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a b s t r a c t

Surface blending is a useful operation in geometric design for rounding sharp edges or
corners. Meanwhile, NURBS has already become the de facto industrial standard in existing
CAD/CAM systems. Therefore, it is required to study how to blend two B-spline surfaces.
However, two arbitrary B-spline surfaces (called base surfaces) are hard to be blended
with a B-spline surface (called blending surface) because the knot vectors of the two
base surfaces are usually mismatched. In this paper, we proposed a curve-based spline
representation, i.e., the semi-structured B-spline surface, which is generated by skinning
a series of B-spline curves with different knot vectors. By assigning suitable knot vectors
to the head and tail skinned curves, the semi-structured B-spline surface can blend two
B-spline surfaces smoothly without disturbing them at all. We formulated the B-spline
surface blending problem as an optimization problemwith continuity constraints, and the
continuity between the base and blending surfaces can reachG2 or C2. Examples illustrated
in this paper validate the effectiveness and efficiency of our method.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In geometric design, sharp edges are often required to be rounded by the surface blending operation, for aesthetic or
functional reasons. The blending operation generates a blending surface, which connects two or more surfaces, called base
surfaces. In addition, the curves where the blending surfacemeets the base surfaces are called contact curves. Although some
existing methods can blend two parametric base surfaces, the generated parametric blending surface is hard to be exactly
transformed into B-spline representation [1,2]. Since NURBS has already become the de facto industrial standard in existing
CAD/CAM systems [3], it is needed to study how to blend two B-spline surfaces using the B-spline represented blending
surface for data exchanging and further processing.

The main difficulty in blending two B-spline base surfaces with the B-spline blending surface lies that, the knot vectors
of the two contact curves, which are B-spline curves, are mismatched in general. A direct solution for tackling this problem
is to make the two knot vectors identical by knot insertion. However, it will lead to lots of superfluous knots and control
points, which will complicate the following processing, and even worsen the fairness of the B-spline surfaces.

To conquer the difficulty in blending two B-spline surfaces aforementioned, in this paper, we design a curve-based spline
representation, i.e., the semi-structured B-spline surface, which is generated by skinning a series of B-spline curves with
different knot vectors. Therefore, the semi-structured B-spline can blend two B-spline surfaces smoothly without disturbing
them at all, by assigning suitable knot vectors to the head and tail skinned curves of the semi-structured B-spline surface.

The structure of this paper is as follows. The related work is reviewed briefly in Section 1.1. In Section 2, we present the
definition of the semi-structured B-spline surface, and discuss its evaluation and properties. In Section 3, the semi-structured

∗ Corresponding author. Tel.: +86 571 87951860 8304; fax: +86 571 88206681.
E-mail addresses: hwlin@zju.edu.cn, hwlin@zjucadcg.cn (H. Lin).

http://dx.doi.org/10.1016/j.camwa.2014.07.013
0898-1221/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.camwa.2014.07.013
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2014.07.013&domain=pdf
mailto:hwlin@zju.edu.cn
mailto:hwlin@zjucadcg.cn
http://dx.doi.org/10.1016/j.camwa.2014.07.013


H. Lin et al. / Computers and Mathematics with Applications 68 (2014) 706–718 707

B-spline surface is employed to blend two B-spline surfaces. Section 4 introduces the implementation detail. Moreover, Sec-
tion 5 illustrates some examples and lists statistics. Finally, Section 6 concludes the paper.

1.1. Related work

In the following, we will briefly review the work on blending methods and surface representations.
Blending methods: Existing blending methods can be classified into two types according to the number of base surfaces:

two-surface blending, and multiple surface blending. For the multiple surface blending methods, please refer to Ref. [2] and
the references therein. In the following, we will briefly review the two-surface blending methods.

A classicalmethod for the two-surface blending is the rolling-ball method, whichwas invented by Choi and Ju in [4] using
a constant radius rolling-ball, and further extended in [5] with variable radius rolling-balls. Moreover, the constant radius
rolling-ball blending surface was approximated by rational tensor-product patches [6]. The differential properties of the
variable radius rolling-ball blending surface was analyzed on the basis of the theory of envelopes and discriminant sets [7].
In addition, Ref. [8] described varieties of the rolling-ball blending in kernel boundary modelers emphasizing topology,
algorithms and the program structure. However, not only the rolling-ball blending surfaces can only reach G1 continuity
with the base surfaces, but the flexibility is low as well, because the generated blending surface is fixed to be a circular
surface.

Moreover, Belkhatir et al. developed amethod tomaintain the C1G2 continuity of the Bézier curve shape-blending process
by adjusting the control points of such curves [9]. Later, this method was extended to reach C1G2 continuity in blending two
Bézier surfaces [10]. In [11], two parametric surfaces were blended by the Hermite interpolation with a Bézier curve or a
C-Curve, respectively. To attain G2 continuity between the base and blending surfaces, the Bézier curve is required to be
quintic, and the blending surface is hard to be transformed into the B-spline representation [11]. However, by our method,
to reach G2 continuity between the base and blending surfaces, the blending semi-structured B-spline surface is just cubic,
and it is easy to be transformed into the B-spline representation. In addition, a method was presented in [12] to construct
G1 Bézier surfaces over a boundary curve network with T-junctions.

