given solid
with six surfaces to a cuboid is constructed. A cuboid has a trivial
hex mesh, and the hex mesh in the given solid can be generated
by inverse mapping. Although the mapping method can generate
a high-quality hex mesh, it can only deal with solids of relatively
simple shape, i.e., those with six boundary surfaces.

To deal with complex solids, a submapping method has been
developed [17]. This submapping algorithm decomposes the given
solid into separate mappable subregions while ensuring that the
constraints within each subregion are consistent with the adjacent
subregions.

The recently proposed hex mesh generation methods based on
the PolyCube are also submapping methods that focus on the con-
struction of the mapping [5]. A PolyCube [18] is a solid formed by
combining a number of cubes with the same orientation; hence, it
has a trivial hex mesh. By devising a mapping between the Poly-
Cube and the input model, the sub-mapping method transfers the
hex mesh in the PolyCube to the input model. Therefore, the qual-
ity of the hex mesh is heavily related to the shape of the PolyCube
and the mapping.

In [19], the method of fundamental solutions is employed to
design a harmonic volumetric mapping. In [20], the given model
is first decomposed into the direct product of a surface and curve
and then parameterized; subsequently, the mapping between the
model and the PolyCube is constructed. Moreover, a volumetric
deformation method is utilized to construct the correspondence
between the given model and its PolyCube [6]. However, comput-
ing the PolyCube as well as a low-distortion mapping between it
and the given model for general shapes remains an open problem

[20,21]. Recently, some work is devoted to calculate a desirable
polycube. In Ref. [22], the polycube is constructed using a varia-
tional method, by deforming an input triangle mesh through mini-
mizing the I norm of the mesh normals. In Ref. [23], a constrained
discrete optimization technique is developed to make the gener-
ated polycube balance parameterization distortion against singu-
larity count.

It should be pointed out that, though the mapping and sub-
mapping methods can produce high quality hex mesh, they need a
tet mesh as input. Therefore, the mapping and sub-mapping meth-
ods cannot be employed directly to transform a triangular mesh
model into an all-hex mesh.

On the other hand, some hex mesh generation methods employ
the frame field to guide the construction of mapping from the input
tet mesh to the resulted hex mesh [24-26].

For more work on hex mesh generation, we refer the reader to
excellent surveys [1,9].

Subdivision surface fitting: The limit surface of approximating
subdivision schemes, such as Catmull-Clark scheme [27] will
shrink, especially when the initial control mesh is sparse. Usually,
this problem is solved by making the approximating subdivision
surface fit the vertices of the initial mesh, by either global
methods [28], or local methods [29].

Recently, some new methods, such as progressive interpolation
(abbr. PI) and geometric interpolation (abbr. GI), have been pro-
posed for subdivision surface fitting. They adjust the vertices of the
control mesh iteratively, depending on either parametric distance
in PI or geometric distance in GI, and the limit subdivision surface
fits the initial mesh. The convergence of PI has been shown for the
Loop [30], Doo-Sabin [31], and Catmull-Clark schemes [32]. On the
other hand, Ref. [33] develops a geometric interpolation algorithm
for the Loop subdivision scheme. Moreover, Ref. [34] presents a
geometric approximation algorithm for the Loop subdivision sur-
face by distributing the difference vector for each data point to
the related control vertices. Given that the geometric interpolation
(approximation) algorithm must compute the closest point on the
limit surface for each data point in each iteration, it incurs great
computational costs.

Different from existing subdivision fitting algorithms which
take the limit surface of subdivision as the approximating surface,
in this paper, we develop a constrained surface iterative fitting al-
gorithm which takes the mesh surface after finite time subdivisions
as the approximating surface.

Volume subdivision: Similar to the two-dimensional (2D) sub-
division scheme, the volume subdivision scheme can generate a
sequence of increasingly dense volume meshes by recursive sub-
division starting from a coarse volume mesh. The volume subdivi-
sion is mainly applied to model deformation, and its smoothness
analysis is difficult to handle.

Thus far, only a few volume subdivision schemes have been
developed. To our best knowledge, the first volume subdivision
scheme was developed in [35] for subdividing hex meshes. This
scheme is an extension of the Catmull-Clark subdivision scheme.
Furthermore, Bajaj et al. developed the MLCA subdivision rule
and analyzed its smoothness [36]. The MLCA subdivision rule can
be applied in any dimension, including 2D quadrilateral surface
mesh, and 3D hex volume mesh. In Ref. [37], Pascucci introduced a
subdivision scheme for 3D and higher dimensional meshes without
the excessive vertex proliferation, which can be generalized to
meshes of any dimension and with cells of virtually any type.
Recently, inspired by the /3 subdivision scheme, an adaptive
subdivision scheme for unstructured tetrahedral meshes was
presented in [38], which generates only tetrahedra and supports
adaptive refinement.
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3. Constrained volume iterative fitting

The CVIF algorithm takes a triangular mesh P as input (see
Fig. 9(a)), and outputs an all-hex mesh that fills the inside of P. The
outline of the algorithm is listed as follows.

