
Comput. Methods Appl. Mech. Engrg. 267 (2013) 471–486
Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/ locate/cma
Consistency and convergence properties of the isogeometric
collocation method
0045-7825/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cma.2013.09.025

⇑ Corresponding author. Tel.: +86 571 87951860x8304; fax: +86 571 88206681.
E-mail addresses: hwlin@zju.edu.cn, hwlin@zjucadcg.cn (H. Lin).
Hongwei Lin a,⇑, Qianqian Hu b, Yunyang Xiong a

a Department of Mathematics, State Key Lab. of CAD&CG, Zhejiang University, Hangzhou 310027, China
b Department of Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
a r t i c l e i n f o

Article history:
Received 3 August 2013
Received in revised form 28 September 2013
Accepted 30 September 2013
Available online 12 October 2013

Keywords:
Isogeometric analysis
Collocation method
Convergence
Consistency
NURBS
a b s t r a c t

Isogeometric collocation (IGA-C) method has shown its superior behavior over Galerkin
method in terms of accuracy-to-computational-time ratio and other aspects. However, rel-
atively little has been published about numerical analysis of the IGA-C method. This paper
develops theoretical results on consistency and convergence of the IGA-C method to a gen-
eric boundary (initial) problem. It shows that the IGA-C method is convergent when differ-
ential operator of the boundary (initial) problem is stable or strongly monotone. Finally, we
show some concrete examples whose differential operators are strongly monotone, and the
IGA-C method is convergent. Moreover, 2D and 3D numerical examples are presented.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Finite Element Analysis (FEA) gains widespread applications in physical simulation. However, while classical FEA meth-
ods are based on linear basis functions, CAD models are usually represented by NURBS with non-linear NURBS basis func-
tions. When performing CAD model simulation, the NURBS-based CAD model should be transformed into linear mesh
representation. As we all know, the operation of mesh transformation is very tedious, and it has become the most time-con-
sumed task in the whole FEA procedure. Therefore, isogeometric analysis (IGA) is proposed by Hughes et. al. [1] to avoid the
mesh transformation and to advance the seamless integration of CAD and CAE.

Since the IGA method is based on non-linear NURBS basis functions, it can deal with NURBS-based CAD models directly.
And the IGA method can not only save lots of computation, but also greatly improve the computational precision. In addition,
due to the knot insertion property of NURBS, the shape of CAD model can be exactly held in the refinement procedure [1].
Owning so many merits, the IGA method has been successfully applied in kinds of simulation problems, such as elasticity
[2,3], structure [4–6], and fluid [7–9], etc.

For now, some work focuses on computational aspect of the IGA method and improves the accuracy and efficiency by
using reparameterization and refinement, etc. [10–15]. Collocation method is a simple and efficient numerical method for
solving differential equation, which can generate a numerical solution satisfying the differential equation at a set of discrete
points, called collocation points [16]. If an unknown NURBS function is employed to approximate the analytical solution of a
differential equation and its order is high enough, the collocation method can be applied to the strong form of the differential
equation. Based on this fact, Auricchio et al. proposed the well-known isogeometric collocation (IGA-C) method [17]. For a
boundary/initial problem with differential operator D, we denote by T and Tr the analytic and numerical solutions,
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respectively, and n the number of the unknown coefficients of the NURBS function Tr . The IGA-C method first samples n
values DTrðgiÞ; i ¼ 1;2; . . . ;n, and then generates a system of linear equations by DTr interpolating these n values, i.e.,
DTðgiÞ ¼ DTrðgiÞ; i ¼ 1;2; . . . ;n. The unknown coefficients of Tr can be determined by solving the linear system.

The IGA-C method has been extended to multi-patch NURBS configurations, various boundary and patch interface
conditions, and explicit dynamic analysis [18]. Moreover, the IGA-C method has also been successfully employed in solving
Timoshenko beam problem [19] and spatial Timoshenko rod problem [20], showing that mixed collocation schemes are
locking-free independently of the choice of the polynomial degrees for the unknown fields. A comprehensive study on
the IGA-C method reveals its superior behavior over Galerkin method in terms of accuracy-to-computational-time ratio
[21]. Meanwhile, adaptive IGA-C methods are also developed and analyzed based on local hierarchical refinement of NURBS
[21].

Unfortunately, a thorough numerical analysis of the IGA-C method is far from being established. Till now, all the analysis
of the IGA-C method is only available for the one-dimensional case [17]. And the convergence results for 2D and 3D NURBS
discretizations are available only based on numerical experiments [17,18].

In this paper, we present some theoretical consistency and convergence results of the IGA-C method for a generic differ-
ential operator. We first prove the consistency property of the IGA-C method. That is, for a PDE with the differential operator
D, T is its analytic solution, and a NURBS function Tr is the numerical solution.DTr will tend to DT , when each knot interval of
Tr tends to a point. Then a theoretical convergence result is presented, and we prove that, if D is a stable or strongly mono-
tone operator, the numerical solution Tr will tend to the analytic solution T when each knot interval of Tr tends to a point.
Finally, we give some concrete examples where the differential operators are strongly monotone, and then the IGA-C method
is convergent. It should be pointed out that, while the rate of convergence of the IGA-C method for one-dimensional prob-
lems is developed in [17], we just show the convergence of the IGA-C method for higher dimensional problems with stable or
strongly monotone operator in this paper. Especially, when the differential operator is a stable or strongly monotone oper-
ator with polynomial coefficients, we present an error bound for the numerical solution generated by the IGA-C method.

The rest of this paper is laid out as follows. The generic formula of the IGA-C method is presented in Section 2. In Section 3,
we study the knot vector of the derivative of arbitrary order of a NURBS function Tr , and prove that Tr and DTr have the same
breakpoint sequence and knot intervals. In Section 4, the theoretical consistency and convergence results of the IGA-C meth-
od are developed, and some concrete examples and numerical examples are presented. Finally, we conclude this paper in
Section 5.

2. Generic formulation of the IGA-C method

A boundary value problem is expressed as
DT ¼ f ; in X � Rd;

GT ¼ g; on @X;

(
ð1Þ
where X � Rd is a physical domain of d dimension, D is a bounded differential operator on the physical domain, GT ¼ g is a
boundary condition, and f : X! R, g : @X! R are given functions. Suppose k is the maximum order of derivatives appearing
in the operator D : V !W , where V and W are two Hilbert spaces, and the analytical solution T 2 CmðXÞ; m P k.