To our knowledge, there is only one work which employs B-spline surface as blending surface to blend two B-spline base
surfaces [13]. However, the method presented in [13] not only requires the two B-spline base surfaces have the same knot
vector in the blending direction, but the generated blending surface can reach just G1 (or C1) continuity with base surfaces.

According to the extensive survey on blending methods [1], though there are lots of methods focused on parametric
blending, a few of them can generate G2 or higher order continuous parametric blending surface with base parametric
surfaces. To raise the continuity between the blending and base surfaces toG2 (or C2), Bloor andWilson developed a blending
method by solving partial differential equations [14,15]. However, the analytical solution of a partial differential equation
is hard to be obtained, and it is usually solved by numerical methods to get approximate solution. Although the method
presented in [16] can generate blendingwith high-order continuity in theory, it needs higher-order derivatives of the surface
to be blended, whose closed form formula may not be computationally viable.

Moreover, Erich Hartmann presented a blending method to generate Gn parametric blending surfaces by a linear
combination of base surfaces along one of the common parameters [17]. This methodwas improved by Song andWang [18],
developing a partial reparameterization method of base surfaces. Although these methods can generate blending surfaces
with high order continuity with base surfaces, the generated blending surface can only be approximately transformed into
a NURBS representation in general.

Surface representations: The semi-structuredB-spline is a generalization of the classicalB-spline. In the past years,B-spline
has been extended to several representations, including the semi-regular B-spline [19,20], T -spline [21], and the spline
proposed by Hayes [22,23]. While the semi-structured B-spline is a curve-based spline, the semi-regular B-spline [19,20]
and T -spline [21] are point-based splines, and allow a knot line to terminate inside the parametric domain. On the other
hand, though the spline proposed by Hayes [22,23] and the semi-structured B-spline are both curve-based splines, and
both permit different knot vectors in one parametric direction, Hayes’ spline needs the numbers of knots in different knot
vectors are identical, while semi-structured B-spline allows that different knot vectors have different number of knots.
Finally, though Hu et al. studied the problem of subdividing a Bézier patch along a Bézier function [24,25], they did not note
the semi-structure of the subdivided patches.

2. Semi-structured B-spline surfaces

It is well known that the control points of a B-spline surface can be arranged as a grid. Each row of the grid has the same
number of control points; so does each column. Therefore, the classical B-spline surface is a patch-based spline with struc-
tured control grid. Unlike the classical B-spline surface, the semi-structured B-spline surface is a curve-based spline surface,
which is defined as follows.

Definition 1. The semi-structured B-spline surface is represented as,

P(u, v) =

m
i=0

Pi(v)Bi,k(u;U) =

m
i=0


ni
j=0

PijBj,l(v; Vi)


Bi,k(u;U), (u, v) ∈ [us, ue] × [vs, ve], (1)
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Fig. 1. A semi-structured B-spline surface with its control points.

where, Pi(v) =
ni

j=0 PijBj,l(v; Vi) is called a v-control curve, {Bi,k(u;U), i = 0, 1, . . . ,m} are B-spline basis functions of
order k, defined on the knot vector,

U = {u0, u1, . . . , um+k};

{Bj,l(v; Vi), j = 0, 1, . . . , ni} are B-spline basis functions of order l, defined on the knot vector,

Vi = {vi
0, v

i
1, . . . , v

i
ni+l}.

It can be seen from the above definition that, the knot vectorsVi of v-control curvesPi(v), i = 0, 1, . . . ,m can be different.
The generation of the semi-structured B-spline surface (1) can be considered as a skinning procedure. First, we generate

a series of v-control curves,

Pi(v) =

ni
j=0

PijBj,l(v; Vi), v ∈ [vs, ve], i = 0, 1, . . . ,m, (2)

where each curve has different knot vector Vi, and then, the semi-structured B-spline surface (1) is the blending of these
v-control curves, i.e.,

P(u, v) =

m
i=0

Pi(v)Bi,k(u;U), (u, v) ∈ [us, ue] × [vs, ve]. (3)

In this meaning, the semi-structured B-spline surface (1) is a curve-based spline. For clarity, we illustrate a semi-structured
B-spline surface with its control points along each v-control curve in Fig. 1, where the numbers of the control points of its 7
pieces of v-control curves are 5, 5, 5, 7, 6, 6, 6, respectively.

