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Abstract—Because the B-spline surface intersection is a fundamental operation in geometric design software, it is important to

make the surface intersection operation robust and efficient. As is well known, affine arithmetic is robust for calculating the surface

intersection because it is able to not only find every branch of the intersection, but also deal with some singular cases, such as

surface tangency. However, the classical affine arithmetic is defined only for the globally supported polynomials, and its

computation is very time consuming, thus hampering its usefulness in practical applications, especially in geometric design. In this

paper, we extend affine arithmetic to calculate the range of recursively and locally defined B-spline basis functions, and we

accelerate the affine arithmetic-based surface intersection algorithm by using a GPU. Moreover, we develop efficient methods to

thin the strip-shaped intersection regions produced by the affine arithmetic-based intersection algorithm, calculate the intersection

points, and further improve their accuracy. The many examples presented in this paper demonstrate the robustness and efficiency

of this method.

Index Terms—Surface-surface intersection, affine arithmetic, GPU acceleration, geometric design

Ç

1 INTRODUCTION

SURFACE-SURFACE intersection is a fundamental tool in
geometric design software, and it is widely used in

geometric operations, such as surface trimming, Boolean
operations, and so on. However, the robustness of the
surface intersection algorithm is heavily influenced by some
singular cases [1], for example, surface tangency, surface
overlap, and so on. Additionally, the computation of
surface intersection is very complex and time-consuming;
therefore, the surface intersection is usually performed in
the background [2], which is not desirable for interactive
operations.

Interval arithmetic (IA) and affine arithmetic (AA) are two
range analysis tools often employed in reliability comput-
ing. Both tools have been introduced in Bézier surface
intersection to improve robustness [3], [4] by recursively
decomposing the two parameter domains of the two
surfaces. In general, for the same interval input, the range
estimated by AA is tighter than that by interval arithmetic;
so, in this paper, we use AA to calculate the surface
intersection. However, there are two main drawbacks for
the AA-based surface intersection algorithm. First, the AA-
based surface intersection algorithm calculates the surface
intersection by space decomposition, which is implemented
by recursion. Because of the algorithm’s recursive structure
and the complex computation of AA, the speed of the AA-
based surface intersection algorithm is slow. Second, due to
the overestimation property of AA, the generated surface
intersection is a thick strip region and not a curve.

To overcome the drawbacks of the AA-based surface
intersection algorithm, in this paper, we develop a GPU-
accelerated B-spline surface intersection algorithm with
AA. First, the affine arithmetic is extended to estimate the
range of the piecewise B-spline surface. Second, given a
prescribed resolution for parametric space decomposition,
only several levels of space decomposition are required for
determining the strip-shaped intersection regions on
the parameter domains of the two B-spline surfaces with
the help of a GPU. The main computations in this step are
performed in parallel by CUDA-NVIDIA’s GPU parallel
computing architecture [5], thus greatly improving the
computation speed. Finally, we develop efficient methods
to thin the strip-shaped intersection regions, extract the
intersection points, and improve their accuracy.

The remainder of this paper is organized as follows: In
Section 2, we review the related work on interval analysis
and surface-surface intersection. Next, we briefly introduce
the main operations of AA in Section 3. In Section 4, the
GPU-accelerated surface intersection algorithm with AA is
developed in detail. Moreover, we devise the intersection
curve generation method in Section 5. Section 6 presents
some results and discussions. Finally, Section 7 concludes
the paper.

2 RELATED WORK

In this section, we will review the related work on interval
analysis and surface intersection, respectively.

2.1 Interval Analysis

Originally, interval arithmetic was employed to control the
error propagation in numerical computation [6]. Due to its
reliability in computation, it has been widely applied
in computer graphics [7], [8]. However, the classical
interval arithmetic is very conservative in estimating the
interval bound. Affine arithmetic is an improvement to
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interval arithmetic, with higher efficiency and more
accurate bound estimation [9]. Moreover, a modified
version of affine arithmetic can be represented in a matrix
form, improving the tightness of bounds [10], [11], [12].

The interval analysis technique has also been introduced
in geometric design. By replacing the control points with
rectangles or cubes, the interval Bézier curve is used to
approximate the floating-point error propagation [13]. Due
to the interval representation of the Bézier curve and
surface, the intersection computation between curve/curve,
curve/surface, and surface/surface is more robust [1], [14].
Furthermore, a validated interval scheme for ordinary
differential equation system is employed to trace intersec-
tion curve segments between rational parametric surfaces,
eliminating the phenomenon of straying and looping
robustly [15], [16]. Actually, these methods calculate the
intersection by tracing, so it is easy to lose some branches of
the intersection. Different from these methods, our method
computes the intersection by space decomposition. There-
fore, it can find all branches of the intersection in the
computation domain.