Algorithm 1: Outline of the Constrained Volume Iterative
Fitting Algorithm
Input: A triangular mesh model P (Fig. 9(a))
Output: An all-hex mesh model
1 Construct the initial all-hex mesh model, and extract its
boundary quadrilateral mesh as the initial boundary mesh V ;
2 while The termination condition is not satisfied do
3 Adjust the vertices of the boundary mesh V ;
4 Diffuse the movements of the boundary mesh vertices to
the inner mesh vertices ;
5 end
6 Improve the quality of the generated all-hex mesh;

It should be pointed out that the iterative adjustments of the
boundary quadrilateral mesh vertices make up the constrained
surface iterative fitting algorithm (abbr. CSIF).

The details of the CVIF algorithm will be explained in this
section.

3.1. Initial all-hex mesh construction and boundary mesh extraction

The first step of the CVIF algorithm 1 is to construct an initial
all-hex mesh, and its boundary quadrilateral mesh V will be fitted
to the given triangular mesh P (see Fig. 9(a)).

It should be noted that the finally generated all-hex mesh is
heavily influenced by the initial all-hex mesh. Although there are
several techniques to construct an initial all-hex mesh, such as
the polycube mapping [20,21], it is not an easy task to construct
a desirable initial all-hex mesh in general. Since the topic of this
paper focuses on the CVIF algorithm, the initial all-hex mesh model
is just constructed by voxelizing the triangular mesh P in this
paper. The voxelization size is taken as the half of the average
edge length of the mesh P. Specifically, after ascertaining the
feature voxels, which intersect with the triangular mesh P, the scan
conversion algorithm categorizes the voxels into three classes:
outer voxels, inner voxels, and boundary voxels, which are feature
voxels adjacent to outer voxels. Note that, a boundary voxel must
be a feature voxel, but a feature voxel is not necessarily a boundary
voxel (refer to Fig. 2). For clarity, the processing to the voxelization
is illustrated by 2-dimensional rectangular mesh in Figs. 2 and 3.

Moreover, to make the approximation of the boundary mesh V
to the triangular mesh P as close as possible, each feature voxel
should satisfy the following two conditions:

(i) Each feature voxel is a boundary voxel, and,
(ii) each feature voxel contains a continuous patch of the
triangular mesh P.

Actually, if one feature voxel violates the two conditions above (see
Fig. 2(a)), it will make that either the shape of the boundary mesh
V deviates from that of the triangular mesh P too large, or more
seriously, the boundary mesh V is not topologically equivalent to
the given mesh P. Therefore, if we encounter one feature voxel
which violates the above two conditions, we will perform adaptive
subdivision, i.e., subdividing each of the three voxel columns where
the offending feature voxel lies into two columns voxels (see
Fig. 2(b)). However, to avoid producing voxels with tiny side length,
if the side length of voxels after subdivision is less than % of the
initial side length, we do not perform the adaptive subdivision at
the offending feature voxel.

Fig. 1. Initial all-hex mesh construction. (a) Voxelization of the input triangular
mesh. (b) Voxelization after adaptive subdivision. (c) The initial all-hex mesh is
constructed after deleting some boundary voxels.
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Fig. 2. The voxel in yellow is a feature voxel, but not a boundary voxel (a), so the
adaptive subdivision should be performed, i.e., subdividing each of the two voxel
columns where the offending feature voxel lies into two columns voxels (b). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Furthermore, to shorten the distance between the boundary
mesh V and the given triangular mesh P, some boundary voxels
should be deleted (Fig. 3). Consider these boundary voxels whose
three adjacent faces are all boundary faces. For each of these
boundary voxels, denoting the vertex adjacent to the three
boundary faces as v, supposing d; is the distance between v and
the triangular mesh V, and d, is the distance between the vertex
opposite to v and the triangular mesh V, if d, < d;, the boundary
voxel should be deleted, labeling as outer voxel (see Fig. 3). After
deleting some boundary voxels in this way, the boundary mesh V
can be made closer to the triangular mesh P (see Figs. 3 and 1(c)).

Fig. 1 demonstrates the procedure of the initial all-hex mesh
construction. Fig. 9(a) is the input triangular mesh model V, and
Fig. 1(a) is the voxelization of the input triangular mesh model.
The initial all-hex mesh is generated after adaptive subdivision
(Fig. 1(b)) and further deleting some boundary voxels (Fig. 1(c)).

Finally, the boundary quadrilateral mesh of the initial all-hex
mesh (Fig. 1(c)) is extracted as the initial boundary mesh V, which
will be fitted to the given triangular mesh P.

3.2. Constrained surface iterative fitting

As stated above, in the CVIF algorithm 1, the boundary quadri-
lateral mesh V will be fitted to the given triangular mesh P. The
iterative fitting procedure of the boundary mesh V constitutes the
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Fig. 3. Suppose d; is the distance between the vertex v of the voxel (in yellow) and
the given mesh model (represented by red curve), and d; is the distance between
the vertex opposite to v and the given mesh model (represented by red curve),
respectively. If d; > d,, the voxel in yellow should be deleted (a). This operation is
performed iteratively till no voxel can be deleted (b). We can see that the boundary
of the voxelization in (b) is closer to the red curve than that of the voxelization in
(a). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

constrained surface iterative fitting algorithm (abbr. CSIF). Note
that existing subdivision fitting algorithms take the limit surface
of subdivision as the approximating surface. This does not meet
the requirement of hex mesh generation, which relies on a mesh
after finite time subdivision rather than the subdivision limit sur-
face. Therefore, the CSIF algorithm developed in this section takes
the mesh surface after finite time subdivisions as the approximat-
ing surface.