Example: The following example shows that the semi-structured surface exists naturally. Consider a Bézier patch,

P(u, v) =

m
i=0

n
j=0

PijBm
i (u)Bn

j (v), (u, v) ∈ [0, 1] × [0, 1], (4)

where, Bm
i (u), and Bn

j (v) are Bernstein polynomials. If its domain is divided into two sub-domains, namely D1 and D2
(see Fig. 2(a)), by a Bézier function,

v(t) =

k
i=0

viBk
i (t), t ∈ [0, 1], vi ∈ [0, 1], i = 0, 1, . . . , k, (5)

with control point (i/k, vi), the original Bézier patch (4) is correspondingly divided into two sub-patches P1(u, v) and
P2(u, v), which are semi-structured patches, respectively (Fig. 2(b)).

In fact, as illustrated in Fig. 2(b), the representations of the bottom sub-patch P1(u, v) and the top sub-patch P2(u, v) can
be written as,

P1(u, v) =

n
s=0

Q s
0(u)B

n
s (v), and P2(u, v) =

n
s=0

Q n−s
s (u)Bn

s (v), (6)
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Fig. 2. Generate semi-structured Bézier surfaces by dividing the domain of a Bézier surface into two sub-domains. (a) Dividing the domain by a Bézier
function. (b) The numbers of the control points in each row of the control nets of two semi-structured Bézier surfaces.

Fig. 3. The semi-structured Bézier patch can exactly represent a trimmed patch. (a) The original bi-cubic Bézier patch. (b) The parametric domain with
trimming curves. (c) The trimmed patch, where Q1, Q2, Q3 , and Q4 are semi-structured Bézier patches.

where,

Q s
j (u) =

m+sk
l=0


i+j1+···+js=l

m
i

 s
r=1


k
jr




m+sk
i+j1+···+js

 P s
ij[vj1 , vj2 , . . . , vjs ]B

m+sk
i+j1+···+js(u) with j = 0, 1, . . . , n − s, s = 1, 2, . . . , n.

Here, P s
ij[vj1 , vj2 , . . . , vjs ] are the ith column blossom [26,27] of the Bézier patch (4), which is defined recursively, for each

column i = 0, 1, . . . ,m,

(1) P1
ij [vj1 ] = (1 − vj1)Pij + vj1Pi,j+1, j = 0, 1, . . . , n − 1;

(2) P s
ij[vj1 , vj2 , . . . , vjs ] = (1 − vjs)P

s−1
ij [vj1 , . . . , vjs−1 ] + vjsP

s−1
i,j+1[vj1 , . . . , vjs−1 ],

j = 0, 1, . . . , n − s, s = 2, 3, . . . , n.

Referring to Eq. (6) and Fig. 2(b), the bottom sub-patch P1(u, v) is the blending of n + 1 pieces of Bézier curves
Q 0

0 (u),Q 1
0 (u), . . . ,Q n

0 (u). The first curve Q 0
0 (u) has m + 1 control points; the second curve Q 1

0 (u) has m + k + 1 control
points; · · ·; the last curve Q n

0 (u) has m + nk + 1 control points. Therefore, the bottom sub-patch is a semi-structure patch.
So is the top sub-patch P2(u, v) (Fig. 2(b)). It is also the blending of n + 1 pieces of Bézier curves Q n

0 (u) with m + nk + 1
control points, Q n−1

1 (u) withm + (n − 1)k + 1 control points, · · ·, and Q 0
n (u) with m + 1 control points.

To present a concrete example, we employ the semi-structured Bézier patch to exactly represent a trimmed patch. As
illustrated in Fig. 3, the original Bézier patch P(u, v), (u, v) ∈ [0, 1] × [0, 1] in Fig. 3(a) is trimmed out a region enclosed by
the following four Bézier functions (refer to Fig. 3(b)):

c1 : u = 0.3B2
0


v−0.4
0.2


+ 0.1B2

1


v−0.4
0.2


+ 0.25B2

2


v−0.4
0.2


, v ∈ [0.4, 0.6],

c2 : u = 0.8B1
0


v−0.2
0.3


+ 0.75B1

1


v−0.2
0.3


, v ∈ [0.2, 0.5],

c3 : v = 0.4B3
0

 u−0.3
0.5


+ 0.7B3

1

 u−0.3
0.5


+ 0.1B3

2

 u−0.3
0.5


+ 0.2B3

3

 u−0.3
0.5


, u ∈ [0.3, 0.8],

c4 : v = 0.6B3
0

 u−0.25
0.5


+ 0.8B3

1

 u−0.25
0.5


+ 0.3B3

2

 u−0.25
0.5


+ 0.5B3

3

 u−0.25
0.5


, u ∈ [0.25, 0.75].
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Fig. 4. The semi-structured B-spline surface P(u, v) is employed to blend two base B-spline surfaces R(w, v) and S(t, v). Note that the v-directional knot
vectors of R(w, v) and S(t, v) are different.