Instead of using the aforementioned interval Bézier
curve and surface, Gleicher and Kass [3] employed interval
arithmetic to calculate the Bézier surface intersection by
refining the parametric domains recursively. Furthermore,
affine arithmetic has been used instead of interval arith-
metic in Bézier surface intersection computation to improve
the computation accuracy and speed [4]. As aforemen-
tioned, the speed of the AA-based surface intersection
algorithm is still very slow, and the generated surface
intersection is actually a thick strip region, not a curve, due
to the overestimation property of AA. In this paper, we
accelerate the AA-based surface intersection algorithm by
GPU and develop an efficient method to thin the strip-
shaped intersection region to a curve.

2.2 Surface Intersection

Surface intersection is a classical problem in geometric
design, and there is much literature on this topic. Generally
speaking, intersection methods can be classified into the
following categories. Tracing methods generate the surface/
surface intersection curve from an initial starting point [17].
However, when using the tracing method, it is easy to lose
some branches of the intersection. Algebraic methods repre-
sent the surface/surface intersection in implicit form by
elimination theory and resultants [18], [19], [20], which are
efficient only in computing surface intersection with low
degree. Although the exact representation of intersection
curve can be obtained by function composition [21], its
degree is usually too high to be employed in practice.
Finally, decomposition methods build polygonal approxima-
tions for both surfaces and then intersect the corresponding
polyhedral surfaces to produce the intersection curve [22].
Usually implemented recursively, the decomposition meth-
od is very time-consuming.

Currently, the widely employed method in practical
applications is the hybrid method of decomposition and
tracing, which first identifies all intersection branches by
decomposition, and then traces out the curve for each
intersection branch [23], [24]. To reduce the computation
complexity of recursive decomposition, Sinha et al. [25]
develop a theorem to detect the topology of transversal
intersections. Moreover, Briseid et al. [23] make a pioneering

work which accelerates the recursive decomposition algo-
rithm for detecting the topology of intersection by GPU.
Furthermore, it is updated to use a heterogeneous system
including a multicore CPU and a modern programming
model for a GPU [24]. Additionally, Alcantara et al. [26]
employ the hash constructed on GPU to determine the
intersection of two animated mesh surfaces in real time.

Furthermore, in [2], GPU is employed to improve the
speed of the decomposition method for generating the final
surface/surface intersection curve. By constructing two
axis-aligned bounding box (AABB) hierarchies to bound the
two surfaces, the overlap tests in [2] are performed level by
level on the AABB hierarchies, where a complicated GPU
stream reduction algorithm should be implemented to
determine the overlapped AABBs. Moreover, the intersec-
tion points are extracted by calculating the intersection of
the two triangles approximating the subregions of the two
surfaces, which makes this method [2] unstable in some
singular cases, such as in surface tangency. On the contrary,
the AA-based surface intersection algorithm developed in
this paper is much easier to implement and is more robust
than the method in [2].

For more details on surface intersection, please refer to
[27], [28].

3 AFFINE ARITHMETIC

Affine arithmetic is one of several models for self-validated
numerical computation that have been proposed to address
the bound overestimation problem of interval arithmetic
[29], [30]. AA provides much tighter range estimates than
IA due to its ability to take into account correlations
between those quantities. As a result, AA has a higher
accuracy, especially for many chained computations for
which IA undergoes error explosion.

In affine arithmetic, each input or computed quantity is
represented in an affine form:

x̂ ¼ x0 þ x1"1 þ x2"2 þ � � � þ xn"n ¼ x0 þ
Xn
i¼1

xi"i; ð1Þ

where the "i are denoted as noise symbols whose values are
unknown but are assumed to lie in the interval ½�1; 1�. Each
"i stands for an independent source of error or uncertainty
that contributes to the total uncertainty of the quantity x.
The coefficient xi is the known real number that gives the
magnitude and sign of "i. The key feature of affine
arithmetic is that the same noise symbol "i may appear in
two or more affine forms, and the sharing of noise symbols
indicates some partial dependence between these quanti-
ties. Taking such correlations into account improves the
range estimates.