Taking the quadrilateral surface mesh V to be the initial control
mesh of a surface subdivision procedure, a mesh surface denoted as
V, will be generated after y time surface subdivisions. Moreover,
supposing that the vertices of V and P are v and p, and called
control points and data points, respectively, each iteration of the
CSIF algorithm includes the following steps:

(i) For each data point p, compute the closest mesh vertex v,
onmeshV,;

(i) calculate the difference vector § = p—v,, for each data point
p, and distribute it to the related control points on mesh V that
generate the vertex vg,, ;

(iii) for each control point v, averaging the difference vectors
distributed to it produces the difference vector A for the
control point;

(iv) adding the difference vector A to the control point v generates
the new control point v™" of the new control mesh,

V" =v 4+ A (1)

The first step is to compute the closest vertex v, on the mesh
surface V,, for each vertex p, which is performed using KD tree.
To make the shape of subdivision fitting surface faithful to that
of the given triangular mesh, the distance between two vertices
should consider not only the location closeness, but also the normal
similarity at the two vertices. Therefore, we map each vertex v
in three dimensional Euclidean space to six dimensional feature
sensitive space (v, win) [39,40], where n is the normalized normal
vector at the vertex v, | is the diagonal length of the bounding box
of the triangular mesh model, and w is a weight, set as w = 0.2
in our implementation. For any given data point p, we map it to
the six dimensional feature sensitive space, and then calculate the
closest vertex in the six dimensional space.

It should be pointed out that in the first five iterations, we
compute the closest vertex on the mesh surface V,, for each data
point on mesh P. Afterwards, the parameters of the closest points
on the mesh surface V,, are fixed for reducing the computational
load. Moreover, to avoid self-intersection, the Laplace smoothing
operation is performed after each of the first five iterations.

The second step is to construct the difference vector for data point
p,ie.,

6= p— Ucl,y - (2)

Control mesh V'

Fig. 4. The difference vector (in red) for data point is distributed to related control
points (vectors in blue). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. Suppose the scaled Jacobian value at the vertex v is positive in (a). When v
moves on the plane ABC (b), its scaled Jacobian value is zero. When v moves to the
other side of the plane ABC (c), its scaled Jacobian value changes to a negative value.

This difference vector will be distributed to the related control
points of the control mesh V (Fig. 4). Recall that the mesh vertex
on mesh V,, is a linear combination of the related control points

v1, U, ..., U, of the control mesh V, i.e.,
n
Vey = C101 + CUy -+ G, with Y6 =1, 3)
i=1
where the coefficients ¢;,i = 1, 2, ..., n can be easily obtained by

the corresponding stationary linear surface subdivision rule. Thus,
the weighted difference vector ¢;§ is distributed to the control point
vi,i=1,2,...,n(Fig. 4).

As the third step, all of the difference vectors {c;é;} distributed
to a control point v are collected and averaged in the following
manner,

2G4
A= qu , (4)

J

to generate the difference vector A for control point v.

Finally, adding A to the control point v, generates the new
control point v™" (Eq. (1)) of the new control mesh.

The four steps above are performed iteratively until

£l

m

(1) .
o~ 1‘ < g, withe® =

’

where e® is the root mean square (RMS) fitting error of the
kth iteration (refer to Section 3.4), and &g is a threshold. In our
implementation, we take g = 1073,

Construction of constrained region for quality guarantee: As stated
above, in each iteration of the CSIF algorithm, and the Laplace
smoothing operation (5), the vertex of the boundary mesh v is
moved. The movement of the boundary mesh vertex should be
constrained to ensure the quality of the all-hex mesh, i.e., the
scaled Jacobian value at each mesh vertex is greater than 0.

As pointed out in Ref. [4] (see Fig. 5), the scaled Jacobian value at
vertex v is the scaled volume of the tetrahedron v-ABC (Fig. 5(a)).
Suppose the scaled Jacobian value at v is positive in Fig. 5(a). When
v moves on the plane ABC (see Fig. 5(b)), its scaled Jacobian value
is zero. When v moves to the other side of the plane ABC (Fig. 5(c)),
its scaled Jacobian value changes to a negative value. Therefore, if
the movement of the vertex v keeps at the same side of the plane
ABC, the sign of its Jacobian value will not change.

Take a regular inner vertex v as an example. In an all-hex mesh,
the regular inner mesh vertex v is adjacent to six mesh vertices, and
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Fig. 6. The constrained region (the green region) of a mesh vertex v in the initial
all-hex mesh (a), and the all-hex mesh after some iterations (b), respectively. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

eight hexahedra. So the movement of the vertex v affects the scaled
Jacobian values at seven mesh vertices, i.e., the vertex v itself, and
its six adjacent vertices. To make the sign of the Jacobian value
at v unchanged, its movement should lie in the same sides of 8
planes, each of which is determined by the three vertices adjacent
to v in the same hexahedron (corresponding to the green lines in
Fig. 6). Similarly, to make the sign of the Jacobian value at a vertex
v” adjacent to v unchanged, the movement of v should keep in the
same sides of 4 planes, each of which is determined by v and its
two adjacent vertices on the boundary faces of the mesh model
constituted by the eight hexahedra adjacent to v. Therefore, to
make the signs of the Jacobian values at the six vertices adjacent
to v unchanged, the movement of v should keep in the same sides
of such 4 x 6 = 24 planes (corresponding to the red lines in
Fig. 6). In conclusion, if the movement of the vertex v keeps in
the region enclosed by the so constructed 24 + 8 = 32 planes,
the signs of the Jacobian values at v and its six adjacent vertices
will remain unchanged. The so constructed region is named a
constrained region for the vertex v. (see Fig. 6).