To generate the trimmed patch, the original Bézier patch (Fig. 3(a)) is first segmented using de Casteljau algorithm at
v = 0.4 and v = 0.6, producing the sub-patch P̄(u, v), (u, v) ∈ [0, 1] × [0.4, 0.6], which contains the trimming curve
c1 (Fig. 3(b)). Then, the sub-patch P̄(u, v) is segmented at the trimming curve c1, resulting in two semi-structured patches.
One of them is the patch Q1 (Fig. 3(b) and (c)). In this way, we get the exact representation of the trimmed patch Q1, which
is a semi-structured patch. Similarly, the exact representations of the other three patches, Q2,Q3, and Q4 can be produced,
which are all semi-structured patches (Fig. 3(b)). In addition, the four patches P1, P2, P3, and P4 (Fig. 3(b)) can be generated
using the classical de Casteljau algorithm, which are all regular Bézier patches (Fig. 3(c)).

Evaluation: The classical B-spline surface has a structured control grid, so it can be evaluated by the de Boor algorithm [28]
along arbitrary parameter order, i.e., first u-direction, and then v-direction; or first v-direction, and then u-direction. Sim-
ilarly, the semi-structured B-spline surface can also be evaluated by the de Boor algorithm, with the parameter order for
evaluation specified by the definition of the semi-structured B-spline surface. For example, if we want to evaluate the
value at (u0, v0) of the semi-structured B-spline surface defined by Eq. (1), the evaluation should be performed first along
v-direction, calculating a series of points Pi(v0) on the series of curves Pi(v) from Eq. (2), and then, performed along
u-direction, generating the point P(u0, v0).

Property: It can be derived easily from the definition of the semi-structured B-spline surface (Eq. (1)) that, the
semi-structured B-spline surface holds the majority of properties of the classical B-spline surface, such as, convex-hull,
affine invariance, localness, etc. We only mention some differences between the semi-structured and classical B-spline in
the following.

• Continuity control: According to Eqs. (1)–(3), since each curve Pi(v) has its own knot vector, the continuity at each knot
of Pi(v) can be controlled independently. It is more flexible than the classical B-spline surface.

• Transformation: Moreover, the semi-structured B-spline surface can easily be transformed into the classical B-spline
representation by the knot insertion.

• Derivatives: However, the semi-structured B-spline surface definition (1) also brings some inconveniences. For example,
while the partial derivatives of the classical B-spline surface (1) can still be represented as B-spline forms with lower
degrees, the u-directional partial derivatives of the semi-structured B-spline surface (1) are hard to be represented as
B-spline forms.

3. B-spline surface blending

Suppose we are given two base B-spline surfaces with the same order along v-direction, (see Fig. 4),

R(w, v) =

mr
i=0

nr
j=0

RijBj,l(v)Bi,kr (w), (w, v) ∈ [ws, we] × [vs, ve], (7)

defined on the knot vectors,

W = {w0, w1, . . . , wmr+kr }, and V r
= {vr

0, v
r
1, . . . , v

r
nr+l}, (8)

and,

S(t, v) =

ms
i=0

ns
j=0

SijBj,l(v)Bi,ks(t), (t, v) ∈ [ts, te] × [vs, ve], (9)

defined on the knot vectors,

T = {t0, t1, . . . , tms+ks}, and V s
= {vs

0, v
s
1, . . . , v

s
ns+l}, (10)
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which have Bézier end conditions, i.e.,

w0 = w1 = · · · = wkr−1, wmr+kr = wmr+kr−1 = · · · = wmr+1;

vr
0 = vr

1 = · · · = vr
l−1, vr

nr+l = vr
nr+l−1 = · · · = vr

nr+1;

t0 = t1 = · · · = tks−1, tms+ks = tms+ks−1 = · · · = tms+1;

vs
0 = vs

1 = · · · = vs
l−1, vs

ns+l = vs
ns+l−1 = · · · = vs

ns+1.

The two B-spline surfaces are required to be blended with R(ws, v) and S(ts, v) as contact curves (Fig. 4).
Although the domains of the two contact curves are both [vs, ve], their knot vectors aremismatched, i.e., the knot vector of

one contact curveR(ws, v) is V r
= {vr

0, v
r
1, . . . , v

r
nr+l}, and that of the other contact curve S(ts, v) is V s

= {vs
0, v

s
1, . . . , v

s
ns+l},

where, vr
l−1 = vs

l−1 = vs, vr
nr+1 = vs

ns+1 = ve. Therefore, the two base B-spline surfaces (7) and (9) cannot be blended by a
classical B-spline surface directly.