If given an ordinary interval ½x; x�, representing a quantity
x, the corresponding affine form can be expressed as

x̂ ¼ x0 þ x1"1; x0 ¼ ðxþ xÞ=2; x1 ¼ ðx� xÞ=2: ð2Þ

Conversely, an affine form of x̂ ¼ x0 þ x1"1 þ x2"2 þ � � � þ
xn"n can be converted into an interval:

½x; x� ¼ ½x0 � �; x0 þ ��; where � ¼
Xn
i¼1

jxij: ð3Þ
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Given two affine forms

x̂ ¼ x0 þ
Xn
i¼1

xi"i; ŷ ¼ y0 þ
Xn
i¼1

yi"i; ð4Þ

the affine operations in AA in which c 2 R are as follows:

c� x̂ ¼ cx0 þ c
Xn
i¼1

xi"i;

c� x̂ ¼ c� x0 þ
Xn
i¼1

xi"i;

x̂� ŷ ¼ ðx0 � y0Þ þ
Xn
i¼1

ðxi � yiÞ"i:

ð5Þ

Multiplication of two affine forms x̂� ŷ is one of
nonaffine operations that introduce a new error symbol "k
whose value is still between ½�1; 1�:

x̂� ŷ ¼ x0y0 þ
Xn
i¼1

ðx0yi þ y0xiÞ"i þ uv"k; ð6Þ

where

u ¼
Xn
i¼1

jxij; v ¼
Xn
i¼1

jyij:

To improve the robustness and efficiency of computation,
we employ the rounded AA [31] in our implementation.

4 B-SPLINE SURFACE INTERSECTION WITH AA

Suppose we are given two B-spline surfaces

PP ðu; vÞ ¼ ðxpðu; vÞ; ypðu; vÞ; zpðu; vÞÞ; ðu; vÞ 2 ½us; ue� � ½vs; ve�;
QQðs; tÞ ¼ ðxqðs; tÞ; yqðs; tÞ; zqðs; tÞÞ; ðs; tÞ 2 ½ss; se� � ½ts; te�:

ð7Þ

In this section, we first extend AA to estimate the range of
the piecewise B-spline surface. Then, two strip-shaped
intersection regions on the two parameter domains of
PP ðu; vÞ and QQðs; tÞ are determined with the help of AA,
where the main computation is implemented on NVIDIA’s
parallel computing architecture, i.e., CUDA. Finally, the
strip-shaped intersection regions are thinned, and the
intersection points are extracted to form the intersection
curve of the two B-spline surfaces, PP ðu; vÞ and QQðs; tÞ.

4.1 Region Estimation of B-Spline Surface with AA

Conventionally, AA is defined for globally supported
polynomials. In this section, we will extend the AA
operations to estimate the region of the piecewise B-spline
surface with locally supported basis functions.

A B-spline surface is constructed by a control net and
two knot vectors [27]. The following equation gives the
analytical definition of a B-spline surface:

PP ðu; vÞ ¼ ðxpðu; vÞ; ypðu; vÞ; zpðu; vÞÞ

¼
Xn
i¼0

Xm
j¼0

Np
i ðuÞN

q
j ðvÞPPij;

ðu; vÞ 2 ½us; ue� � ½vs; ve�;

ð8Þ

where the PPij stand for the control points, and Np
i ðuÞ and

Nq
j ðvÞ are the B-spline basis functions of degree p and q,

respectively, which are defined recursively as

Np
i ðuÞ ¼

u� ui
uiþp � ui

Np�1
i ðuÞ þ uiþpþ1 � u

uiþpþ1 � uiþ1
Np�1
iþ1 ðuÞ; ð9Þ

N0
i ¼

1; if ui � u < uiþ1

0; otherwise:

�
ð10Þ

The B-spline basis function has the local support
property. For some u 2 ½ui; uiþ1Þ, many basis functions of
degree p are zero, except for Np

i�pðuÞ; . . . ; Np
i ðuÞ. To calculate

a particular point PP ðu; vÞ on the B-spline surface, we can
ignore the basis functions that are zero at ðu; vÞ, just
multiply the nonzero basis functions with their correspond-
ing control points, and sum the results.