In the isogeometric analysis, the physical domain X is represented by a NURBS mapping:
F : X0 ! X; ð2Þ
where X0 is a parametric domain. Replacing the control points of FðX0Þ by unknown control coefficients, we obtain the rep-
resentation of numerical solution Tr , where Tr 2 CkðXÞ.

Suppose there are n unknown control coefficients in the representation of Tr . We first sample n1 points inside X0, which
correspond to n1 values inside X, i.e., gi ¼ FðhiÞ; i ¼ 1;2; . . . ;n1. Next, we sample n2 points on @X0, which correspond to n2

values on @X, i.e., gi ¼ FðhiÞ; i ¼ n1 þ 1;n1 þ 2; . . . ;n1 þ n2. The total number of theses points, called collocation points, should
be equal to the number of the unknown coefficients of Tr , i.e., n ¼ n1 þ n2.

Inserting these collocation points into the boundary value problem (1) yields a system of equations with n equations and
n unknowns, i.e.,
DTrðgiÞ ¼ f ðgiÞ; i ¼ 1;2; . . . n1;

GTrðgiÞ ¼ gðgiÞ; i ¼ n1 þ 1;n1 þ 2; . . . ; n:

�
ð3Þ
Arranging the unknowns of Tr into an n-dimensional column vector, i.e., X ¼ ½x1 x2 � � � xn�T, the system of Eq. (3) can be
represented in matrix form as
AX ¼ b:
If the collocation points are so selected that the collocation matrix A is non-singular, the unknown coefficients X can be
determined by solving the above mentioned system of linear equations.
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3. The knot vector of derivatives of a NURBS function

In the IGA-C method, the numerical solution Tr is a NURBS function, andDTr where the differential operatorD is shown as
in (1) is composed by derivatives of Tr . In this section, we will show that the derivatives of arbitrary order of a NURBS func-
tion Tr have the same knot intervals as Tr , and so does DTr .

3.1. Univariate NURBS function

We first consider the following univariate NURBS function represented by
Table 1
Multipl

1
2
3

TrðuÞ ¼
P

iNiðuÞxiTiP
iNiðuÞxi

,
P0ðuÞ
W0ðuÞ

ð4Þ
of degree h, with control points Ti, the associated weights xi, and knot vector
u1; . . . ;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
i1¼hþ1

;u2; . . . ;u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0<i26hþ1

; . . . ;ua�1; . . . ;ua�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
0<ia�16hþ1

;ua; . . . ;ua|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ia¼hþ1

: ð5Þ
Breakpoint sequence of the NURBS function TrðuÞ (4) is defined as the distinct knot values in ascending order, i.e.,
fu1;u2; . . . ;uag.

Since TrðuÞ (4) is a rational function, its derivative has the item of product of two spline functions, whose knot vector is
presented in the following Lemma 1 [22].

Lemma 1. Given a B-spline function FðuÞ of degree h1 defined on knot vector,
n1; . . . ; n1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n1¼h1þ1

; n2; . . . ; n2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0<n26h1þ1

; . . . ; nr�1; . . . ; nr�1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0<nr�16h1þ1

; nr ; . . . ; nr|fflfflfflfflffl{zfflfflfflfflffl}
nr¼h1þ1
and a B-spline function GðuÞ of degree h2 defined on knot vector,
d1; . . . ; d1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
m1¼h2þ1

; d2; . . . ; d2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0<m26h2þ1

; . . . ; ds�1; . . . ; ds�1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0<ms�16h2þ1

; ds; . . . ; ds|fflfflfflfflffl{zfflfflfflfflffl}
ms¼h2þ1

;

the product of FðuÞ and GðuÞ is a spline function of degree H ¼ h1 þ h2 defined on knot vector,
l1; . . . ;l1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
l1¼Hþ1

;l2; . . . ;l2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0<l26Hþ1

; . . . ;lt�1; . . . ;lt�1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0<lt�16Hþ1

;lt ; . . . ;lt|fflfflfflfflfflffl{zfflfflfflfflfflffl}
lt¼Hþ1

:

For 0 < i < t, the multiplicity of li is computed according to Table 1.
Then, we have the following theorem.

Theorem 1. The nth-order derivative of the NURBS function TrðuÞ (4) can be written as
TðnÞr ðuÞ ¼
PnðuÞ
WnðuÞ

;

where PnðuÞ is a spline function of degree ð2nh� nÞ, with knot vector
u1; . . . ;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2nh�nþ1

;u2; . . . ;u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
i2þð2n�1Þh

; . . . ;ua�1; . . . ;ua�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ia�1þð2n�1Þh

;ua; . . . ;ua|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2nh�nþ1
and the breakpoint sequence fu1;u2; . . . ;uag; WnðuÞ is a spline function of degree 2nh, with knot vector
u1; . . . ;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2nhþ1

;u2; . . . ;u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
i2þð2n�1Þh

; . . . ;ua�1; . . . ;ua�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ia�1þð2n�1Þh

;ua; . . . ;ua|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2nhþ1
and the breakpoint sequence fu1;u2; . . . ;uag. In other words, TrðuÞ and its nth-order derivative TðnÞr ðuÞ have the same breakpoint
sequence fu1;u2; . . . ;uag.
Proof. Here mathematical induction is used to prove the theorem.
icity of li ð0 < i < tÞ.

li ¼ nj þ h2 If li ¼ nj for some j but is absent from GðuÞ’s knot vector
li ¼ mk þ h1 If li ¼ dk for some k but is absent from FðuÞ’s knot vector
li ¼maxðnj þ h2;mk þ h1Þ If li ¼ nj ¼ dk for some j and k
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Deriving TrðuÞ (4) with respect to u yields
T 0rðuÞ ¼
P00ðuÞW0ðuÞ � P0ðuÞW 0

0ðuÞ
W2

0ðuÞ
,

P1ðuÞ
W1ðuÞ

: ð6Þ
According to (4), the h-degree spline functions P0ðuÞ and W0ðuÞ are defined on the knot vector (5). It is easy to show that
P00ðuÞ and W 0

0ðuÞ are both defined on
u1; . . . ;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
h