However, using the semi-structured B-spline surface P(u, v), the two base B-spline surfaces (7) and (9) can be blended
naturally, without disturbing the two base surfaces. Actually, we want to generate a blending semi-structured B-spline
surfacewhich stitches continuously (i.e., C1, G1, C2, orG2) with the two base surfaces, while its quality is as high as possible.
In geometric design, the quality of a surface P(u, v) is generally measured by the strain energy E(P(u, v)), i.e., the integral
of the squared principal curvatures over the parameter space [29]. The smaller the energy E(P(u, v)), the better the quality
of the surface P(u, v). Because the computation of the strain energy is considerable, it is usually approximated by the thin
plate energy [29], i.e.,

E(P(u, v)) =

 ue

us

 ve

vs

∂2P(u, v)

∂u2

2 + 2
∂2P(u, v)

∂u∂v

2 +

∂2P(u, v)

∂v2

2

dudv. (11)

Therefore, the generation of the blending semi-structured B-spline surface can be formulated as a constrained optimization
problem:

min
Pij

E(P(u, v))

s.t. continuity condition,
(12)

where, the objective function is the thin plate energy (11) of the semi-structured B-spline surface P(u, v).
To make the blending reach G2 or C2, the semi-structured B-spline surface P(u, v) is defined as follows (Fig. 4):

P(u, v) =

m
i=0

Pi(v)Bi,k(u;U) =

m
i=0


ni
j=0

PijBj,l(v; Vi)


Bi,k(u;U), (u, v) ∈ [0, 1] × [vs, ve], (13)

where, n0 = n1 = n2 = nr , and V0 = V1 = V2 = V r (8); nm−2 = nm−1 = nm = ns, and Vm−2 = Vm−1 = Vm = V s (10); on
the other hand,

U = {0, . . . , 0,  
k

u1, u2, . . . , um−k+1, 1, . . . , 1  
k

}, (m ≥ k + 1).

In otherwords, the blending semi-structured B-spline surface P(u, v) (13) is so constructed that, the order and knot vector of
the first three v-control curves Pi(v), i = 0, 1, 2, are the same as those of the contact curve on the base surface R(w, v); the
order and knot vector of the last three v-control curves Pi(v), i = m−2,m−1,m, are the same as those of the contact curve
on the base surface S(t, v) (Fig. 4). In our implementation, ui are chosen uniformly, i.e., ui =

i
m−k+2 , i = 1, 2, . . . ,m−k+1.

In general, the less control points the blending surface has, the better its quality is. Then, the control points of a blending
surface should be as fewas possible to generate a high quality blending surface. Therefore, in our implementation,we employ
two kinds of blending surfaces: One has no middle v-control curve; the other has just one middle v-control curve P3(v).

When there is one middle v-control curve P3(v), its knot vector should reflect the influences of the first three and last
three v-control curves. Therefore, the knot vector of the v-control curve P3(v) is constructed in the following manner. First,
we merge the two knot vectors

{vr
l , v

r
l+1, . . . , v

r
nr }, and {vs

l , v
s
l+1, . . . , v

s
ns},

and make the multiple knots be single, leading to a knot vector

Vn = {v1, v2, . . . , vn}.

Next, the inner knots of the knot vector of P3(v) are generated by averaging adjacent knots of Vn, i.e.,
v2i−1+v2i

2 . Finally, the so
generated partial knot vector ismade to be Bézier end conditions by adding l-multiple vs and l-multiple ve. After constructing
the knot vector of P3(v), its control points can be determined by solving the optimization problem (12).

Geometric continuity condition: The optimization problem (12) is constrained by the continuity condition [30]. In the
following, we list the sufficient conditions for G0,G1, and G2 continuity between the base surfaces (7), (9) and the blending
surface (13) (refer to Fig. 4), and append their derivation in the Appendix.
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• G0 or C0 continuity condition:
(1.1) P0j = R0j, j = 0, 1, . . . , nr ,
(1.2) Pm,j = S0j, j = 0, 1, . . . , ns;

• G1 continuity condition: In addition to (1.1) and (1.2), they should also satisfy:
(2.1) P1j =

α2u1(kr−1)
(wkr −ws)(k−1) (R0j − R1j) + P0j, j = 0, 1, . . . , nr ,

(2.2) Pm−1,j =
β2(1−um−3)(ks−1)

(tks−ts)(k−1) (S0j − S1j) + Pm,j, j = 0, 1, . . . , ns;
• G2 continuity condition: In addition to (1.1), (1.2), and, (2.1), (2.2), they should also satisfy:

(3.1) P2j =
α4u1(kr−1)(kr−2)

(wkr −ws)(k−1)(k−2) (R0j − 2R1j + R2j) + 2P1j − P0j, j = 0, 1, . . . , nr ,

(3.2) Pm−2,j =
β4(1−um−3)(ks−1)(ks−2)

(tks−ts)(k−1)(k−2) (S0j − 2S1j + S2j) + 2Pm−1,j − Pm,j, j = 0, 1, . . . , ns.

where α, β are two variables related to the reparameterization. Specifically, conditions (1.1), (2.1), and (3.1) present the
continuity conditions between the base surface R(w, v) (7) and the blending surface P(u, v) (13); conditions (1.2), (2.2),
and (3.2) designate the continuity conditions between S(t, v) and P(u, v).

