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The progressive and iterative approximation (PIA) method is an efficient and intuitive method for data
fitting. However, in the classical PIA method, the number of the control points is equal to that of the data
points. It is not feasible when the number of data points is very large. In this paper, we develop a new
progressive and iterative approximation for least square fitting (LSPIA). LSPIA constructs a series of fitting
curves (surfaces) by adjusting the control points iteratively, and the limit curve (surface) is the least square
fitting result to the given data points. In each iteration, the difference vector for each control point is a
weighted sum of some difference vectors between the data points and their corresponding points on the
fitting curve (surface). Moreover, we present a simple method to compute the practical weight whose
corresponding convergence rate is comparable to that of the theoretical best weight. The advantages of
LSPIA are two-fold. First, with LSPIA, a very large data set can be fitted efficiently and robustly. Second,
in the incremental data fitting procedure with LSPIA, a new round of iterations can be started from the
fitting result of the last round of iterations, thus saving great amount of computation. Lots of empirical

examples illustrated in this paper show the efficiency and effectiveness of LSPIA.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Progressive and iterative approximation (PIA) method [1,2] is
an efficient and intuitive method for data fitting. It cannot only
avoid the computational cost of solving a large system of linear
equations, but generate a series of approximation curves or sur-
faces as well. However, in the classical PIA method, the number of
the control points is equal to that of the data points. It is not fea-
sible when the number of data points is very large. Although the
classical PIA method is extended in Ref. [3] to approximate a given
data set, the limit of the generated curve (surface) sequence is not
the least square fitting (LSF) result to the data set. Certainly, the
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least square fitting is one of the most commonly used mathemati-
cal tools in practice. Therefore, in this paper, we devise a progres-
sive and iterative approximation method, namely, progressive and
iterative approximation for least square fitting (abbr. LSPIA), whose
limit is the least square fitting result to a given data set.

Similar as the classical PIA method, LSPIA starts with an initial
blending curve (surface), and constructs a series of fitting curves
(surfaces) by adjusting the control points iteratively. In each itera-
tion, the adjusting vector of each control point is a weighted sum
of some difference vectors between the data points and their cor-
responding points on the fitting curve (surface). Compared with
the traditional least square method, LSPIA has the following ad-
vantages:

e LSPIA can handle point set of large size;
e LSPIA is so flexible that it allows the adjustment of the number
of control points, and knot vector in the iterations;
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e LSPIA s easy to make the fitting curve hold the shape preserving
property;
e LSPIA can be performed in parallel efficiently.

This paper is organized as follows. In Section 1.1, we briefly re-
view the related work. Then we introduce the iterative method of
LSPIA and show its convergence in Section 2. In Section 3, we study
how to assign appropriate values for the weight of LSPIA. After-
wards, Section 4 presents some numerical examples. Section 5 dis-
cusses its advantages and shortcomings, and Section 6 concludes
this paper.

1.1. Related work

The progressive and iterative approximation (PIA) is a new and
effective technique to seek the curve or surface fitting the data
points. The PIA property of the uniform cubic B-spline curve, is first
discovered by Qi et al. [4] and de Boor [5], respectively. Lin et al. [1]
show that the non-uniform cubic B-spline curve and surface also
hold the property. Furthermore, the PIA method is extended to
the blending curve and surface with NTP basis [2]. Moreover, it is
proved that the rational B-spline curve and surface (NURBS) have
the property, too [6]. Lu [7] devises a weighted PIA method to speed
up the convergence of the PIA method. More importantly, Lin [8]
discovers the local property of the PIA, by which PIA can control
the fitting precision of each data point individually. Recently,
the EPIA(extended PIA) method is proposed [3] to fit data using
normalized totally positive (NTP) bases. And Chen et al. [9] show
the convergence of the PIA method for triangular B-B patches at
uniform nodes.

While the PIA method depends on the parametric distance be-
tween the data points and the corresponding foot points on the
curve with the same parameters, Maekawa et al. invent an iterative
fitting method, called interpolation by geometric algorithm [10,11],
which is similar to PIA method, but relies on geometric dis-
tance between the data points and their closest points on the
curve(surface). The geometric interpolation algorithm [10] is ex-
tended to approximate the vertices of a triangular mesh using Loop
subdivision surface [ 12], and point cloud with B-spline surface [13].