;u2; . . . ;u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0<i26hþ1

; . . . ; ua�1; . . . ;ua�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
0<ia�16hþ1

;ua; . . . ;ua|fflfflfflfflfflffl{zfflfflfflfflfflffl}
h

and their degree is ðh� 1Þ. Based on Lemma 1, P1ðuÞ in (6) is defined on knot vector
u1; . . . ;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2h

;u2; . . . ;u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
i2þh

; . . . ; ua�1; . . . ;ua�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ia�1þh

;ua; . . . ;ua|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2h
and its degree is ð2h� 1Þ. On the other hand, W1ðuÞ ¼W2
0ðuÞ is defined on knot vector
u1; . . . ;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2hþ1

;u2; . . . ;u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
i2þh

; . . . ; ua�1; . . . ;ua�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ia�1þh

;ua; . . . ;ua|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2hþ1
and its degree is 2h. Therefore, the statement holds for n ¼ 1.
Assume that the statement holds for some unspecified value of n� 1; n P 2. That is,
Tðn�1Þ
r ðuÞ ¼ Pn�1ðuÞ

Wn�1ðuÞ
; ð7Þ
where Pn�1ðuÞ is a ð2n�1h� nþ 1Þ-degree spline function with knot vector
u1; . . . ;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2n�1h�nþ2

;u2; . . . ;u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
i2þð2n�1�1Þh

; . . . ; ua�1; . . . ;ua�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ia�1þð2n�1�1Þh

;ua; . . . ;ua|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2n�1h�nþ2

;

Wn�1ðuÞ is a 2n�1h-degree spline function with knot vector
u1; . . . ;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2n�1hþ1

;u2; . . . ;u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
i2þð2n�1�1Þh

; . . . ; ua�1; . . . ;ua�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ia�1þð2n�1�1Þh

;ua; . . . ;ua|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2n�1hþ1

:

Deriving Tðn�1Þ
r ðuÞ (7) with respect to u yields
TðnÞr ðuÞ ¼
P0n�1ðuÞWn�1ðuÞ � Pn�1ðuÞW 0

n�1ðuÞ
W2

n�1ðuÞ
,

PnðuÞ
WnðuÞ

:

Also based on Lemma 1, P0n�1ðuÞWn�1ðuÞ is a ð2nh� nÞ-degree spline function defined on
u1; . . . ;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2nh�nþ1

;u2; . . . ;u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
i2þð2n�1Þh

; . . . ; ua�1; . . . ;ua�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ia�1þð2n�1Þh

;ua; . . . ;ua|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2nh�nþ1

; ð8Þ
Pn�1ðuÞW 0
n�1ðuÞ is a ð2nh� nÞ-degree spline function defined on
u1; . . . ;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2nh�nþ1

; u2; . . . ;u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
i2þð2n�1Þh�1

; . . . ; ua�1; . . . ;ua�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ia�1þð2n�1Þh�1

;ua; . . . ;ua|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2nh�nþ1

: ð9Þ
By inserting u2;u3; . . . ;ua�1 into the knot vector (9) using the de Boor algorithm, both knot vectors (8) and (9) are identical.
Therefore, PnðuÞ ¼ P0n�1ðuÞWn�1ðuÞ � Pn�1ðuÞW 0

n�1ðuÞ is a spline function of degree ð2nh� nÞ with the knot vector (8).
On the other hand, WnðuÞ ¼W2

n�1ðuÞ is a 2nh-degree spline function defined on knot vector
u1; . . . ;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2nhþ1

;u2; . . . ;u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
i2þð2n�1Þh

; . . . ; ua�1; . . . ;ua�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ia�1þð2n�1Þh

;ua; . . . ;ua|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2nhþ1

:

Therefore, it is shown that indeed the statement holds for n. Since both the basic and the inductive steps have been
proved, then the statement holds for all n. And the theorem is proved. h

According to Theorem 1, the NURBS function TrðuÞ (4) and its derivatives of arbitrary order have the same breakpoint
sequence fu1;u2; . . . ;uag. Since DTrðuÞ is a combination of TrðuÞ and its derivatives, DTrðuÞ has the same breakpoint sequence
as TrðuÞ and its derivatives of arbitrary order. Therefore, they are defined on the same knot intervals, i.e.,

Corollary 1. The NURBS function TrðuÞ (4), its derivatives of arbitrary order, and DTrðuÞ are defined on the same knot intervals,
½u1;u2�; ½u2;u3�; . . . ; ½ua�1;ua�:

Hongwei Lin
文本框
这个微分算子必须是个线性算子，如果是个非线性算子，则会出现一个关于NURBS函数未知系数的非线性方程组。
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Remark 1. The order n of the derivative of TrðuÞ (4) is not more than the minimum of h� is; s ¼ 2;3; . . . ;a� 1, i.e.,
n 6 min
26s6a�1

fh� isg;
since the multiplicity of an inner knot cannot exceed the degree of a NURBS function.
3.2. Bivariate and trivariate NURBS functions

Next, we consider the case of bivariate NURBS functions. Suppose numerical solution Trðu;vÞ is represented by a bivariate
NURBS function of degree h� g,
Trðu; vÞ ¼
P

i;jNiðuÞNjðvÞxijTijP
i;jNiðuÞNjðvÞxij

; ð10Þ
where Tij are control coefficients, and xij are the associated weights. It is defined on knot vectors
u1; . . . ;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
i1¼hþ1

;u2; . . . ;u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0<i26hþ1

; . . . ;ua�1; . . . ;ua�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
0<ia�16hþ1

; . . . ua; . . . ;ua|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ia¼hþ1

;

v1; . . . ; v1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
j1¼gþ1

;v2; . . . ;v2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0<j26gþ1

; . . . ; vb�1; . . . ;vb�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
0<jb�16gþ1

; . . . vb; . . . ; vb|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
jb¼gþ1
and its breakpoint sequences are fu1;u2; . . . ;uag and fv1;v2; . . . ;vbg.
At first, we give a lemma to elucidate knot vectors of the product of two bivariate B-spline functions.