Given two intervals ½ua; ub� and ½va; vb� for parameters u
and v, respectively, we first convert them into the affine
forms û and v̂ (2). For the sake of convenience, we assume
that ½ua; ub� is in the same knot span ½ui; uiþ1Þ and similarly
for ½va; vb� (in ½vj; vjþ1Þ). Second, the affine arithmetic
operations (5), (6) are employed to compute B-spline basis
functions. Specifically, we put û and v̂ into (9) instead of u
and v, perform recursive computation via AA operations,
and obtain Np

i ðûÞ and Nq
j ðv̂Þ, which are also presented by

affine forms and stand for the range estimates of the basis
functions. In light of the local support property, we just
need the results of Np

i�pðûÞ; . . . ; Np
i ðûÞ and Nq

j�qðv̂Þ; . . . ;
Nq
j ðv̂Þ. Finally, we compute the affine form PP ðû; v̂Þ using

the nonzero basis functions and their corresponding control
points by (8) (see Fig. 1). PP ðû; v̂Þ means a polygonal
approximation to PP ðu; vÞ, consisting of three intervals, i.e.,
xpðû; v̂Þ, ypðû; v̂Þ, and zpðû; v̂Þ, each representing a coordinate
axis. These intervals construct an AABB in 3D space (see
Fig. 2).

If the interval ½ua; ub� or ½va; vb� covers several knot spans,
it should be divided into several subintervals, each in a
single knot span. Additionally, we construct the AABB for
each subinterval by the aforementioned method.

To sum up, if the parametric domain of a B-spline surface
is divided intom� n rectangles along the u and v directions,
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respectively, we can calculate a set of AABBs using affine

arithmetic, in parallel by the GPU (see Fig. 1), which bound

the given B-spline surface. Fig. 2 shows the rectangles in the

parametric domain (see Fig. 2a) and the AABBs (see Fig. 2b)

corresponding to the highlighted rectangles.

4.2 Intersection Region Extraction

To extract the strip-shaped intersection regions on the two

parameter domains of the two given B-spline surfaces (7),

the two parameter domains should be combined to form a

four-dimensional space ðu; v; s; tÞ, defined on

S0 ¼ ½us; ue� � ½vs; ve� � ½ss; se� � ½ts; te�: ð11Þ

The conventional AA-based surface intersection algorithm

[4] first puts S0 into the following overlap test equations:

Rx ¼ xpðûi; v̂jÞ � xqðŝk; t̂lÞ;
Ry ¼ ypðûi; v̂jÞ � yqðŝk; t̂lÞ;
Rz ¼ zpðûi; v̂jÞ � zqðŝk; t̂lÞ;

8<
: ð12Þ

and computes the three ranges Rx;Ry;Rz. If the three
intervals Rx;Ry, and Rz all contain zero, the pair of AABBs
bounding the two surfaces PP ðu; vÞ and QQðs; tÞ overlap each
other. Then, we decompose S0 uniformly into 16 subregions
and substitute each subregion into the overlap test
equations (12). Otherwise, the parts of the two surfaces
bounded by the current pair of AABBs have no intersection,
and the subregions corresponding to the current pair of
AABBs do not need further handling. This process is
performed level by level until the bottom level is reached.
Specifically, if the resolution of the bottom level is
2k � 2k � 2k � 2k, the conventional method [4] needs a k
level computation to reach the bottom level. This procedure
costs lots of time.

In this paper, with the help of the GPU parallel

computing architecture, we improve the conventional

method. The improved GPU-accelerated method can reach

the bottom level with resolution 2k � 2k � 2k � 2k only by

at most dkde level computation, where dkde denotes the

smallest integer not less than k
d , and 2d � 2d � 2d � 2d is the

largest GPU parallel thread number. In our implementa-

tion, we set d ¼ 4, because the largest parallel thread

number of the GPU we employed is 24 � 24 � 24 � 24. The

GPU-accelerated method is listed in Algorithm 1 and

explained in the following.

Algorithm 1. GPU-accelerated intersection region
extraction with AA.

Supposing the user prescribed resolution is n1 �m1 �
n2 �m2, and the largest parallel thread number of the
employed GPU is 2d � 2d � 2d � 2d, we first compute

N1 ¼ dlnn1e; M1 ¼ dlnm1e; N2 ¼ dlnn2e; M2 ¼ dlnm2e;

and

k1 ¼ ðN1 mod dÞ; l1 ¼ ðM1 mod dÞ;
k2 ¼ ðN2 mod dÞ; l2 ¼ ðM2 mod dÞ;

where ðN1 mod dÞ is the modulus of N1 and d. If there are
some of k1; l1; k2, and l2 equal to zero, we set them as d.
Next, we decompose S0 into 2k1 � 2l1 � 2k2 � 2l2 subregions,
and determine the overlapped regions fRolg using (12).
Since the computation amount of this step is relatively
small, it is performed in CPU.