The PIA method has been extended to subdivision surface fit-
ting, named progressive interpolation (PI), too. Cheng et al. design
the PI method of subdivision fitting for a Loop subdivision surface
[14], and prove its convergence. Fan et al. develop the PI method
of Doo-Sabin subdivision surface fitting [15]. The PI method for
Catmull-Clark subdivision surface fitting is proposed in [16]. Very
recently, Deng and Ma [17] develop the weighted PIA method for
interpolating mesh by a Loop subdivision surface and give a nu-
merical method for finding an appropriate value of the weight.

2. The progressive and iterative approximation for least square
fitting (LSPIA) and its convergence

In this section, we introduce the LSPIA iterative methods for
blending curves and surfaces in Sections 2.1 and 2.2, respectively.

2.1. The LSPIA iterative method for blending curves

In this section, we present the LSPIA iterative method for
blending curves and show its convergence.
Assume that {Q;};Z, be an ordered point set to be fitted, and

{0 =1ty < t; <--- <ty = 1} be the parameters of {Qj}jm:O. At
the beginning of the iteration, we select {P?}fzo from {Q;} as the
control point set and construct a piece of blending curve P%(t), i.e.,

PO(t) =) Bi(OPY, t € [to, tm] (1)
i=0

Fig. 1. The distribution of 8}‘ to control points.

where {B;(t);i =0, 1, ..., n}is a NTP blending basis. The colloca-

tion matrix of the NTP blending basison {0 = t; < t; < -+ <
tm = 1} is,
Bo(to)  Bi(to) Bn(to)
A | B B @
Bo(tm) B] (tm) Bn(tm)

Remark 2.1. In theory the initial points {Pio}j?:O can be set arbi-
trary.

Letting
§=Q-P), j=0,1,...,m,

and taking the first adjusting vector for the i-th control point as
(see Fig. 1),

m

A = 1) Bi6)8). (3)
j=0

where p is a constant satisfying the condition

2
0 - 4
<,u<}\O (4)

where )¢ is the largest eigenvalue of ATA, we can get the new
control points by,

Pl =Pl 4 A,

and the new curve,

i=0,1,...,n,

P'(t) =) Bi(t)P/.
i=0

Similarly, supposing we have gotten the kth curve PX(t) after
the kth iteration, and letting,

8 =q PG, j=01,....m ®)
m

A =p Y B8, i=0.1.....m ©
Jj=0

P =Pk AF i=0,1,...,n, (7)

the (k 4+ 1)st curve can be generated as,

n
Pk+1 (t) — Z Bi(t)Pi’(+1 .
i=0
In this way, we get a curve sequence {P"(t)},j“;o. In the following
Theorem 2.4, we will prove that the limit of this curve sequence is
just the least square fitting result to the data points {Qj}j”io.

Remark 2.2. From (6) we can see that the adjusting vector Aff
for control point Pl-k is a weighted sum of the difference vectors
(5) related to Pl-", ie, for Bi(tj)) > O, the difference vector 6]’-‘ is
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added to the adjusting vector Af-‘ with weight ©B;(t;). Note that

>t o Bi(t) = 1, we can also see that difference vector 8}‘ is dis-
tributed to the control points which impact Q;. So the intuitional
geometric meaning of LSPIA lies in the following two aspects: as
for the difference vector &, it is distributed to control points ac-
cording to the impact of that control point to Q;; as for the adjust-

ing vector Af‘, it is accumulated by the weighted difference vector
of those data points which are related to PY.

Remark 2.3. For the case of interpolating end points Qy, Q,,, we
just let P = Qy, P? = Q, and P! = P¥ P! = Pkin the
iterative process.

Theorem 2.4. The aforementioned LSPIA iterative method is conver-
gent and the limit curve is the LSF curve of the initial data {Qj}j’“zo.