Suppose v = (X, Y, Zy), and the equations of the 32 planes
aforementioned are, respectively,

Pi(x,y,z) =ax+by+cz+di=0, i=1,2,...,32.

Moreover, suppose that the Jacobian value at each mesh vertex of
an all-hex mesh before a new iteration is positive, to perform a new
iteration, the constrained region can be modeled as the following
system of inequalities,

Pi(Xy, Yv, Z)(@1x + b1y + c1z + dy) > 0,
Py (Xy, Yo, Zo)(@2X + bay + 2z + d3) > 0,

P3;(xy, Yu, Zy)(azX + by + €32z + d3) > 0.

It should be pointed out that, the constrained region for an irregular
mesh vertex can be constructed in the similar way.

In each iteration of the CSIF algorithm, the difference vector A
for control point is added to the boundary mesh vertex v. If the new
vertex v = v + A exceeds the constrained region of v, a weight
w, (0 < w < 1), as large as possible, is multiplied in front of A, to
make that the new vertex v™" = v 4+ wA is guaranteed to stay in
the constrained region of v. In our implementation, we uniformly
discretize [0, 1] into w;, i = 0, 1, ..., 10, and take the largest w;
which makes v™" = v 4+ w;A be in the constrained region as the
weight. In this way, the movement of the boundary mesh vertex is
constrained, and the quality of the all-hex mesh is ensured.

Similarly, the movement of the mesh vertex in the Laplace
smoothing operation (5) is also kept in its constrained region.

The convergence of the CSIF algorithm is shown in Section 3.4.

3.3. Movement diffusion

In the above section, we presented the CSIF algorithm for
surface mesh fitting. After each iteration of the CSIF algorithm,

the movement of the boundary mesh vertices should be diffused
to the inner vertices of the all-hex mesh. In this section, to make
the movement diffusion efficient, we develop a level Laplacian
operation to diffuse the movement of the surface mesh vertices.

Firstly, the inner vertices are classified into levels according to
their adjacency to the vertices of boundary mesh V. Specifically, the
inner vertices in one-ring adjacency to the boundary mesh vertices
are the first-level vertices; the left inner vertices in one-ring
adjacency to the first-level vertices are the second-level vertices;
--+;and so on.

Next, fixing the positions of the boundary mesh vertices, the
first-level vertices v are moved to the new position vy, by the
following Laplacian operation,

d(v)

2y
Unew = %’ (5)
where, d(v) is the degree of the vertex v, and v; are the vertices
in the one-ring neighborhood of v. In succession, the first-level
vertices are fixed and the second-level vertices are moved by (5),
..., and so on, until all levels of the inner vertices are adjusted.
This procedure is performed iteratively until the ratio between
the largest movement distance and the diagonal length of the
bounding box of mesh P is below a prescribed threshold 7. In our
implementation, 7 is taken as 1077,

To ensure the all-hex mesh quality, the vertex movement in the
movement diffusion should also satisfy the vertex movement con-
straint stated in Section 3.2. The CSIF fitting and the constrained
movement diffusion therein constitute the CVIF algorithm. When
this algorithm stops, we obtain a control all-hex mesh. An all-hex
volume mesh filling the given triangular mesh P can be generated
by subdividing the control all-hex mesh y times with the corre-
sponding volume subdivision rule.

3.4. Convergence of the CSIF algorithm

In this section, we will show the convergence of the CSIF algo-
rithm. Starting with the initial control mesh V© = V, the control
mesh after the kth iteration is denoted as V®, which has n mesh
vertices vfk), i=1,2,...,n,called control points. Subdividing the
control mesh V*y times generates the mesh surface V*. More-
over, suppose the given mesh P has mverticesp;, j=1,2,...,m,
called data points, where m > n. To show the convergence of the
CSIF algorithm, we rewrite Eqgs. (2)-(4) with indices in the follow-
ing.

In the kth iteration, the difference vector for the data point p; is,

k k
5=l ®

where vj(") is the point on the mesh surface V,* with fixed param-
eter after the fifth iteration. It is a linear combination of related
control points, i.e.,

n

k k k .

vj(.y) = Cj’ﬁ)i ) + Cj,zvé ) + -+ Cj,nl),{lk), with ZCJ’ =1. (7)
i=1

By first distributing the weighted difference vector cj,iS;k) to the

control point vi(k), and then gathering the weighted difference vec-
tors for each control point in the following manner,

W _ 9.8 ®
) __ el _ Gi ok
A= X Gi > Cj.i‘sj ’ ®)

el jeli jel;
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where [; is the index set of the data points which distribute their
difference vectors to the control point vf‘, we get the difference vec-

tor Afk) for the control point v,.(k). Finally, adding Algk) to the control
(k)

point v; generates the new control point, i.e.,

v,-(kH) = vi(k) + a)i(k)A,-(k), i=1,2,...,n,
where, wfk), 0 < wfk) < 1) is a weight to ensure that the new

k+1 PP .
vertex Ui( +1) satisfies the vertex movement constraint.