Lemma 2. Given a bivariate B-spline function Fðu;vÞ of degree h1 � g1, i.e.,
Fðu;vÞ ¼
X

i

X
j

NiðuÞNjðvÞFij;
defined on knot vectors
n1; . . . ; n1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n1¼h1þ1

; n2; . . . ; n2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0<n26h1þ1

; . . . ; nr�1; . . . ; nr�1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0<nr�16h1þ1

; nr ; . . . ; nr|fflfflfflfflffl{zfflfflfflfflffl}
nr¼h1þ1

;

k1; . . . ; k1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�n1¼g1þ1

; k2; . . . ; k2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0<�n26g1þ1

; . . . ; k�r�1; . . . ; k�r�1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0<�n�r�16g1þ1

; k�r ; . . . ; k�r|fflfflfflfflffl{zfflfflfflfflffl}
�n�r¼g1þ1
and a bivariate B-spline function Gðu;vÞ of degree h2 � g2, i.e.,
Gðu;vÞ ¼
X

i

X
j

NiðuÞNjðvÞGij;
defined on knot vectors
d1; . . . ; d1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
m1¼h2þ1

; d2; . . . ; d2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0<m26h2þ1

; . . . ; ds�1; . . . ; ds�1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0<ms�16h2þ1

; ds; . . . ; ds|fflfflfflfflffl{zfflfflfflfflffl}
ms¼h2þ1

;

/1; . . . ;/1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�m1¼g2þ1

;/2; . . . ;/2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0< �m26g2þ1

; . . . ;/�s�1; . . . ;/�s�1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0< �m�s�16g2þ1

;/�s; . . . ;/�s|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�m�s¼g2þ1

:

The product of Fðu; vÞ and Gðu;vÞ is a bivariate spline function of degree H � G, with u-directional knot vector
l1; . . . ;l1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
l1¼Hþ1

;l2; . . . ;l2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0<l26Hþ1

; . . . ;lt�1; . . . ;lt�1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0<lt�16Hþ1

;lt ; . . . ;lt|fflfflfflfflfflffl{zfflfflfflfflfflffl}
lt¼Hþ1

; ð11Þ
where H ¼ h1 þ h2, and v-directional knot vector
m1; . . . ; m1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�l1¼Gþ1

; m2; . . . ; m2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0<�l26Gþ1

; . . . ; m�t�1; . . . ; m�t�1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0<�l�t�16Gþ1

; m�t ; . . . ; m�t|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�l�t¼Gþ1

; ð12Þ
where G ¼ g1 þ g2. For 0 < i < t, the multiplicity of li is computed according to Table 2; for 0 < i < �t, the multiplicity of mi is com-
puted according to Table 3.



Table 2
Multiplicity of li ; ð0 < i < tÞ.

1 li ¼ nj þ h2 If li ¼ nj for some j but is absent from Gðu; vÞ’s knot vector
2 li ¼ mk þ h1 If li ¼ dk for some k but is absent from Fðu; vÞ’s knot vector
3 li ¼maxðnj þ h2;mk þ h1Þ If li ¼ nj ¼ dk for some j and k
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Proof. Denote by Hðu;vÞ the product of Fðu; vÞ and Gðu;vÞ , i.e., Hðu;vÞ ¼ Fðu;vÞGðu;vÞ. We fix v ¼ �v to generate the u-direc-
tional knot vector of Hðu;vÞ. So,
Table 3
Multipl

1

2
3

Hðu; �vÞ ¼ Fðu; �vÞGðu; �vÞ ¼
X

i

NiðuÞ
X

j

Njð�vÞFij

 !
�
X

i

NiðuÞ
X

j

Njð�vÞGij

 !
:

Obviously, Fðu; �vÞ is a univariate B-spline function of degree h1, Gðu; �vÞ is a univariate B-spline function of degree h2, and
Hðu; �vÞ is the product of these two univariate B-spline functions. Then based on Lemma 1, Hðu; �vÞ is a B-spline function of
degree ðh1 þ h2Þ, defined on the knot vector (11).

Similarly, by fixing u ¼ �u, we can also show that Hð�u;vÞ is a B-spline function of degree ðg1 þ g2Þ, defined on the knot
vector (12).

In conclusion, Hðu;vÞ is a bivariate B-spline function of degree ðh1 þ h2Þ � ðg1 þ g2Þ, defined on the knot vectors (11) and
(12). h
Theorem 2. The partial derivative of arbitrary order of the bivariate NURBS function Trðu;vÞ (10), i.e., @
iþjTr ðu;vÞ
@ui@v j , where
i 6 min
26s6a�1

fh� isg; j 6 min
26s6b�1

fg � jsg
has the same breakpoint sequence as Trðu;vÞ, i.e.,
fu1;u2; . . . ;uag and fv1;v2; . . . ; vbg
and so does DTrðu;vÞ where D is defined in (1). Therefore, Trðu;vÞ, its partial derivatives of arbitrary order, and DTrðu;vÞ are all
defined on the same knot intervals.

Similar to the proof of Theorem 1, Theorem 2 can be proved by mathematical induction based on Lemma 2.
Moreover, we have similar result to a trivariate NURBS function Trðu;v ;wÞ of degree h� g � f , i.e.,
Trðu; v;wÞ ¼
P

i;j;kNiðuÞNjðvÞNkðwÞxijkTijkP
i;j;kNiðuÞNjðvÞNkðwÞxijk

; ð13Þ
where Tijk are control coefficients, and xijk are the associated weights. It is defined on knot vectors
u1; . . . ;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
i1¼hþ1

;u2; . . . ;u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0<i26hþ1

; . . . ; ua�1; . . . ;ua�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
0<ia�16hþ1

; . . . ua; . . . ;ua|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ia¼hþ1

;

v1; . . . ;v1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
j1¼gþ1

;v2; . . . ; v2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0<j26gþ1

; . . . ; vb�1; . . . ; vb�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
0<jb�16gþ1

; . . . vb; . . . ;vb|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
jb¼gþ1

;

w1; . . . ;w1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k1¼fþ1

;w2; . . . ;w2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0<k26fþ1

; . . . ;wc�1; . . . ;wc�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
0<kc�16fþ1

; . . . wc; . . . ;wc|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
kc¼fþ1

:

iþjþk
Theorem 3. The partial derivative of arbitrary order of the trivariate NURBS function Trðu;v ;wÞ, i.e., @ Trðu;v;wÞ
@ui@v j@wk , where
i 6 min
26s6a�1

fh� isg; j 6 min
26s6b�1

fg � jsg; k 6 min
26s6c�1

ff � ksg
has the same breakpoint sequence as Trðu;v;wÞ, and so does DTrðu;v ;wÞ. Therefore, Trðu;v ;wÞ, its partial derivative of arbitrary
order, and DTrðu;v ;wÞ are all defined on the same knot intervals.