Proof. As the result of the above iterative procedure, a curve se-
quence {P*(t),k = 0,1,...} is generated. To show its conver-
gence, let

Pt = (Pt P, ... PN,
Q=1{Q.Q.....Q}".
According to Eq. (7), we have

P! = pk 4 MZBi(tj)(Qj — P4(t))

j=0
m n
=ﬂwu2mmh—2wwﬂ.
j=0 =0
Then, we get,
P! = P* 4 LAT(Q — APY), (8)

where A is the collocation matrix (2).
Letting I be the n + 1 rank identity matrixand D = I — uAA,
by (8) we have

P — (ATA)'ATQ = (I — uATA)[PF — (ATA)T'ATQ]
= (I— uATA?[P*! — (ATA)'ATQ]

= D' [P° — (ATA)"'ATQ). (9)

Supposing {1;(D)}(i = 0,1,...,n) are the eigenvalues of D
sorted in non-decreasing order, we get A;(D) = 1 — uA;, where
Ai, i = 0,1,...,n) are the eigenvalues of ATA sorted in non-
decreasing order. Because A is a non-singular matrix, ATA is pos-
itive definite. Noting 0 < p < % we have 0 < uA; < 2, and
-1 < {MD)} < 1,i =0,1,...,nltleadsto 0 < p(D) < 1,
where p (D) is the spectral radius of D. Therefore,

lim D* = (0)n41
k— 00
where (0),1 is the n 4+ 1 rank zero matrix.

By (9), it follows,
P>® — (ATA)f‘lATQ + DOO[PO _ (ATA)f'lATQ]

= (@A'A)'A’qQ.

Itis equivalent to (ATA)P> = AT Q, meaning that the LSPIA is con-
vergent and the limit curve is the LSF result to the initial data. O

Remark 2.5. In many practical applications, P(ty) = Qp, P(t;,) =
Q. are required. In a such case, A and Q are replaced by the
following A, Q [18].

By (t1) By (t1) B,_1(t1)
HECHE G <10>
Bi(tm—1) Ba(tm—1) By1(tm—1)

and Q = [Q; — Bo(t1)Qo — Bn(t1)Qn, @ — Bo(2)Qo — By(t2)Qm,
-+ Qn-1 — Bo(tm-1)Qo — By(tm-1)Qn]". Similar as the Proof of
Theorem 2.4, using A, Q, we can derive the same conclusion that
the limit curve of LSPIA is the LSF curve.

2.2. The LSPIA iterative method for blending surfaces

The LSPIA iterative method for blending curves can be extended
to tensor product surfaces easily. We present the details for the
LSPIA iterative method for blending surfaces in the following.

Assume that {Q;};;"2, is an ordered point set to be fitted, and

,m my,
{ui, v} 2y are the parameters of {Q;} 2.
At the beginning of the iteration, we select {Pp};""0%_ from {Q;}

as the control point set and construct a blending surface P?, i.e.,

np n

Po(u,v) = > > BiwB )P, 0<u, v=<1 (11)

h=0 1=0

where {B;(u), Bj(v); h = 0,1,...,ny,1 = 0,1,...,ny} are NTP
blending bases.
Letting

8 = Qj — P(ui, vy).

and taking the first adjusting vector for the (h, I)-th control point
as

mp  mp

AD =) Y Ba(ui)Bi(v)8], (12)

i=0 j=0

where p is a constant satisfying the condition

4
O<pu<—. (13)
AoAo

Here Jq, Ao are the largest eigenvalues of A’A, A'A, and A, A are
the collocation matrix of {B,(u)}, {B;(v)}, respectively. We can get

the new control points by
PL=PY+ A% h=01,...,n,1=01,...n;,

and the new surface,

. m

P'(u,v)=> > BuwB@P), 0<u, v=<l1.
h 1

Similarly, supposing we have gotten the kth surface P*(u, v)
after the kth iteration, and letting