Parametric continuity condition: Accordingly, when α = β = 1, the geometric continuity conditions become parametric
continuity conditions.

4. Implementation

In our implementation, we take k = 4 in P(u, v) (13).
Solutionwith C2 condition: If there is nomiddle v-control curve, the control points of the first three and last three v-control

curves can be determined directly by the parametric continuity conditions. However, if there are some middle v-control
curves, their control points should be generated by solving the optimization problem (12).

The constrained optimization problem (12) can be made constraint free by directly substituting the C1 or C2 condition
into the object function (11). Since the object function after substitution is quadratic, it can be settled by solving its normal
equation, i.e., a linear system of equations. In the following, we present the linear system for solving the optimization
problem (12) with C2 continuity conditions (i.e., with α = β = 1). The linear system for solving the problem (12) with
C1 continuity conditions (i.e., with α = β = 1) can be derived similarly.

Specifically, the solution of the optimization problem (12) with C2 continuity constraints can be obtained by solving the
linear system as follows:

AXT
= −BNT , (14)

where, X = [P30, P31, . . . , P3,n3 , . . . , Pm−3,0, Pm−3,1, . . . , Pm−3,nm−3 ], are the unknown control points, and,
N = [P00, P01, . . . , P0,n0 , P10, . . . , P1,n1 , . . . , P20, . . . , P2,n2 , Pm−2,0, . . . , Pm−2,nm−2 , . . . , Pm,0, . . . , Pm,nm ],

are determined by the C2 continuity conditions. Moreover,
A = CT

uuCuu + 2CT
uvCuv + CT

vvCvv, B = CT
uuDuu + 2CT

uvDuv + CT
vvDvv,

where,
Cuu = [a30, . . . , a3,n3 , . . . , am−3,0, . . . , am−3,nm−3 ],

Cvv = [b30, . . . , b3,n3 . . . , bm−3,0, . . . , bm−3,nm−3 ],

Cuv = [c30, . . . , c3,n3 . . . , cm−3,0, . . . , cm−3,nm−3 ],

Duu = [a00, . . . , a0,n0 , . . . , a20, . . . , a2,n2 , am−2,0, . . . , am−2,nm−2 , . . . , am,0, . . . , am,nm ],

Dvv = [b00, . . . , b0,n0 , . . . , b20, . . . , b2,n2 , bm−2,0, . . . , bm−2,nm−2 , . . . , bm,0, . . . , bm,nm ],

Duv = [c00, . . . , c0,n0 , . . . , c20, . . . , c2,n2 , cm−2,0, . . . , cm−2,nm−2 , . . . , cm,0, . . . , cm,nm ],

with,

aij =

 ue

us

 ve

vs

B′′

i (u;U)Bj(v; Vi)dudv,

bij =

 ue

us

 ve

vs

Bi(u;U)B′′

j (v; Vi)dudv,

cij =

 ue

us

 ve

vs

B′

i(u;U)B′

j(v; Vi)dudv.

Solution with G1 or G2 conditions: After substituting the G1 or G2 continuity condition into the object function (11), it
becomes quartic function or degree eight function, respectively. Meanwhile, the constrained optimization problem (12)
changes to unconstrained. We employ the Matlab function fminunc [31], which uses the BFGS Quasi-Newton method with
a cubic line search procedure [32], to solve the unconstrained optimization problem. In addition, the solution with C2

continuity conditions are taken as the initial value input to the function fminunc.With the desirable initial value, fminunc just
needs several steps to converge to a local minimum in all of the following blending results with the geometric continuity.
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Fig. 5. Two planar patches are blended by our method (a, b, c) and the method developed in [13] (d, e, f), respectively. While our method can reach C2

continuity, the method in [13] can attain just G1 continuity. (a, d) Rendering result; (b, e) mean curvature on the base and blending surfaces; (c, f) zebra on
the base surfaces (in green) and blending surface (in red). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

5. Blending results

The semi-structured B-spline blending method developed above has been implemented with Visual C++ and Matlab,
and run on a PC with Intel Core2 Quad CPU Q9400 2.66 GHz and 4 Gmemory. We tested our algorithm by a lot of examples,
and listed the statistics in Table 1, including model size, computational time, surface energy, and range of mean curvatures.
In all of the examples, the base surfaces and blending surface are all taken as bi-cubic surfaces, since the cubic curve and
surface are the most frequently employed in the geometric design.

The blending results by our method is illustrated in Figs. 5, 6, and 8–11. Each of the blending surfaces in Figs. 5, 6, 8,
and 9 has one middle v-control curve, and the blending surfaces in Figs. 10 and 11 have not the middle v-control curve.
In each example, besides the rendering result, we also display the mean curvatures on the base and blending surfaces to
demonstrate the bending energy, and the zebra to validate the C2 (G2) continuity between the base and blending surfaces.
Moreover, our method is compared with the method developed in [13] (refer to Fig. 5(d)–(f)), and the method presented in
[17] (see Fig. 7).