Arranging the difference vectors for control points in a se-
quence,

k (k) (k) k)1T
AW =AY AP, AT
the iterative format can be represented in matrix form,
AED = (1 — A, ATAAL) AR, 9)

where [ is an identity matrix, A; and A;") are diagonal matrices,

A; = diag 21%, Zlc,-,z""’ 21% }
Jjeh Jjelp j€ln

AV = diagloV, 0, ..., 0¥},
and,

€1 G2 -+ Cin
A= C1 G2 -+ Cn

Cm,l Crn,2 Tt Cm,n
Note that Eq. (9) is a non-stationary iterative format.

First, we will show that if the weights a)i("),i =0,1,...,n

do not change in the iterations, i.e., wfk) = w; € (0,1],i =
0,1,...,n, the iteration is convergent. In this case, Ag‘)

Ay = diag{wq, ws, ..., wy}, and Eq. (9) becomes a stationary
iterative format. Actually, on one hand, if ATA is nonsingular, it
is positive definite, so all of its eigenvalues are positive. Because
A, is also positive definite, all of the eigenvalues of ATAA, are
positive. Therefore, the eigenvalues of A;ATAA, are also positive,
i.e, A(A1ATAA;) > 0.0n the other hand, since || A;ATAA; | < 1,
all of its eigenvalues are less than or equal to 1, i.e., A(A;ATAA,) <
1. Therefore, the spectral radius of the matrix | — A;ATAA, satisfies
p(I — A1ATAA,) < 1, and the corresponding iterative format is
convergent.

Moreover, if the weights a)i(k), i=0,1,...,nchange in each
iteration, Eq. (9) becomes a non-stationary iterative format. In this
case, we need a convergence condition,

<g<1 (10)
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k
01 — MATAAY H
Denote H A§k) H as the Euclidean norm of Ai(k), let,
E
O® = ¢ gun =1 — MATAAY,

and define |A® |, = max{HAf")
X
i E
k k
e = ¥l |
7 T
(Z |(xmj|) max H Aj(") H
j J E

[2“ 1 14

,i=1,2,...,n}. Because,
E

”(D(k)A(k) HM — miax {

>

IA

IA

a

C 100.00%
90.00%
80.00% |
70.00%
60.00%
50.00%
40.00% |
30.00% -
20.00% -

10.00% +
0.00% + g pomam— -

[0-0.2] [0.2-0.4] [0.4-0.6] [0.6-0.8] [0.8-1.0]

Fig. 7. Feature preservation. (a) Before feature preservation. (b) After feature
preservation. (c) Diagram of the distribution of scaled Jacobian values of the all-hex
mesh illustrated in (b).

we have,

[a“ ], = o a®], < [e®] 4],
< |o®] . [2“ ) [1a% "],
< ...
< 2@ 12 2%,
=q'[|a®],.

Therefore, if the convergence condition (10) holds, lim—.o [ A® |,
=0, i.e,, the iterative format (9) is convergent.

Remark. Note that the iterative format (9) and its convergence
analysis do not involve any concrete volume subdivision rule, so
they are valid for any stationary linear hex volume subdivision rule,
including the subdivision rule developed in Ref. [35], and MLCA
presented in Ref. [36].

3.5. Postprocessing

Till now, we have gotten an all-hex mesh each of whose vertices
has a positive scaled Jacobian value. Moreover, postprocessing
should be performed to make the all-hex mesh preserve the
features, and improve its mesh quality.

Feature preservation: To make the all-hex mesh preserve the
features in the given triangular mesh P, we select some edges in the
boundary mesh of the generated all-hex mesh, whose vertices will
be fitted to the features in the triangular mesh P. Then, extra CSIF
iterations (without subdivision) are performed to the selected ver-
tices, to make them fit the features in the given mesh P. In this way,
most features in the mesh P can be preserved. However, because
the generated all-hex mesh contains lots of singular vertices, and
lacks structure in the resulting edge flow, it is difficult to preserve
all of the features.

Fig. 7 demonstrates the result of the feature preservation strat-
egy stated above. In this example, the sharp features in the all-hex
mesh model fan disk generated by the CVIF algorithm are smoothed
(Fig. 7(a)). After performing the aforementioned feature preserva-
tion strategy, the features are recovered (Fig. 7(b)). Fig. 7(c) is the
diagram of the distribution of scaled Jacobian values of the all-hex
mesh demonstrated in Fig. 7(b). We can see that all of the Jacobian
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Table 1

Statistics for the all-hex mesh filling algorithm.
Model #vert.? #hex” #total Jac.avgd  Jac. min.t J.€(0,02) ].€[0.2,04)°% ].€[0.8,1]"  Precision Time (s)'
Fig. 7(b) Fandisk 17576 93948 102511 0.9510 0.0381 45 103 86026 0.0014 903
Fig. 9(b) Fertility 27819 106997 120617 0.9029 0.0446 2 62 87673 0.0009 1203
Fig. 10(a) Rocker Arm 15114 62670 71214 0.8970 0.0585 3 39 51553 0.0012 541
Fig. 10(b) Torus Knits 9431 12069 15662 0.8066 0.0495 1 4 6998 0.0021 110
Fig. 10(c) Santa 16220 73444 84138 0.8792 0.0439 1 87 54202 0.0007 647
Fig. 10(d) Isis 19819 73823 81353 0.9178 0.0461 4 128 63598 0.0012 772
Fig. 11(a) Ball Joint 10134 32188 36260 0.8969 0.0571 1 24 25874 0.0018 283
Fig. 11(b) Rabbit 10379 58531 64324 0.9155 0.0374 2 56 50132 0.0013 565

2 #vert. of mesh: number of the vertices in the given triangular mesh;.

b #hex: number of the hexes in the all-hex mesh;.