8 = @ — P*(u;, vy, (14)
mp  my

Af =10 > Br(u)Bi(vy)8, (15)
i=0 j=0

P =P+ AN, h=0,1,...,n,1=0,1,...,n, (16)

the (k + 1)st surface can be generated as,

np

P v) =Y BiwBw)P, 0 <u v <1, (17)
h 1

In this way, we get a surface sequence {P*(u, V)12, Similar as

the proof of the curve case, the limit of this surface sequence is just
the least square fitting result to the data points {Q;};; 2.
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—o— example 1 with p=2/C v —o6— example 3 with y=2/C —6— example 5 with p=2/C
% example 1 with u=p,. |1 re % example 3 with p=y, ] 1r * - example 5 with p=p,. ]
—6— example 2 with p=2/C —6— example 4 with p=2/C —o— example 6 with p=2/C
* - example 2 with p=y, | o8l * - example 4 with u=p, | osl * - example 6 with p=y,
0.6 06}
04t % 041
0.2f 02f
PR 0 PN 0 oo
15 20 25 30 0 25 30 0 5 10 15 20 30
(a) Examples 1 and 2. (b) Examples 3 and 4. (c) Examples 5 and 6.

Fig. 2. Dy for weights u = % and pt = pg (scaled such that Dy = 1).

0.05F .- 0.05} . - 1
o (s off Mw::mw
-0.05 " -0.05} f
0 0.4 06 0.8 1 04 06 08 1

(a) Step 0. (b) Step 1.
0.05 = 0.05 7'2/« ..... M“"‘*«‘..""‘»\ ]
o of .
PPN o0 \M\ f,/"“ 7
0.4 06 0.8 1 0 0.2 0.4 06 08 1

(c) Step 3. (d) Step 5.

0.05F

0 ‘ . R3]
-0.05}" — —
0.4 06 0.8 1 0 0.2 0.4 0.6 08 1

(e)Step 7.

(f) Fitting curve.

Fig. 3. An airfoil-shape data set of 205 data points is fitted by a cubic B-spline curve with 20 control points.

3. Weight selection

As shown in Eq. (6), a weight is required for generating the
adjusting vector. In this section, we will discuss how to select an
appropriate weight to improve the convergence rate of the LSPIA
iterative methods presented in Section 2. For brevity, only the
LSPIA iterative method for blending curves is handled, and the
results for LSPIA iterative method for blending surfaces can be
deduced similarly.

3.1. The theoretical best weight

In Theorem 3.1, we present the best weight which can lead to
the fastest convergence rate.

Theorem 3.1. The LSPIA iterative method (9) described in Sec-
tion 2.1 has the fastest convergence rate when

2
= ———_= s 18
M o + A Mtb (18)
and in such a case,
)LO - )\n
D)= —, 19
p(D) o (19)

where p (D) is the spectral radius of D.

Proof. Clearly, smaller the spectral radius of D is, faster the con-
vergence rate of the iterative method (9) is. For u € (0, %], we

have
p(D) = p(I — pATA) = max{|1 — prol, |1 — why|}
A ho—A
=1—ph,>1-2 2020
Ao Aot Ag

For i € (i, %) two cases are classified as:

(1) If ury, > 1, then
p(D) = pd — pA'A) = max{|1 — prol, |1 — pAnl}
= max{uro — 1, prn — 1} = udo — 1
Ao — An ( 2 )
== T —
I R R P

)LO_)‘n

Ao — A 1 2
> = Tyl — - > .
)L0+)\n )\n )\0+)¥11 }\0+)\n

(2)If ur, < 1, then
p(D) = p(I — uATA)

max{|1 — piol, [1 — pAql}

= max{uro — 1,1 — pdn}

1 2
1—pury,, —<pu< ,
3 HAn o 1% *o + Ay
- N 1 2 - 2
HAo s )\O_F)L“_H o

35
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-10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20

-10 -5 0 5 10 15 20 -10 -5
(e)Step 7. (f) Fitting curve.

o
(9]
>
>
N

Fig.4. A point set of 201 points sampled from a six-degree Bézier curve with random noise is fitted by a cubic B-spline curve with 20 control points.

451 451 - 45p
4 4t 4
350 350 1 350
3 3t 3
25 250 2.5
2 2t 2
15 15F 15
1 1t 1
0.5 0.5+ 0.5
- . 1 t ot ot ot
05 1 15 2 05 1 15 2 05 1 15 2 05 1 15 2 05 1 15 2 05 1 15 2
(a) Step 0. (b) Step 1. (c) Step 3. (d) Step 5. (e) Step 7. (f) Fitting curve.