In Fig. 5, two planar patches (in green) are blended by a piece of semi-structured B-spline surface (in red) (see
Fig. 5(a)–(c)). Although the knot vectors of the two contact curves are different, one is [0, 0, 0, 0, 1

2 , 1, 1, 1, 1], and
the other is [0, 0, 0, 0, 1

3 ,
2
3 , 1, 1, 1, 1], a piece of semi-structured B-spline surface can blend the two base surfaces with

C2 continuity. The mean curvature (Fig. 5(b)) and zebra (Fig. 5(c)) on the base and blending surfaces show the curvature
continuity among them.
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Table 1
Statistics on the semi-structured B-spline blending method.

Models in Model sizea Timeb Energyc Range of mean curvature
Model 1 Model 2

Fig. 5 6 × 5 6 × 6 0.4515 3.09 × 106 [0.0000, 0.0817]
Fig. 6 5 × 10 5 × 8 1.4599 3.15 × 106 [0.0000, 0.2581]
Fig. 8 6 × 6 6 × 5 0.4520 2.44 × 106 [0.0000, 0.3822]
Fig. 9 6 × 6 6 × 5 0.4331 3.62 × 106 [0.0000, 0.2834]
Fig. 10 10 × 10 8 × 8 1.6294 2.99 × 106 [0.0000, 0.1645]
Fig. 11 4 × 10 5 × 64 5.5418 6.78 × 106 [0.0000, 1.0613]
a The model size is measured by the size of the control net.
b Computational time is in seconds.
c Surface energy is measured by Eq. (11).

Fig. 6. Blend a planar patch and a curved surface with a semi-structured B-spline surface (in red) with G2 continuity. (a) Rendering result; (b) mean
curvature on the base surfaces and blending surface; (c) zebra on the base surfaces (in green) and blending surface (in red). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Moreover, our method is compared with the one developed in [13]. Since the method in [13] requires that the two
contact curves have the same knot vectors, we change the representation of the two base planar patches, and make their
v-directional knot vectors both be [0, 0, 0, 0, 1

2 , 1, 1, 1, 1]. The blending results are illustrated in Fig. 5(d)–(f). It can
reach justG1 continuity between base and blending surfaces, and the curvature discontinuity is clearly revealed by themean
curvature distribution in Fig. 5(e) and the zebra in Fig. 5(f).

In Fig. 6, a planar patch and a curved surface are blended by a piece of semi-structured B-spline surfacewithG2 continuity.
The knot vector of the contact curve on the planar patch is

[0, 0, 0, 0, 0.15, 0.28, 0.48, 0.55, 0.70, 0.86, 1, 1, 1, 1];

the knot vector of the contact curve on the curved surface is

[0, 0, 0, 0, 0.22, 0.39, 0.61, 0.76, 1, 1, 1, 1].

The G2 continuity among the base and blending surfaces is validated by the mean curvature distribution (Fig. 6(b)), and the
zebra on them (Fig. 6(c)). In this example, the Matlab function fminunc costs 5 iterations to generate the blending result
with G2 continuity.



H. Lin et al. / Computers and Mathematics with Applications 68 (2014) 706–718 715

Fig. 7. Blend the planar patch and the curved surface, same as those in Fig. 6, by the method presented in [17]. The blending result lies in the convex hull
of the two base surfaces, and then the blending is along the reverse direction. (a) One side view; (b) the other side view.

Fig. 8. Blend two part cylindrical patches of different radius by a semi-structured B-spline surface with C2 continuity. (a) Rendering result; (b) mean
curvature distribution on the base and blending surfaces; (c) zebra on the base surfaces (in green) and blending surface (in red). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

On the other hand,we also blend theplanar patch and the curvedpatch, sameas those in Fig. 6,with themethodpresented
in [17]. Since the blending result by the method in [17] is the convex combination of portions of two base surfaces, it lies in
the convex hull of the two base surfaces, and then the blending is along the reverse direction (see Fig. 7).

In Figs. 8 and 9, two part cylindrical patches of different radius are blended by semi-structured B-spline surfaces
with different postures, respectively. The knot vector of the contact curve on the cylindrical patch with larger radius is
[0, 0, 0, 0, 0.3, 0.7, 1, 1, 1, 1]; that on the cylindrical patch with smaller radius is [0, 0, 0, 0, 0.5, 1, 1, 1, 1].
Although the two postures differ greatly, the two semi-structured B-spline blending surfaces are both made C2 continuity
with the corresponding base surfaces, which are validated by the mean curvature distribution (Figs. 8(b), 9(b)), and zebra
(Figs. 8(c), 9(c)) on them.