Remark 2. Evidently, the result in the above theorem is held for higher dimensional NURBS function.
icity of mi ; ð0 < i < �tÞ.

�li ¼ �nj þ g2 If mi ¼ kj for some j but is absent from Gðu; vÞ’s knot vector
�li ¼ �mk þ g1 If mi ¼ /k for some k but is absent from Fðu; vÞ’s knot vector
�li ¼maxð�nj þ g2; �mk þ g1Þ If mi ¼ kj ¼ /k for some j and k
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4. Main results

In this section, we will develop the main results of this paper, i.e., the theoretical consistency and convergence properties
of the IGA-C method, in Sections 4.1 and 4.2, respectively. Moreover, some concrete examples with strongly monotone oper-
ator and some numerical examples are presented in Section 4.3.

4.1. Consistency

Definition 1. Given a set U � Rd, its diameter diamðUÞ is defined as
diamðUÞ ¼ supfdðx; yÞ; x; y 2 Ug;
where dðx; yÞ denotes the Euclidean distance between x and y. Moreover, we call q as knot grid size, which is defined as the
maximum of the diameters of the knot intervals. That is, q ¼maxifdiamð½ui;uiþ1ÞÞg in 1D case,
q ¼maxijfdiamð½ui;uiþ1Þ � ½v j;v jþ1ÞÞg in 2D case, and q ¼maxijkfdiamð½ui;uiþ1Þ � ½v j;v jþ1Þ � ½wk;wkþ1ÞÞg in 3D case.

When the approximate differential expression DTr interpolates the real differential expression DT at some collocation
points, we have the following results.

Theorem 4 (One dimensional case). Suppose the numerical solution to the boundary value problem (1) is represented by the
NURBS function TrðuÞ (4), and there is at least one collocation point gi in the knot interval ½ui;uiþ1Þ; i ¼ 1; . . . ;a� 1. If the
approximate differential expression DTrðuÞ interpolates the values of the real differential expression DTðuÞ at the collocation points
gi 2 ½ui;uiþ1Þ; i ¼ 1; . . . ;a� 1, i.e., DTðgiÞ ¼ DTrðgiÞ, and TrðuÞ satisfies the local Lipschitz condition, i.e.,
9d > 0;8n1; n2 2 ½u1;ua�; n1 � n2j j < d; we have Trðn1Þ � Trðn2Þj j < K n1 � n2j j; for any q! 0;
where K > 0 is a constant and q is the knot grid size defined in Definition 1, then DTrðuÞ will tend to DTðuÞ in the L1 norm, when
the length of each knot interval of TrðuÞ tends to 0, i.e., q! 0.
Proof. Based on Theorem 1 and Corollary 1, DTrðuÞ and TrðuÞ are defined on the same knot intervals,
½ui;uiþ1�; i ¼ 1; . . . ;a� 1.

Denote rðuÞ ¼ DTðuÞ � DTrðuÞ, and suppose û 2 ½ui; uiþ1Þ. Due to the Lagrange’s mean value theorem, we have,
rðûÞ � rðgiÞ
û� gi

¼ rðûÞ
û� gi

¼ r0ðnÞ;
where n 2 ðminðgi; ûÞ;maxðgi; ûÞÞ. Therefore,
rðûÞj j ¼ r0ðnÞðû� giÞj j 6 max
n2½ui ;uiþ1Þ

r0ðnÞj jmax
i
ðuiþ1 � uiÞ:
Since û is an arbitrary value in ½ui;uiþ1Þ, we have,
DTðuÞ � DTrðuÞk kL1 ¼ rðuÞk kL1 6max
i

max
n2½ui ;uiþ1Þ

r0ðnÞj jmax
i
ðuiþ1 � uiÞ 6 q r0ðuÞk kL1 : ð14Þ
On the other hand, noting that TrðuÞ satisfies the local Lipschitz condition, the derivative of TrðuÞ is bounded for q! 0, i.e,
T 0rðuÞ
�� �� ¼ lim

Du!0

Trðuþ DuÞ � TrðuÞj j
Duj j 6 lim

Du!0

K Duj j
Duj j ¼ K:
Then we have,
DT 0rðuÞ
�� ��

L1
6 Dk kV 0 T 0rðuÞ

�� ��
L1
6 K Dk kV 0 ; for any q! 0;
where �k kV 0 is the norm in the dual space V 0. It means that, r0ðuÞk kL1 is also bounded for any q! 0.
Therefore, according to (14), rðuÞk kL1 tends to 0, when the lengths of knot intervals of TrðuÞ tend to 0, i.e., q! 0. And the

theorem is proved. h

The following theorem deals with the two dimensional case.

Theorem 5 (Two dimensional case). Suppose the numerical solution to the boundary value problem (1) is represented by the
bivariate NURBS function Trðu;vÞ (10), and there is at least one collocation point gij ¼ ðlij; mijÞ in the knot interval
½ui;uiþ1Þ � ½v j;v jþ1Þ; i ¼ 1; . . . ;a� 1; j ¼ 1; . . . ; b� 1. If the approximate differential expression DTrðu; vÞ interpolates the values
of the real differential expression DTðu;vÞ at the following collocation points
gij 2 ½ui;uiþ1Þ � ½v j; v jþ1Þ; i ¼ 1; . . . ;a� 1; j ¼ 1; . . . ;b� 1;
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i.e., DTðgijÞ ¼ DTrðgijÞ, and Trðu;vÞ satisfies the local Lipschitz condition, i.e.,
9d > 0;8n1; n2 2 ½u1;ua� � ½v1;vb�;dðn1; n2Þ < d; we have Trðn1Þ � Trðn2Þj j < Kdðn1; n2Þ; for any q! 0;
where K > 0 is a constant, q is the knot grid size defined in Definition 1, and dðn1; n2Þ is the Euclidean distance between n1 and n1,
then DTrðu;vÞ will tend to DTðu;vÞ in the L1 norm, when each knot interval ½ui;uiþ1Þ � ½v j; v jþ1Þ of Trðu;vÞ tends to a point, i.e.,
q! 0.
Proof. Due to Theorem 2, DTrðu;vÞ has the same knot intervals as the bivariate NURBS function Trðu;vÞ (10), i.e.,
½ui;uiþ1� � ½v j;v jþ1�; i ¼ 1; . . . ;a� 1; j ¼ 1; . . . ; b� 1.