Furthermore, if the resolution of the current overlapped
regions does not reach the user prescribed one, the
overlapped regions fRolg are transferred to GPU. Each of
them is decomposed into

2minðd;N1Þ � 2minðd;M1Þ � 2minðd;N2Þ � 2minðd;M2Þ;

subregions (see Algorithm 1), and their overlap tests are
performed in parallel in GPU. Meanwhile, the overlapped
regions are marked in a mark list. After the for-loop ends, the
mark list is transferred into CPU, and the overlapped
regions are extracted according to it. The whole procedure
terminates when the current overlapped regions reach the
prescribed resolution.
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Specifically, to transfer data between GPU and CPU, we

employ the CUDA library function: cudaMemcpy(pDevice-

Mem, pHostMem, size, direction). Here, pDeviceMem is a

pointer to GPU memory, pHostMem is a pointer to CPU

memory, size is the size of the transferred data, and direction

indicates the data transfer direction. When direction ¼
cudaMemcpyDeviceToHost, data are transferred from GPU

to CPU; when direction ¼ cudaMemcpyHostToDevice, data

are transferred from CPU to GPU.

5 INTERSECTION CURVE GENERATION

Now, we have obtained two strip-shaped intersection

regions in the parameter domains of the two B-spline

surfaces PP ðu; vÞ and QQðs; tÞ. In fact, they are two sets of

rectangles on the two parameter domains, ½us; ue� � ½vs; ve�,
and ½ss; se� � ½ts; te�, corresponding to two sets of AABBs

that bound the two surfaces PP ðu; vÞ and QQðs; tÞ, respec-

tively. Due to the overestimation of the affine arithmetic, the

two sets of rectangles on the two parameter spaces

constitute two thick strips, as shown in Fig. 3a. Moreover,

the intersection curve will be generated after strip thinning,

intersection point generation, and accuracy improvement.
Strip thinning. Due to the overestimation property of the

affine arithmetic, the two sets of AABBs bounding the two

surfaces, which correspond to the two sets of rectangles on

the two parameter domains, are inflated by the affine

arithmetic. In fact, the four vertices of a rectangle on a

parameter domain correspond to four 3D space points on

the B-spline surface. To thin the thick strips on the two

parameter domains, we construct the minimum AABB

bounding the four 3D space points for each rectangle of

the thick strips on the parameter domains. Then, we delete

the rectangle of each strip whose corresponding minimum

AABB does not intersect with any minimum AABB

bounding the other surface. In this way, the two thick

strips are thinned greatly, as illustrated in Fig. 3b.

Intersection point sequence generation. The thinned strips
are also composed of unorganized rectangles. To extract the
intersection points, the sequence-joining method developed in
[32] is employed to cluster the unorganized rectangles. In
our implementation, we only perform the sequence-joining
algorithm on one strip of intersection region. Without a loss
of generality, suppose that the strip is on the parameter
space ðu; vÞ of the B-spline surface PP ðu; vÞ.

First of all, the parameter space ðu; vÞ of PP ðu; vÞ is
subdivided with resolution same as that of the rectangles in
the strip of intersection region. Furthermore, the rectangles
composing the intersection strip are taken as feature
rectangles, and other rectangles as nonfeature rectangles.
Choosing one feature rectangle as seed, the sequence-
joining method [32] constructs one rectangle-like group by
continually expanding around the seed level by level, until
one of the two following conditions is fulfilled:

1. there is no feature rectangle outside of two opposite
boundaries of the current rectangle-like group, or

2. the length of the longest boundary of the current
rectangle-like group is greater than the local width of
the intersection strip.

After the clustering of this group ends, we choose
another nonclustered feature rectangle adjacent to the
boundaries of the group as new seed, and a new group
can be generated using the method aforementioned. The
whole procedure terminates when every feature rectangle is
classified into a group. For more details on the sequence-
joining algorithm, please refer to [32].

Finally, as the result (see Fig. 3c) of the sequence-joining
algorithm, the unorganized feature rectangles are clustered
into groups with shapes that are also rectangles with
variable sizes. As demonstrated in Fig. 3c, each inner group
has two adjacent groups, and the boundary group has one
adjacent group. The adjacency relationship between groups
naturally assigns an order to these groups, and an ordered
intersection point sequence can be generated by them.