Moreover, the example in Fig. 10 demonstrates the capability of employing the semi-structured B-spline surface to blend
two complete cylindrical patches. While the knot vector of one contact curve is,

[0, 0, 0, 0, 0.142857, 0.285714, 0.428571, 0.571429, 0.714286, 0.857143, 1, 1, 1, 1],

that of the other contract curve is,

[0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1].

The blending meets G2 continuity (see Fig. 10(b), (c)). It should be pointed out that, in this example, the semi-structured
B-spline blending surface has no middle v-control curve. After 6 iterations, the Matlab function fminunc converges to the
blending result with G2 continuity.



716 H. Lin et al. / Computers and Mathematics with Applications 68 (2014) 706–718

Fig. 9. Blend two part cylindrical patches, same as those in Fig. 8 but with different posture, by a piece of semi-structured B-spline surface. The blending
is still reach C2 continuity. (a) Rendering result; (b) mean curvature distribution; (c) zebra on the base surfaces (in green) and blending surface (in red).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Blend two complete cylindrical patches with a piece of semi-structured B-spline surface with G2 continuity. (a) Rendering result; (b) mean
curvature distribution; (c) zebra on the base surfaces (in green) and blending surface (in red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Finally, a conical surface and a free-form surface are blended by a semi-structure B-spline surface without middle
v-control curve in Fig. 11. Although the contact curve on the free-form surface has 64 control points, and the contact curve on
the conical surface has 10 control points, they successfully attain G2 continuity with the blending semi-structured B-spline
surface (refer to Fig. 11(b) and (c)).
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Fig. 11. Blend a conical surface and a free form surface with a piece of semi-structured B-spline surface with G2 continuity. (a) Rendering result; (b) mean
curvature distribution; (c) zebra on the base surfaces (in green) and blending surface (in red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

6. Conclusion

In this paper, we develop the semi-structured B-spline surface, which is a curve-based spline representation generated
by skinning a series of B-spline curves with different knot vectors. The so developed semi-structured B-spline surface can
blend two base B-spline surfaces withmismatched knot vectors, and the continuity between the base and blending surfaces
can reach G2 and C2. Since surface blending is an important operation in geometric design, and NURBS has become the de
facto industrial standard, our algorithm will have wide applications in geometric design. However, the main difficulty in
constructing the semi-structured B-spline blending surface is how to arrange its u-knots and v-knots. As a future work, a
more reasonable and automatic method for arranging the u-knots and v-knots is required to be developed.
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Appendix

We only derive the continuity conditions between the base surface R(w, v) (7) and the blending surface P(u, v) (13), i.e.,
(1.1), (2.1), and (3.1). The other continuity conditions (1.2), (2.2), and (3.2) can be gotten similarly.

Since the two surfaces R(w, v) and P(u, v) should have the same contact curve, the G0 (or C0) continuity condition (1.1)
is obvious.

According to Ref. [30], we have,
• The necessary and sufficient condition for two adjacent surfaces P(u, v) (13) and R(w, v) (7) joining G1-continuously

along a common boundary curve C(v) is that, there exist functions p1(v) and q1(v) such that the following equation
holds along C(v):

∂P
∂u

= p1(v)
∂R
∂w

+ q1(v)
∂R
∂v

. (15)

• The necessary and sufficient conditions for the above two surfaces P(u, v) and R(w, v) joining G2-continuously along
C(v) are that, in addition to Eq. (15), there exist functions p2(v) and q2(v) such that the following equation holds along
C(v):

∂2P
∂u2

= p2(v)
∂R
∂w

+ q2(v)
∂R
∂v

+ p21(v)
∂2R
∂w2

+ 2p1(v)q1(v)
∂2R

∂w∂v
+ q21(v)

∂2R
∂v2

. (16)

Letting p1(v) = α2, q1(v) = p2(v) = q2(v) = 0, Eqs. (15) and (16) change to,

∂P(u, v)

∂u


u=0

= α2 ∂R(w, v)

∂w


w=ws

, (17)

∂2P(u, v)

∂u2


u=0

= α4 ∂2R(w, v)

∂w2


w=ws

. (18)
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Therefore, by Eq. (17) and,

∂P(u, v)

∂u


u=0

=
k − 1
u1

nr
j=0

(P1j − P0j)Bj,l(v; V r),

∂R(w, v)

∂w


w=ws

=
kr − 1

wkr − ws

nr
j=0

(R1j − R0j)Bj,l(v; V r),

we get the condition (2.1); by Eq. (18) and,

∂2P(u, v)

∂u2


u=0

=
(k − 1)(k − 2)

u1

nr
j=0

(P2j − 2P1j + P0j)Bj,l(v; V r),

∂2R(w, v)

∂w2


w=ws

=
(kr − 1)(kr − 2)

wkr − ws

nr
j=0

(R2j − 2R1j + R0j)Bj,l(v; V r),

we get the condition (3.1).
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