Denote rðu;vÞ ¼ DTðu;vÞ � DTrðu;vÞ, and suppose f ¼ ðû; v̂Þ 2 ½ui;uiþ1Þ � ½v j;v jþ1Þ. Based on the mean value theorem in
multiple variables, we have
rðfÞ ¼ rðfÞ � rðgijÞ ¼ rrjð1�cÞfþcgij
� ðf� gijÞ;
where c 2 ð0;1Þ, and \ � " represents inner product.
Thus, we have
rðfÞk kL1 6 rrk kL1 f� gij

��� ���
L1
6 rrk kL1max

i;j
uiþ1 � uij j þ v jþ1 � v j

�� ��� �

and further,
DTðfÞ � DTrðfÞk kL1 ¼ rðfÞk kL1 6 rrk kL1max
i;j

uiþ1 � uij j þ v jþ1 � v j

�� ��� �
6 2q rrk kL1 :
Since Trðu;vÞ satisfies the local Lipschitz condition, its partial derivatives are bounded, as well as the partial derivatives of
DTrðu;vÞ. So rrk kL1 is bounded. According to the above mentioned inequality, the approximate differential expression
DTrðu;vÞ will converge to the real differential expression DTðu;vÞ, when the knot interval ½ui;uiþ1Þ � ½v j;v jþ1Þ tends to a
point, i.e., q! 0. h

Three dimensional case is handled in a similar fashion, and we have,

Theorem 6 (Three dimensional case). Suppose the numerical solution to the boundary value problem (1) is represented by the
trivariate NURBS function Trðu; v;wÞ (13), and there is at least one collocation point gijk ¼ ðlijk; mijk; nijkÞ in the knot interval
½ui;uiþ1Þ � ½v j;v jþ1Þ � ½wk;wkþ1Þ; i ¼ 1; . . . ;a� 1; j ¼ 1; . . . ; b� 1; k ¼ 1; . . . ; c� 1. If the approximate differential expression
DTrðu;v ;wÞ interpolates the values of the real differential expression DTðu;v ;wÞ at the collocation points,
gijk 2 ½ui;uiþ1Þ � ½v j;v jþ1Þ � ½wk;wkþ1Þ; i ¼ 1; . . . ;a� 1; j ¼ 1; . . . ; b� 1; k ¼ 1; . . . ; c� 1;
i.e., DTðgijkÞ ¼ DTrðgijkÞ, and Trðu;v ;wÞ satisfies the local Lipschitz condition, DTrðu;v ;wÞ will tend to DTðu;v ;wÞ in the L1

norm when q! 0, which is defined in Definition 1.
Proof of Theorem 6 is similar to that of Theorem 5.
Especially, when D is a differential operator with polynomials as coefficients, we can get the error bound of DT �DTrk kL1 .

To this end, we need the following Lemma 3.
Suppose T q is a knot grid on X0 2 Rd; d ¼ 1;2;3, e.g., T q is a knot sequence in 1D case, a rectangular grid in 2D case, and a

hexahedral grid in 3D case, where q is the knot grid size defined in Definition 1. Let u 2Wm
p ðX0Þ be a function defined on X0,

where Wm
p ðX0Þ is a Sobolev space, and Iqu 2 C0ðX0Þ be a polynomial spline interplant of u defined on the knot grid T q. In 1D

case, Iqu is a univariate spline function, and in 2D and 3D cases, Iqu is a tensor product spline function. We have the error
bound for the interplant Iqu as follows (refer to p.110 and p. 115 of [23]).

Lemma 3. The error bound for the polynomial spline interplant Iqu of u defined on the knot grid T q is,
u� Iquk kL1 6 CIqm�d=p;
where CI > 0 is a constant independent of the knot grid size q.
Denote by Tr the numerical solution to the PDE problem (1), expressed as
TrðfÞ ¼
P0ðfÞ
W0ðfÞ

; f 2 X0 � Rd; d ¼ 1;2;3; ð15Þ
where W0ðfÞ is a known polynomial spline function and P0ðfÞ is a polynomial spline function with unknown coefficients,
which can be solved by the IGA-C method. In 1D case, P0ðfÞ and W0ðfÞ are univariate spline functions; in 2D and 3D cases,
they are tensor product spline functions.

Suppose the analytical solution T to the problem (1) is transformed into the parametric domain X0 by function compo-
sition TðFðX0ÞÞ, where F is defined as in (2). We still denote TðFðX0ÞÞ as T. Accordingly, D becomes a differential operator
defined on the parametric domain X0. The numerical solution Tr (15) will approximate the analytical solution T defined on X0.
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First, the coefficients of D are polynomials. By compounding the NURBS mapping FðfÞ (2), each polynomial becomes a
linear combination of the powers of components of FðfÞ, i.e., FðfÞ ¼ xðuÞ in 1D case, FðfÞ ¼ ðxðu;vÞ; yðu;vÞÞ in 2D case, and
FðfÞ ¼ ðxðu; v;wÞ; yðu;v;wÞ; zðu;v ;wÞÞ in 3D case. The components x; y; z of FðfÞ are known NURBS functions.

Second, in computing the (partial) derivatives of Tr to the variables in the physical domain X by chain rule with the in-
verse mapping F�1 : X! X0, extra coefficients will appear in front of the (partial) derivatives of Tr to the corresponding vari-
ables in the parametric domain X0. Each of these coefficients can be obtained by finite time calculations of four rules (i.e.,
addition, subtraction, multiplication and division) of the (partial) derivatives of components of FðfÞ, which are known NURBS
functions as aforementioned.