Next, we determine one intersection point in each group.
As stated above, each group consists of some rectangles.
The barycenter of a rectangle corresponds to a point DDp on
the B-spline surface PP ðu; vÞ. However, each rectangle on
ðu; vÞ space corresponds to a rectangle on the other
parameter space ðs; tÞ, the barycenter of which also
determines a point DDq on the other B-spline surface
QQðs; tÞ. Then, in each group, we retain the rectangle that
minimizes the distance between the two points, DDp �DDq

�� ��,
and take DDpþDDq

2 as an intersection point.
In this way, the ordered intersection point sequence Ts in

3D space is generated. Moreover, the barycenters of the
retained rectangles on the parameter space ðu; vÞ constitute
the intersection point sequence Ip on the ðu; vÞ parameter
domain, and their corresponding barycenters on ðs; tÞ
parameter domain make up the intersection point sequence
Iq on the ðs; tÞ domain. In conclusion, we get three pieces of
intersection point sequences: one in the 3D space and two
on the parameter domains.

Accuracy improvement. Furthermore, the accuracy of the
intersection points in Ts can be improved upon. As
illustrated in Fig. 4, for each initial intersection point pp1,
there are two closest points dd1

1 and dd1
2 on the two surfaces
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PP ðu; vÞ and QQðs; tÞ, respectively. As the first improvement
step, we replace the original intersection point, i.e., pp1 with
the point pp2, which is the intersection point of three planes,
i.e., the two tangent planes of the two surfaces at the two
points dd1

1 and dd1
2, respectively, and the plane determined by

the two lines pp1dd
1
1 and pp1dd

1
2. The improvement can be

performed repeatedly until the intersection point meets
the accuracy requirement. In all of our experiments, the
accuracy of the intersection points is improved to prede-
fined precision by the above accuracy improvement method.
The convergence analysis of the accuracy improvement
iterative procedure is presented in the Appendix, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2013.237.

Finally, we fit the three point sequences Ip, Iq, and Ts,
with three pieces of uniform cubic B-spline curves. Two of
them are on the two parametric domains, and the other is the
intersection curve of the two surfaces: PP ðu; vÞ and QQðs; tÞ.

6 RESULTS AND DISCUSSIONS

We implemented the method developed in this paper and
tested it on a PC with a 2.66-GHz Intel Core2 Quad CPU
Q9400, 3-GB memory, and NVIDIA Geforce GTX 260. For
comparison, we modified the CPU-based Bézier surface
intersection method using the affine arithmetic developed
in [4] to calculate the B-spline surface intersection and tested
it on the same platform stated above. Although the method
in [4] can generate the thick intersection strips, same as the
output of Algorithm 1 developed in this paper (see Fig. 3a),
it requires a much longer time than Algorithm 1. Please
refer to Table 1 for a comparison. Moreover, to compare our
method with the state-of-the-art technique, we implemen-
ted the GPU-accelerated B-spline intersection algorithm

developed in [2]. The experimental data are listed in Table 2
and will be explained later. Finally, we compared our
method with the method in SISL library (SISL method) [33]
and listed the experimental data in Table 3.

To measure the precision of the intersection curve, we
employ the following relative root mean square (RMS) error:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼0
d2
i

n

r

len
; di ¼ diðPP Þ þ diðQQÞ; ð13Þ

where diðPP Þ and diðQQÞ are the distances between the ith
intersection point and the B-spline surfaces PP ðu; vÞ and
QQðs; tÞ, respectively, and len is the diagonal length of the
bounding box of two intersecting surfaces.

The experimental data for our method are listed in Table 1.
In this table, the second column is the bottom-level
resolution. Users can specify the bottom-level resolution of
the four-dimensional space ðu; v; s; tÞ. In the examples
illustrated in Figs. 5 and 6, it is set to 512� 512� 512� 512;
in other examples, it is 2; 048� 2; 048� 2; 048� 2; 048.

While the third column of Table 1 is the time cost by our
Algorithm 1, i.e., GPU-accelerated intersection region
extraction with AA, the fourth column is the time
consumed by the CPU-based B-spline surface intersection
method using AA, which is modified from the Bézier
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TABLE 1
Experimental Data of Our Algorithm and the Method in [4]

a 5124 ¼ 512� 512� 512� 512; 20484 ¼ 2048� 2048� 2048� 2048;
b Time is in second.
c The algorithm in [4] does not present strategy for computing self-intersection; the time statistics here is cost by the improved method for self-
intersection presented in Section 6.

TABLE 2
Experimental Data of the Method in [2]

a 5124 ¼ 512� 512� 512� 512;
b Time is in second.