Fig. 5. A point set of 305 points is fitted by a cubic B-spline curve with 30 control points.

Obviously, o(D) will reach the minimum ;g;;: when u© = Then we define the following weight u for practical applications:
2 .

T This completes the proof. O 2
w=—. (20)

C
3.2. A practical method for selecting an appropriate weight Let D, = ZLO I pik — P>®|, we plot D (k = 1,2,...,30) for
Although ) ides the fastest ; six examples presented in Section 4.2 and two weights u© = %
OU8h My = 7547, provides the fastest convergence rate and g = —2— in Fig. 2. Fig. 2 show that the convergence rates

(Theorem 3.1) in theory, it needs a large amount of computation Aothn

. . . . 2
to calculate the greatest and smallest eigenvalues. To avoid the  ©Of the two iterative methods with the two weights 1 = & and

computation of the eigenvalues, we propose a simple method for Wp = }»()%)»n are similar.

determining the weight .

Fcr)nr"the (m+1) x (nm—l— 1) matrix A defined in (2), leg AA= 4 Implementation and examples
{aij}o.0» where a;;j = D ;" Bi(ti)B;(ty). Together with D i” o Bi(tx)
= 1, we have, In this section, we test the LSPIA by cubic B-spline curves
n n m because of its simplicity and wide range of applications in CAD. In
Z aj = Z Z Bi(t)B;(ty) Section 4.1, the implementation details for the LSPIA and cubic B-
=0 parl s spline curves are elucidated. In the following, six representative
m N m examples are demonstrated in Section 4.2.
= Bi(t Bi(ty) | = Bi(ty) == c;.
k; i(t) ; j(t) ; it ' 4.1. Implementation
It means that ¢; is the sum of the ith row elements of ATA. Given an ordered point set {Q;}[",, we assign the parame-
Therefore, Ay < max;{c;} = C (i = 0,1,...,n), and, % < % ters {t;}I", for {Q}_, using the normalized accumulated chord
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Fig. 6. A point set of 501 points is fitted by a cubic B-spline curve with 50 control points.
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n
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(a) Step 0. (b) Step 1. (c) Step 3.
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(d) Step 5. (e)Step 7. (f) Fitting curve.

Fig. 7. A point set of 205 points is fitted by a cubic B-spline curve with 30 control points.

parameterization method, that is [18],

th=0 tn=1,
1Q — Qill
fi=tig+ =

(i=1,2...,m—1),

where D = Z:'ﬂ:o |Qi — Qi—_1]| is the total chord length.

Moreover, the knot vector for the cubic B-spline fitting curve
P(t) = Y1y Ni3(t)P;, is defined as {0, 0, 0, 0, T4, T, . .

b 1,1,

1, 1}, where,

j=1,...,n=3,
m+1 (22)
n—2"

tiys = (1 — o)t +at;,

i = [jd], and d=

a=jd—i,

Here, [jd] is the largest integer not larger than jd [18].

Finally, though the LSPIA method can be started with arbitrary
initial control points, an appropriate selection of initial control
points makes the LSPIA converge quickly. In our implementation,
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Fig. 8. A point set of 577 points is fitted by a cubic B-spline curve with 50 control points.
1@ T T T
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07t —&— example 6 ||
061 1 50 [
0.5- 1
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0.31 q
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&Y
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0 =R R a5
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-150 |

Fig. 9. E; for the six examples (scaled such that E; = 1).

we select the initial control points {P;}}_, as

POZQO, Pn:Qm
Pi=Q, (i=12...,n—1

where f (i) = [ 2],

(23)

4.2. Examples

In this section, we present six representative examples to
demonstrate the efficiency and validity of the LSPIA presented in
Section 2. The point sets in the six examples are, respectively:

e Example 1: 205 points measured and smoothed from an airfoil-
shape data;

-150 -100 -50 0 50 100 150

Fig. 10. Fitting sampled 100001 points from Archimedes spiral p = 6 (0 < 6 <
407).