Therefore, DTrðfÞ; f 2 X0 on the parametric domain X0 is the sum of products of NURBS functions and their (partial)
derivatives, i.e., the components of FðfÞ; TrðfÞ, and their (partial) derivatives. According to Lemmas 1, 2, and Theorems
1,2,3, they have the same breakpoint sequence as FðfÞ and TrðfÞ. Thus, by suitable knot insertion and like item merging,
DTrðfÞ can be written as,
DTrðfÞ ¼
PkðfÞ
WkðfÞ

;

where WkðfÞ is a known polynomial spline function, and PkðfÞ is a polynomial spline function containing the unknown coef-
ficients of TrðfÞ. PkðfÞ and WkðfÞ have the same breakpoint sequence as FðfÞ and TrðfÞ. Here, it is supposed that the knots of
PkðfÞ and WkðfÞ are all regular.

According to the above mentioned equation, we have
DTðfÞ � DTrðfÞ ¼
WkðfÞDTðfÞ � PkðfÞ

WkðfÞ
:

Thus, the interpolation of DTrðfÞ to DTðfÞ becomes to the interpolation of the polynomial spline PkðfÞ to WkðfÞDTðfÞ. Suppose
WkðfÞDTðfÞ 2Wm

p ðX0Þ. Due to Lemma 3, it holds
WkðfÞDTðfÞ � PkðfÞk kL1 6 CIqm�d=p;
where q is the knot grid size of T q which TrðfÞ is defined on. Then we have
DTðfÞ � DTrðfÞk kL1 ¼
WkðfÞDTðfÞ � PkðfÞ

WkðfÞ

����
����

L1
6 WkðfÞDTðfÞ � PkðfÞk kL1

1
WkðfÞ

����
����

L1
6 CIqm�d=p 1

WkðfÞ

����
����

L1
:

This leads to the following Theorem.

Theorem 7. Suppose D is a differential operator with polynomial coefficients, and the numerical solution TrðfÞ is defined on the
knot grid T q � X0 � Rd. If DTrðfÞ ¼ PkðfÞ

WkðfÞ is an interplant of DTðfÞ, and WkðfÞDTðfÞ 2Wm
p ðX0Þ, we have
DTðfÞ � DTrðfÞk kL1 6 CIqm�d=p 1
WkðfÞ

����
����

L1
;

where q is the knot grid size of T q which TrðfÞ is defined on, and CI > 0 is a constant independent of q.
4.2. Convergence

In this subsection, we present a theoretical result on convergence of the IGA-C method. That is, if the differential operator
in D (1) is stable or strongly monotone, the corresponding IGA-C method is convergent.

Definition 2 (Stability estimate and stable operator [24]). Let V ;W be Hilbert spaces and D : V !W a differential operator. If
there exists a constant CS > 0 such that,
Dvk kW P CS vk kV ; for all v 2 DðDÞ; ð16Þ
where DðDÞ represents the domain of D, the differential operator D is called the stable operator, and the inequality (16) is
called the stability estimate.
Remark 3. In this subsection, we suppose that the L1 norm �k kL1 is equivalent to the norm �k kV in V, and the norm �k kW in W.
In other words, there exist nonnegative constants cV ; CV ; cW , and CW satisfying
cV �k kV 6 �k kL1 6 CV �k kV ;

cW �k kW 6 �k kL1 6 CW �k kW :
Theorem 8. Suppose NURBS function Tr is the numerical solution to the boundary value problem (1), generated by the IGA-C
method. If the differential operator D : V !W in (1) is a stable operator and Tr satisfies the local Lipschitz condition, Tr will con-
verge to the analytic solution T, when each knot interval of Tr tends to a point.



480 H. Lin et al. / Comput. Methods Appl. Mech. Engrg. 267 (2013) 471–486
Proof. The differential operator D in (1) is a stable operator, so there exists a constant CS > 0, such that
DðT � TrÞk kW P CS T � Trk kV :
And it is equivalent to
T � Trk kV 6
1

CS
DT �DTrk kW :
Due to the equivalence of �k kL1 and �k kW , and the consistency of the IGA-C method (Theorems 4–6), this theorem is
proved. h

Moreover, we have,

Theorem 9. Suppose NURBS function Tr is the numerical solution to the boundary value problem (1), generated by the IGA-C
method. If the differential operator D : V !W in (1) is a stable operator with polynomial coefficients, and the conditions of
Theorem 7 are satisfied, then the error bound between the analytic solution T and the numerical solution Tr fulfills,
T � Trk kV 6 CLqm�d=p 1
WkðfÞ

����
����

L1
;

where q is the knot grid size of T q which Tr is defined on, and CL is a constant independent of q.
Theorem 9 can be proved directly based on Theorem 7 and Definition 2.

Definition 3 (Strongly monotone operator [24]). Let V be a Hilbert space and D 2 LðV ;V 0Þ. The operator D is said to be a
strongly monotone operator, if there exists a constant CD > 0, such that,
hDv; viP CD vk k2
V ; for all v 2 V : ð17Þ
For every v 2 V , the element Dv 2 V 0 is a linear form. The symbol hDv ;vi, which means the application of Dv to v 2 V , is
called duality pairing.
Lemma 4. Let V be a Hilbert space and D 2 LðV ;V 0Þ a continuous strongly monotone linear operator. Then there exists a con-
stant CD > 0 such that D satisfies the stability estimate (16) [24].
Proof. The strong monotonicity condition (17) implies,
CD vk k2
V 6 hDv ;vi 6 Dvk kV 0 vk kV ;
which means
CD vk kV 6 Dvk kV 0 : �
Consequently, we have the following corollary.
Corollary 2. Suppose NURBS function Tr is the numerical solution to the boundary value problem (1), generated by the IGA-C
method, and the norm �k kL1 bounds the norm �k kV 0 . If the differential operator D in (1) is a strongly monotone operator, and Tr

satisfies the local Lipschitz condition, then Tr will converge to the analytic solution T, when each knot interval of Tr tends to a point.
This is a direct corollary of Lemma 4 and Theorem 8.
Based on Theorem 9 and Lemma 4, we also have,

Corollary 3. Suppose NURBS function Tr is the numerical solution to the boundary value problem (1), generated by the IGA-C
method, and the norm �k kL1 bounds the norm �k kV 0 . If the differential operator D in (1) is a strongly monotone operator with
polynomial coefficients, and the conditions of Theorem 7 are satisfied, the following error bound formula holds, i.e.,
T � Trk kV 6 CMqm�d=p 1
WkðfÞ

����
����

L1
;

where T is the analytical solution to the problem (1), q is the knot grid size of T q which Tr is defined on, and CM is a constant
independent of q.
Remark 4. It is well known that a wide class of elliptic differential operators are stable or strongly monotone. So the IGA-C
method for equations with these elliptic differential operators is convergent.
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4.3. Examples

In this subsection, we give two examples of PDE whose differential operators are strongly monotone. So the IGA-C method
for them is convergent. Both examples can also be found in Ref. [24]. Further, a 2D and a 3D numerical examples are pre-
sented in Sections 4.3.2 and 4.3.3, respectively.