Fig. 4. Sketch of the accuracy improvement using section view of two
intersecting surfaces. TABLE 3

Experimental Data of the SISL Method [33]

a Time is in second;
b Number of the intersection segments.



surface intersection method developed in [4], with the same

output as Algorithm 1. Based on the listed running time, we

can see that Algorithm 1 is much faster than the method

developed in [4]. The computational speed is raised over

two orders of magnitude.
Moreover, the fifth column of Table 1 is the time taken

by the algorithm developed in Section 5, including strip

thinning, intersection point generation, and accuracy
improvement, which is performed in CPU. In addition,
the precision for the intersection curve before and after
accuracy improvement is recorded in the sixth and
seventh columns, respectively. Finally, the last column
lists the number of iterations in the accuracy improvement.
In the examples illustrated in Figs. 7, 9, 10, and 11, because
the bottom-level resolutions are so high that the precisions
of the intersections reach a desirable level (i.e., 10�6), we
do not perform accuracy improvement for them.

In Table 2, we list the experimental data for the method
developed in [2]. In this table, the second column is the
bottom-level resolution, the third column is the running
time, and the fourth column lists the intersection precision.
From Tables 1 and 2, we can see that the running time of
our method and the method in [2] is comparable.
However, because the method in [2] needs to store a
precomputed bounding box hierarchy, and it costs much
more memory than our method, the highest bottom-level
resolution reached by the method in [2] is 512� 512 �
512� 512. Higher resolution makes the storage of bound-
ing box hierarchy out of memory. At the resolution of
512 � 512� 512� 512, the precision of intersection can
attain only 10�4 level. Referring to Table 1, our method can
reach higher resolution 2; 048� 2; 048� 2; 048� 2; 048, and
higher precision level 10�6. Moreover, the method in [2]
lacks strategy for handling singular cases, such as
tangential intersection (see Figs. 9 and 10), and intersection
with two intersecting curves (see Fig. 7), so the data for
examples of Figs. 7, 9, and 10 are not available. However,
our method is more robust and able to deal with these
singular cases successfully.
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Fig. 5. Two B-spline surfaces intersect with one curve. (a) Result by our
algorithm. (b), (c) Result of the algorithm in [4] in the two parametric
domains.

Fig. 6. Two B-spline surfaces intersect with two separate curves.
(a) Result by our algorithm. (b), (c) Result of the algorithm in [4] in the
two parametric domains.

Fig. 7. Two B-spline surfaces intersect with two intersecting curves.
(a) Result by our algorithm. (b), (c) Result of the algorithm in [4] in the
two parametric domains.



Moreover, the experimental data for the SISL method
[33] are presented in Table 3. The fourth column of Table 3
is the number of intersection curve segments generated by
SISL method. The third column is the precision of the
intersection curve, which is calculated with (13), after
sampling 200 points along each intersection segment.
Comparing with our method, the SISL method fails to
handle the self-intersection case demonstrated in Fig. 11. As
illustrated in Fig. 11b, the SISL method outputs the
boundary of the B-spline surface as the self-intersection
curve. Moreover, the SISL method can divide an entire
intersection curve into subsegments. For instance, in the
example of Fig. 7, where two B-spline surfaces intersect
with two intersecting curves, the SISL method generates 107
pieces of intersection segments.

In our test, the two B-spline surfaces are both bicubic.
The intersection curves are all displayed in red in Figs. 5a,
6a, 7a, 9a, 10a, and 11a, where the larger subfigures are the
intersection curves in 3D space, and the two smaller
subfigures are the intersection curves on the two parameter
domains. Moreover, to clarify the improvement of our
algorithm over the one in [4], we illustrate the result of the
algorithm in [4] in the two parameter domains in Figs. 5b,
5c, 6b, 6c, 7b, 7c, 9b, 9c, 10b, 10c, and 11b.

Fig. 5 shows an example of two B-spline surfaces intersect-
ing with one curve. The initial precision of the intersection
curve is 8:6� 10�4. After only three accuracy improvement
iterations, the precision is improved to 3:8� 10�11. On the
other hand, Fig. 6 illustrates an example of two B-spline
surfaces intersecting with two separate curves. While the
initial precision of the intersection curve is 5:3� 10�4, it is
improved to 2:0� 10�11 after only two accuracy improve-
ment iterations.

Furthermore, in Fig. 7, we illustrate a more complicated
example that two B-spline surfaces intersect with two
intersecting curves. Fig. 8a shows the result generated by
strip thinning algorithm developed in Section 5, which is
two intersecting strips. Although the two strips intersect
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Fig. 8. The strip thinning result (a) and sequence-joining result (b) in
generating the two intersection curves which intersect each other.