Example 2: 201 points sampled from a six-degree Bézier curve
with random noise;

Example 3: 305 points derived from a subdivision curve
generated by incenter subdivision scheme [19];

Example 4: 501 points sampled uniformly from an analytic
curve whose polar coordinate equation is r = sin %(«9 €
[0, 87 ]);

Example 5: 205 points with features measured and smoothed
from a cross-section of a mouse;

Example 6: 577 points with features measured and smoothed
from a G-shape font.
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Fig. 13. Fitting curves for the data set presented in example 6 using LSPIA and incremental method. (a) Limit curve for LSPIA; (b) limit curve for incremental LSPIA.
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Fig. 14. Zoom in for a detail view of examples illustrated in Fig. 11. (a) Limit curve for LSPIA curve; (b) limit curve for incremental LSPIA.
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Table 1
Ex (k=0,1,...,8)and E., for examples 1-6.
Eo E; E, E; Eq Es E¢ E; Eso

Em 1 0.743594 0.182764 0.053274 0.017004 0.006330 0.003022 0.001921 0.001513 0.001022
Em 2 257.8242 40.61075 9.274884 2.713619 1.088914 0.607258 0.433126 0.357284 0.252452
Em 3 34.72645 2.248036 0.506507 0.217729 0.125941 0.084237 0.061761 0.048410 0.015905
Em 4 22.36867 6.055901 1.760404 0.543135 0.176884 0.060525 0.021700 0.008167 0.000113
Em5 2.612842 0.281235 0.044178 0.010435 0.004671 0.003335 0.002876 0.002659 0.002214
Em 6 1.896372 0.549350 0.184882 0.071486 0.034600 0.022081 0.017575 0.015799 0.013494
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Fig. 15. Zoom in for a detailed view of examples illustrated in Fig. 12. (a) Limit
curve for LSPIA curve; (b) limit curve for incremental LSPIA.

With LSPIA, the above six point sets are fitted using cubic B-
spline curves with 20, 20, 30, 50, 30, 50 control points, respectively.
The point sets and fitting curves are plotted in Figs. 3-8, where the
point sets and initial cubic B-spline curves are in (a), the cubic B-
spline curves after 1, 3, 5, 7 iterative steps are in (b)-(e), and the
limit fitting curves are presented in (f). From Figs. 3-8, we can see

IS SE—————

05|
045}
04}
0.35r

031

0.25 . . . . - .
0.65 0.7 0.75 0.8 0.85 0.9 0.95

that, LSPIA constructs a series of curves which approximate the
given data points progressively.
Moreover, we list the fitting errors

2
m n
Ee=)Y Q- BPf| . (24)
j=0 i=0

after iteration step k = 0, 1,...,8 and E, in Table 1, and plot
E.,k = 0,1,...,20in Fig. 9, respectively. For each example, if
|Exs1 — Ex] < 1077 we stop the iteration process and let the last Ey
be E... From Table 1 and Fig. 9, we can see that all the E;, decrease
very fast in some starting steps, and {E;} is a rigorous monotone
decreasing sequence.

5. Discussions
5.1. Fitting data sets of very large size

Special techniques are usually required in fitting a large size
of data set, because it usually leads to an ill-conditioned or even
singular matrix [20]. However, LSPIA can fit a large size of data set
successfully. For example, by LSPIA, the 100001 points sampled
from Archimedes spiral p = 6 (0 < 6 < 40m) can be fitted
by a cubic B-spline with 1000 control points (see Fig. 10). On the
contrary, this problem cannot be solved by Matlab using usual least
square fitting method because the collocation matrix (saved as
sparse matrix) is out of memory.

0.55

0.5

0451

041

0.35F

0.3

0.25

0.65 0.7 0.75 0.8 0.85 0.9 0.95

Fig. 16. Zoom in for a detailed view of examples illustrated in Fig. 13. (a) Limit curve for LSPIA curve; (b) limit curve for incremental LSPIA.

(a) Initial surface.

(b) Final surface.

(c) Zebra of limit surface.

Fig. 17. A data point grid with 121 x 161 data points is fitted by a cubic B-spline surface with the incremental data fitting method.
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Fig. 18. Adjusting {Pi"} according to shape preserving constraint.