¢ #total: number of the total vertices in the all-hex mesh;.

4 Jac. avg.: averaged scaled Jacobian;.

¢ Jac. min.: minimum scaled Jacobian;.

 The numbers of hexes whose scaled Jacobian values lie in the interval (0, 0.2).

& The numbers of hexes whose scaled Jacobian values lie in the interval [0.2, 0.4).
" The numbers of hexes whose scaled Jacobian values lie in the interval [0.8, 1].

! Time is in seconds.

values are greater than 0, and over 90% of them lie in the interval
[0.8, 1.0].

Mesh quality improvement: In the all-hex mesh generated by
the CVIF algorithm, the poor hexahedra with too small positive
scaled Jacobian values mainly concentrate in the boundary level.
Therefore, to improve the mesh quality, a pillowing operation [41]
is carried out just on the boundary level hexahedra.

Finally, the quality of the all-hex mesh is further improved by
the Mesquite software [10].

Fig. 8 illustrates the result of the aforementioned mesh quality
improvement technique. The cutaway view of the all-hex mesh
before pillowing is presented in Fig. 8(a), where the quality of the
boundary level hex mesh is very poor. After pillowing and mesh
quality improvement by Mesquite software [10], the mesh quality
is greatly improved, as shown by the cutaway view in Fig. 8(b).
Zooms of the cutaway views in Fig. 8(a) and (b) are demonstrated
in Fig. 8(c) and (d), respectively. Fig. 9(b) is the all-hex mesh
model Fertility after mesh quality improvement, and Fig. 9(c) is the
diagram of the distribution of scaled Jacobian values of the all-hex
mesh model Fertility. Over 80% of them lie in the interval [0.8, 1].

4. Results and discussions

The CVIF algorithm has been implemented with Visual C++,
and run on a PC with Intel Core2 Quad CPU Q9400 2.66 GHz and 4G
memory. We tested the CVIF algorithm by a lot of examples. Some
of them were illustrated in Figs. 7-11. Moreover, we presented the
diagram of the distribution of scaled Jacobian values along with
each example. In these diagrams, the abscissa axis is the scaled
Jacobian value intervals [2,4], and the vertical axis represents the
ratio of the number of hexes whose scaled Jacobian values lie in
the corresponding interval and the total number of the hexes of
the all-hex mesh model.

Moreover, the statistics on these examples were listed in Ta-
ble 1. In Table 1, the fitting precision is represented by the ratio
between the last RMS error and the diagonal length of the bound-
ing box of given mesh P, and the runtime is in seconds. It can be
seen from Table 1 that, the scaled Jacobian values of these exam-
ples are all greater than 0, and the average scaled Jacobian values of
these examples are all over 0.8. Of four of these example, the aver-
age scaled Jacobian values even exceed 0.9. On the other hand, the
runtime cost by these examples varies between several minutes to
twenty minutes.

In Fig. 10, we illustrated four examples that are generated by
the CVIF algorithm without subdivision. Figs. 10(a-d) are the four
all-hex mesh models, Rocker Arm, Torus Knits, Santa, and Isis, re-
spectively. Figs. 10(e-h) are their cutaway views. Figs. 10(i-1) are

r .

Fig. 8. All-hex Mesh quality improvement. (a) Cutaway view of the all-hex mesh
model before pillowing. (b) Cutaway view of the all-hex mesh model after pillowing
and mesh quality improvement by Mesquite software. (c) Zoom of the cutaway view
of the model in (a). (d) Zoom of the cutaway view of the model in (b).

the diagrams of the distribution of their scaled Jacobian values. In
the all-hex mesh models of Rocker Arm and Isis, over 80% scaled Ja-
cobian values lie in the interval [0.8, 1]. In the all-hex mesh models
of Santa and Torus Knits, over 70% and nearly 60% scaled Jacobian
values are in the interval [0.8, 1], respectively. It should be pointed
out that, in Figs. 7 and 8, the all-hex mesh models Fan disk and Fer-
tility are also generated by the CVIF algorithm without subdivision.

InFig. 11, there are two examples that are generated by the CVIF
algorithm with one MLCA [36] subdivision. Figs. 11(a, b) are the
two all-hex mesh models Ball Joint and Rabbit. Figs. 11(c, d) are
their cutaway views. Figs. 11(e, f) are diagrams of the distribution
of their scaled Jacobian values. In the two all-hex mesh models,
80% scaled Jacobian values or so lie in the interval [0.8, 1]. It can
also be seen from Table 1 that, the average scaled Jacobian values
of the all-hex mesh models Ball Joint Fig. 11(a) and Rabbit Fig. 11(b)
are 0.8969 and 0.9155, respectively.