Fig. 9. Tangential intersection. (a) Result by our algorithm. (b), (c) Result
by the algorithm in [4] in the two parametric domains.

Fig. 10. Two B-spline surfaces intersect at a point. (a) Result by our
algorithm. (b), (c) Result by the algorithm in [4] in two parametric domains.

Fig. 11. Self-intersection. (a) Result by our algorithm. (b) The SISL
method [33] takes the boundary (in blue) of the surface as the self-
intersection.



with each other, the sequence-joining algorithm success-
fully clusters them as two sequences of rectangles, as
illustrated in Fig. 8b. Based on them, two intersecting curves
are generated (see Fig. 7). Given high bottom-level resolu-
tion 2; 048� 2; 048� 2; 048� 2; 048, the precision of inter-
section curves reaches 9:3� 10�6. It should be pointed out
that, while our method generates two pieces of intersection
curves, the SISL method [33] produces 107 intersection
segments (refer to Table 3). If postprocessing is performed
to the SISL result, for example, providing the intersection
result to the SISL intersection curve marching algorithm, the
segments are expected to be joined to the correct curves.

To illustrate the robustness of the affine arithmetic-based
surface intersection algorithm, Fig. 9 presents an example of
tangential intersection with high bottom-level resolution,
and the precision of the tangential intersection attains
6:1� 10�6. Moreover, in Fig. 10, two surfaces are tangent at
one point. Our method finds the single intersection point
successfully. This example demonstrates the capability of
our method in capturing detail intersection.

Additionally, our method can be employed to produce
the self-intersection of a surface (see Fig. 11). When
computing the self-intersection using our algorithm, we
duplicate the given surface and denote them as PP ðu; vÞ and
QQðs; tÞ, respectively. Moreover, we suppose that the part of
the given surface bounded by an AABB and its one-ring
adjacent AABBs do not self-intersect. So, we do not perform
the overlap test between an AABB and any AABB in its one-
ring adjacent AABBs, including itself. Fig. 11 shows an
example of self-intersection. Since there is only one surface,
we calculate the precision, i.e., relative RMS error (13), for
the self-intersection curve with di ¼ diðPP Þ. Because the
bottom-level resolution is high, the precision of the self-
intersection curve meets 5:6� 10�6. Note that the SISL
method [33] does not have functionality for surface self-
intersection, but when the two surfaces intersected are the
same the method returns the boundary of the surface to
describe the overlap region(see Fig. 11b).

Consequently, according to the comparisons presented
above, the practical strategy for developing fast and robust
industrial intersection codes would be:

1. Run a preprocess to detect the intersection regions and
intersection types, using Sinha’s theorem [25], bound-
ing box test, and normal cone test [23], [24], and so on;

2. for those regions with transversal intersections,
exploit fast and appropriate methods, such as SISL
method [33], and so on;

3. for those regions with singular intersections, for
example, tangential intersections and self-
intersections, employ the proposed GPU acceler-
ated AA-based method.

Finally, though our method is developed for B-spline
surface intersection, it can naturally be extended to deal
with NURBS intersection. NURBS is defined on four-
dimensional projective space, and its euclidean coordinate
is determined by three fractions, i.e., dividing the first three
functions by the fourth weight function. Usually, the
weights of the NURBS should be greater than zero. Then,
the fourth weight function will not contain zero in the
domain of the NURBS, and whether the NURBS contains

(0,0,0) depends entirely on the numerators of the fractions.

Therefore, to extend our method for NURBS intersection, it

is just required to replace the right hands of the overlap test

equation (12) by the numerators of the differences of two

corresponding fractions.

7 CONCLUSION

In this paper, we presented a GPU-accelerated B-spline

surface intersection algorithm based on affine arithmetic.

First, we extended the affine arithmetic to calculate the

range of the recursively and locally defined B-spline basis

functions. Second, the affine arithmetic-based surface

intersection algorithm was accelerated by GPU. Finally,

we developed efficient methods to thin the strip-shaped

intersection regions produced by the affine arithmetic-

based intersection algorithm, extracted the intersection

points, and improved their accuracy. Due to the accelera-

tion from the GPU, the speed of this algorithm is very fast,

achieving real-time response. Moreover, thanks to the

reliability of affine arithmetic, the surface intersection

algorithm based on affine arithmetic is very robust. Because

surface intersection is a fundamental tool in the CAD

system, the surface intersection method developed in this

paper will have important applications in geometric design.
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