5.2. Adjusting knot vector in iterations of LSPIA

The knot vector plays an important role in data fitting. In prac-
tice, the data points are usually fitted incrementally, i.e., if the fitting
error is not satisfied the given tolerance, we should increase the
number of control points, as well as that of knots, to improve the
fitting precision. In such an incremental data fitting method, if the
traditional LSF is employed, the last fitting result is discarded en-
tirely and the fitting procedure should be restarted from scratch.
However, using LSPIA, after adding control points and knots, the
new fitting procedure can start from the last fitting result, thus sav-
ing a great amount of computation.

Specifically, if the fitting error after a round of iterations does
not meet the prescribed precision, the incremental data fitting al-
gorithm inserts a knot to an admissible knot interval with maximum
fitting error, and restarts a new round of iterations from the fitting
result of the last round of iterations. Here, a knot interval is called
an admissible knot interval if there is at least two data points whose
parameters lie in the knot interval, and the fitting error of a knot
interval [t;, t;,1] is defined as d; = thE[ﬂ-fm] 1Q; — P(t)|l.

Actually, if the selected admissible knot interval has only two
data points Q;, Q11 with parameters t;, tj 1, we insert a knot t =
3(tj + tiy1); if the selected admissible knot interval has more
than two data points Q;, . . ., Qo with parameters ¢j, .. ., tjyq, the
inserted knot is t = %(tl + tiy1), wherel € [j+ 1,j +a — 1]
and
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Table 2
Statistical data for LSPIA and EPIA.
Methods Initial patch Final patch Iteration times
#Control Error #Control Error
mesh mesh
LSPIA 31 x 66 0.053347 63 x 74 0.002580 50
EPIA[3] 31 x 66 0.053347 68 x 90 0.002576 100

This incremental LSPIA algorithm stops when the number of con-
trol points is equal to a predefined number or the fitting error sat-
isfies the predefined precision.

We test the incremental data fitting aforementioned on Exam-
ples 1,5, 6 presented in Section 4.2, and illustrated them in Figs. 11
and 13. From them, we can see that with this incremental LSPIA
algorithm, the fitting curves faithfully resemble the shape implied
by the data points. In the curve segment whose curvature varies
slowly, the incremental LSPIA method distributes sparse knots au-
tomatically, while in the curve segment whose curvature varies
quickly, the incremental LSPIA method distributes many knots au-
tomatically to capture the details implied by the data points. To
view this effect clearly, we zoom in some details of Examples 1, 6
to compare the fitting effect of LSPIA and LSPIA with knot adjusting
(see Figs. 14-16). In each example in Figs. 11 and 13, respectively,
we use the same number of control points for two different LSPIA
methods.

We also test the incremental data fitting on a data point grid
with 121 x 161 data points and illustrated them in Fig. 17. These
figures show that the final surface catches the features accurately.
We compare incremental LSPIA with EPIA [3] and summarize the
statistical data in Table 2. From Table 2 we find that to achieve the
similar fitting error from the same initial patch, the incremental
LSPIA algorithm needs fewer control points and iteration times,
thus performing better than EPIA.

5.3. Shape preserving fitting by LSPIA

In general, shape preserving means that the inflexion of the
fitting curve is the same as that implied by the data point sequence.
By LSPIA, it is easy to generate a fitting curve with shape preserving
property.

First, from the given data point, we select a sequence of ini-
tial control points, which correspond to an initial B-spline curve
with the desirable shape. In the iterations of LSPIA, we make the

d:
> e =Pl ==,
thelt. L]
di
> e —Pwl = 5.
theElt),Ejtql
ao1

0.2

0.8 1

Fig. 19. Fit 205 points of example 1 with a cubic B-spline with 30 control points. (a) Least square fitting, (b) shape preserving least square fitting.
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Fig. 20. Zoom in for a detail view of the examples illustrated in Fig. 19. (a) Least square fitting, (b) shape preserving least square fitting.
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Fig. 21. LSPIA for the data of example 3 with initial control points set as: the two end control points are the same as the two end points of the input points, and the other
control points are (100, 1).
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Fig. 22. LSPIA for the data of example 4 with all initial control points set as the centroid of the input points.