We can see from Table 1 that, except the model Fandisk in
Fig. 7(b), there are only several (not more than 5) hexes whose
scaled Jacobian values are less than 0.2. In the model Fandisk in
Fig. 7(b), even the shape preserving operation deteriorates the hex
mesh quality, there are just 45 hexes whose scaled Jacobian values
are less than 0.2.

Because there are usually just several hexes whose scaled
Jacobian values are less than 0.2, we can improve the mesh quality
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Fig. 9. Fertility model. (a) The input to our algorithm is a triangular mesh. (b) The all-hex mesh model Fertility generated by our algorithm, after mesh quality improvement.
(Please also refer to Fig. 8(b) for the cutaway view.) (c) Diagram of the scaled Jacobian value distribution of the all-hex model Fertility in (b).
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Fig. 10. All-hex meshes filling triangular meshes and their cutaway views, generated by the CVIF algorithm without subdivision. (a-d) All-hex meshes of Rocker Arm, Torus
Knits, Santa and Isis. (e-h) Their cutaway views. (i-1) Distribution diagrams of scaled Jacobian.

at these hexes by some interactions. The statistics of the hex mesh
model after some interactions were listed in Table 2. It can be
seen that the minimum scaled Jacobian values have been improved
greatly.

Comparison with prevailing hex mesh generation methods:
The differences between our CVIF algorithm and other prevailing
all-hex mesh generation methods, such as polycube based
methods [5,6], and frame field guided methods [24-26], mainly lie
in two aspects. Firstly, while the prevailing methods need to input
a tet mesh, the input to the CVIF is just a triangular mesh, which
are widely employed in computer graphics and CAD community.
Secondly and more importantly, though these prevailing hex mesh
generation methods can produce all-hex mesh with high quality,
they lose strategy to ensure that the generated all-hex mesh is a
valid mesh, i.e., they cannot ensure that the scaled Jacobian value
of each hex s larger than 0. However, the CVIF algorithm developed

in this paper can guarantee that all of the scaled Jacobian values of
the generated all-hex mesh model are greater than 0. Last but not
least, the quality of the hex mesh generated by our CVIF algorithm
is comparable to that produced by the state-of-the-art hex mesh
generation algorithms (refer to Tables 1 and 2 and Refs. [22,23]).
Moreover, we compared our CVIF algorithm with the state-
of-the-art octree-based all-hex mesh generation method, i.e.,
Hexotic [42], which has been integrated to the software MeshGems
as a component Hexa [43] (v1.2-1). MeshGems-Hexa should be
run through SALOME (v7.4.0) [44]. In our implementation, the
MeshGems-Hexa (through SALOME) was run on a MacBook Pro
with 2.6 GHz Intel Core i5 CPU, 8 GB 1600 MHz DDR3 memory,
Intel Iris graphic card, and 256G solid state disk, which is much
more powerful than the platform where our CVIF algorithm was
run. The statistics on MeshGems-Hexa were listed in Table 3.
It should be pointed out that, because MeshGems-Hexa exploits
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Table 2
Statistics for the all-hex mesh after some interactions.

Model Jac. avg.? Jac. min.” J. € (0,0.2)¢ J. €0.2,0.4)¢ J.€[0.8, 1]

Fig. 9(b) Fertility 0.9131 0.2042 0 60 87677

Fig. 10(a) Rocker Arm 0.8982 0.1991 1 41 51551

Fig. 10(b) Torus Knits 0.8160 0.3146 0 5 6998

Fig. 10(c) Santa 0.8793 0.2100 0 87 54207

Fig. 10(d) Isis 0.9268 0.1384 4 126 63600

Fig. 11(a) Ball Joint 0.9067 0.3156 0 25 25877

Fig. 11(b) Rabbit 0.9247 0.1809 3 58 50129

¢ Jac. avg.: averaged scaled Jacobian;.

b Jac. min.: minimum scaled Jacobian;.

¢ The numbers of hexes whose scaled Jacobian values lie in the interval (0, 0.2).

4 The numbers of hexes whose scaled Jacobian values lie in the interval [0.2, 0.4).

¢ The numbers of hexes whose scaled Jacobian values lie in the interval [0.8, 1].

Table 3
Comparison with the Hexotic [42] framework (i.e., MeshGems-Hexa (v1.2-1) [43]).

Model #hex? #total® Jac. avg.* Jac. min.¢ J. € (0,0.2)¢ J.€[0.2,0.4)" ] €[0.38, 1] Precision Time (s)"
Fig. 7(b) Fandisk 50381 56610 0.9158 0.0467 164 1023 42876 0.0025 3.1
Fig. 9(b) Fertility 62584 72743 0.8153 0.0685 42 882 37585 0.0028 47
Fig. 10(a) Rocker Arm 42965 49794 0.8106 0.0278 77 804 26029 0.0043 33
Fig. 10(b) Torus Knits 28000 34855 0.8298 0.1624 3 47 17563 0.0028 2.6
Fig. 10(c) Santa 83077 95915 0.7945 0.0496 23 1280 45 665 0.0023 49
Fig. 10(d) Isis 67621 76724 0.8079 0.0466 103 1160 40334 0.0027 4.3
Fig. 11(a) Ball Joint 20479 23636 0.8196 0.0582 5 194 12404 0.0053 2.1
Fig. 11(b) Rabbit 42887 48 645 0.8561 0.1038 14 394 29339 0.0032 35

¢ #hex: number of the hexes in the all-hex mesh;.

b #total: number of the total vertices in the all-hex mesh;.