inflexions of the new control polygon {P,."“ }i_, the same as those
of the old control polygon {Pi"}ff’:O, so the inflexions of the limit
curve are the same as those of the initial curve, and then the limit
fitting curve has the shape preserving property. For this purpose,
we develop the following method:

1. {Pik}?:o are updated fromi = 1toi = n — 1 one by one;

2. when updating P} to P!

i+1

we consider two cases:

(a) as to the four consecutive points P,

k+1 P!i-k]l’

k pk ;
P{, P ,, if

the line segment with end points Pf and P¥ + A¥ has an

intersection with radial line PP, or P/

P!<+1

i, we set

P! = P¥ + 0.8(M — P}), where M is the intersection

closer to P¥ (see Fig. 18(a));
(b) as to the four consecutive points

P]<+l Pik’

i—17

k k ;
PiiiPi, if

the line segment with end points P¥ and P¥ + A¥ has
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Fig. 23. Fitting sampled 100001 points from Archimedes spiral p = 6 (0 < 6 < 40x) with initial control points set as: the two end control points are the same as the two
end points of the input points, and the other control points are the midpoint of the two end points.

intersection with radial line P¥ ,P**,! or PX N (N is on the

i+1% 1 i+1
reverse extension of P, ,PX ), we set P{! = P} +-0.8(M —
P,."), where M is the intersection closer to P,-" (see Fig. 18(b));
3. for P¥ or P¥_|, only P{!, PYTY PK, PX or PXT) PYT) PK | PX
are considered.
We present an example to demonstrate the effect of shape pre-
serving fitting by the above method. The outcomes are presented

in Fig. 19 and their close-up views in Fig. 20.

5.4. Selection of the initial control points

In Remark 2.1 we point out that the initial points {PI‘O}?:0 can
be set arbitrary. By (9) we know that the smaller the ||[P° —
(ATA)"'ATQ|, the closer the distance between P, and the limit
(ATA)"'ATQ. So an appropriate selection of the initial control
points {P?}?:O will reduce the iteration times to achieve the same
error. In this subsection, we present some examples to demon-
strate this effect.

First we use LSPIA to fit the data in Example 3 whose bound box
isabout0 < x < 2,0 <y < 4.7. The two end points of the initial
control points are set as the two end points of the input points,
all other initial control points are set as (100, 1), a point far from
the input points. The results are presented in Fig. 21. From these
figures we can see that after 20 iterative steps the fitting curve
is not well-formed. But after more iterative steps, for example, 70
iterative steps, the distance between the fitting curve and the input
points are very small. Compared with the fitting curves presented

in Fig. 5, whose initial control points are selected appropriately, we
find that more iteration steps are needed if the initial control points
are far from the limit curves.

We also use LSPIA to fit the data in Example 4 with the initial
control points set as the centroid of the input points, and the data
sampled from Archimedes spiral p = 6 (0 < 6 < 40x) with
the two end points set as those of the input points and other
initial control points are the midpoints of the two end points.
The results are presented in Figs. 22 and 23, respectively. From
these figures we can see that the fitting curves converge faster
than those of Fig. 21, but slower than those of Fig. 6 because the
distances between the initial control points and the corresponding
limit control points fall in between the two cases.

From these examples we conclude that an appropriate selection
of the initial control points is important. However, as a shortcom-
ing of LSPIA, the construction of a desirable initial patch is difficult,
and the convergence of LSPIA will be made relatively slow by the
undesirable initial patch.

6. Conclusion

In this paper, a new progressive and iterative approximation
method is developed, whose limit is the least square fitting result of
the given data points (this method is abbreviated as LSPIA). Similar
as the classical PIA method, LSPIA also constructs a series of fitting
curves (surfaces) by adjusting the control points iteratively. In each
iteration, the difference vector for each control point is a weighted
sum of some difference vectors between the data points and their
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corresponding points on the fitting curve (surface). Since it is able
to not only fit the data set of very large size efficiently and robustly,
but also reuse the last fitting result in an incremental data fitting
procedure, it will have a wide range of applications in geometric
design.
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