¢ Jac. avg.: averaged scaled Jacobian;.

4 Jac. min.: minimum scaled Jacobian;.

€ The numbers of hexes whose scaled Jacobian values lie in the interval (0, 0.2).

f The numbers of hexes whose scaled Jacobian values lie in the interval [0.2, 0.4).

¢ The numbers of hexes whose scaled Jacobian values lie in the interval [0.8, 1].
" Time is in seconds.

parallel computing, and the platform it was run is much more
powerful than that our algorithm was run, the computing time
of MeshGems-Hexa is shorter than our algorithm. However,
comparing Table 3 with Tables 1 and 2, we can see that, even
in the case that the fitting precisions of the CVIF algorithm are
higher than those of MeshGems-Hexa, the averaged and minimum
scaled Jacobian values of the all-hexes generated by CVIF algorithm
(Table 2) are still better than those produced by MeshGems-Hexa
(Table 3). Furthermore, the numbers of hexes with scaled Jacobian
in (0, 0.2) and [0.2, 0.4) of the all-hex meshes generated by our
CVIF algorithm (Table 2) are much smaller than those produced by
MeshGems-Hexa (Table 3).

4.1. Limitations and future work

One limitation of the CVIF algorithm lies in the feature
preservation. Because the sharp edges on the triangular mesh
model are not considered in the voxelization procedure, not
all of the sharp edges on the triangular mesh model have
correspondences on the boundary mesh of the all-hex mesh model.
This makes the feature preservation results unsatisfactory in some
cases, and restricts the application domain of the developed
method. As the future work, the feature preservation capability
will be improved by both considering the sharp edges in the
voxelization procedure, and performing pillowing operation in the
post-processing procedure.

On the other hand, the speed of the CVIF algorithm is a bit slow.
However, this algorithm is easy to parallelize. In the future, we will
implement the algorithm by GPU to improve the running speed.

Another limitation of the CVIF algorithm is that the number
of the singular vertices on the boundary mesh of the generated
all-hex mesh model is a bit large. The singular vertices on the
boundary mesh are introduced in the initial all-hex control mesh

by voxelization. As a future work, the voxelization rule will be
improved to reduce the number of the singular vertices.

As stated above, the initial all-hex mesh has great influence
on the finally generated all-hex mesh. In Fig. 12, we illustrate an
all-hex mesh model filling the triangular mesh model Fig. 9(a),
generated by the CVIF algorithm. But the initial all-hex mesh
is constructed by the skeleton-based method developed in the
technical report [45]. It can be seen that the two all-hex mesh
models, illustrated in Figs. 9(b) and 12(a) are different. Therefore,
one of our future work is to develop a method to construct the
desirable initial all-hex mesh.

On the other hand, we note that, in each iteration of the
CVIF algorithm, if the weights are chosen appropriately (refer
to Section 3.2), the scaled Jacobian values of the generated all-
hex mesh can be made greater than a suitably assigned value.
In the all-hex mesh model illustrated in Fig. 13, the weights are
so selected that the scaled Jacobian values are greater than 0.2.
But, meanwhile, the fitting precision is made worse when the
termination condition of the iteration is satisfied. In Fig. 13, while
the minimum scaled Jacobian value is 0.2, the fitting precision is
only 0.0017. As a future work, we will improve the CVIF algorithm
so that it not only guarantees the scaled Jacobian values greater
than a suitable value, e.g.,, 0.1, 0.2, but also ensures the fitting
precision at the same time.

5. Conclusion

In this paper, we presented the CVIF algorithm to filling
a given triangular mesh model P with an all-hex mesh. First,
we constructed an initial all-hex mesh by voxelizing the given
triangular mesh P. By adaptive subdivision and boundary mesh
extraction, the boundary quadrilateral mesh V of the generated
voxelization is faithful to the triangular mesh P, thus getting a
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Fig. 11. All-hex meshes filling triangular meshes and their cutaway views,
generated by the CVIF algorithm with one subdivision. (a, b) All-hex meshes of
Ball Joint and Rabbit. (c, d) Cutaway views of the all-hex meshes. (e, f) Distribution
diagrams of the scaled Jacobian.

Fig. 12. The all-hex mesh generated by the CVIF algorithm, starting from the initial
all-hex mesh constructed by a skeleton-based method. (a) The generated all-hex
mesh. (b) The cutaway view of the all-hex mesh in (a).

Fig. 13. If the weights in each iteration of the CVIF algorithm are chosen
appropriately (refer to Section 3.2), the scaled Jacobian values of the generated
all-hex mesh can be made greater than a suitably assigned value, e.g., 0.2. (a) The
generated all-hex mesh. (b) The cutaway view of the all-hex mesh in (a).

desirable initial all-hex mesh for the CVIF algorithm. Next, the
boundary mesh V is fitted to the triangular mesh P iteratively. After
each iteration of the boundary mesh V, the movements of the mesh
vertices of V are diffused into the inner mesh vertices of the all-
hex mesh. In the above iterations, the movements of the boundary
and inner mesh vertices are constrained to ensure that the scaled
Jacobian value at each mesh vertex is larger than 0. Therefore, the
mesh quality of the generated all-hex mesh model is guaranteed.
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