4.3.1. Examples of strongly monotone operator

Example 1. Consider the following boundary value problem:
Du ¼ �r � ða1ruÞ þ a0u ¼ f in X

uðxÞ ¼ 0 on @X

�
ð18Þ
where a1ðxÞP Cmin > 0; a0ðxÞP 0.
The weak formulation of this boundary value problem is stated as follows:
Let V ¼ H1

0ðXÞ ¼ fv 2W1;2ðXÞ; v ¼ 0 on @Xg, where W1;2ðXÞ is a Sobolev space, and define a bilinear form
að�; �Þ : V � V ! R,
aðu;vÞ ¼
Z

X
ða1ru � rv þ a0uvÞdx;
associated with a unique linear operator D : V ! V 0 defined by
Du;vh i ¼ aðu; vÞ for all u;v 2 V
and a linear form l 2 V 0,
lðvÞ ¼
Z

X
f vdx:
Find a function u 2 V such that
aðu;vÞ ¼ lðvÞ for all v 2 V :
Next, we will prove that this differential operator is strongly monotone. According to the Poincaré–Friedrichs’ inequality [24]
in the space V ¼ H1

0ðXÞ, we have
vj j1;2 6 vk k1;2 6 C�1 vj j1;2 for all v 2 V ;
where C > 0 is a constant, vj j1;2 ¼ ð
R

X rvj j2dxÞ
1
2 is a seminorm, and the norm vk k1;2 is generated by adding a nonnegative

term to the seminorm vj j1;2 [24]. Also noticing that a1ðxÞP Cmin > 0 and a0ðxÞP 0, we obtain that
aðv ;vÞ ¼
Z

X
ða1 rvj j2 þ a0v2Þdx P

Z
X

a1 rvj j2dx P Cmin

Z
X
rvj j2dx ¼ Cmin vj j21;2 P CminC2 vk k2

1;2 for all v 2 V :
Using the inequality
vk kV 6 vk k1;2;
we have
Dv; vh iP CminC2 vk k2
1;2 P CminC2 vk k2

V :
By Definition 2, the operator D is proved to be a strongly monotone operator. Therefore, suppose the norm �k kL1 bounds the
norm �k kV 0 , the IGA-C method for the boundary value problem (18) is convergent, if the generated numerical solution satis-
fies the local Lipschitz condition, or D is a operator with polynomial coefficients.

Remark 5. This partial differential problem is fairly general, and it can describe a wide range physical processes, such as
stationary heat transfer, electrostatics, transverse deflection of a cable, axial deformation of a bar, pipe flow, laminar
incompressible flow through a channel under constant pressure gradient, and porous media flow, and so on.
Example 2. The heat transfer equation with homogeneous Dirichlet boundary condition is represented by
Du ¼ @u
@t � Du ¼ f in X

uð0Þ ¼ u0 on @X

�
ð19Þ
This is a linear parabolic differential equation with homogenous Dirichlet boundary condition. And this differential oper-
ator is strongly monotone [24]. Therefore, suppose the norm �k kL1 bounds the norm �k kV 0 , the IGA-C method for the boundary
value problem (19) is convergent, if the generated numerical solution satisfies the local Lipschitz condition, or D is a operator
with polynomial coefficients.



Table 4
Statistics on the convergence of relative errors vs. number of control points

Example in 2D Example in 3D

Numbera eT eDT Number a eT eDT

4� 4 0.5464 1.1730 4� 4� 4 1.2075 1.8073
5� 5 0.2682 0.3290 5� 5� 5 0.3579 0.5746
6� 6 0.3891 0.3377 5� 5� 6 0.2990 0.5023
7� 7 0.1780 0.1483 5� 6� 6 0.2299 0.4003
8� 8 0.1064 0.0983 6� 6� 6 0.1394 0.2261
9� 9 0.0704 0.0674 7� 7� 7 0.1546 0.1848
10� 10 0.0050 0.0497 8� 8� 8 0.1129 0.1266
12� 12 0.0291 0.0307 9� 9� 9 0.0832 0.0946
13� 13 0.0233 0.0251 10� 10� 10 0.0628 0.0578
14� 14 0.0191 0.0209 11� 11� 11 0.0491 0.0550
15� 15 0.0159 0.0178 12� 12� 12 0.0392 0.0417
17� 17 0.0116 0.0132 13� 13� 13 0.0320 0.0346
19� 19 0.0088 0.0104 14� 14� 14 0.0265 0.0283

a Number of control points.
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Before showing numerical examples in Sections 4.3.2 and 4.3.3, we define two relative errors to measure the approxima-
tion precision, i.e., the relative error for T,
1 For
eT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
X ðT � TrÞtðT � TrÞdXR

X TtTdX

s
ð20Þ
and the relative error for DT
eDT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
X ðDT �DTrÞtðDT �DTrÞdXR

X ðDTÞtðDTÞdX

s
: ð21Þ
Additionally, for illustrating the error distribution of the numerical solution, the following absolute error ea is employed, i.e.,
eaðu;vÞ ¼ Tðu; vÞ � Trðu; vÞj j; for 2D case;
eaðu;v ;wÞ ¼ Tðu;v ;wÞ � Trðu;v ;wÞj j; for 3D case:

ð22Þ
4.3.2. Numerical example in 2-dimension
Consider a source problem on a 2D domain X,
�DT þ T ¼ f ; ðx; yÞ 2 X

Tj@X ¼ 0;

�
ð23Þ
where the 2D domain X is a quarter of an annulus, which can be exactly represented by a cubic NURBS patch with 4� 4
control points, presented in Appendix A.1, and
f ¼ð3x4�67x2�67y2þ3y4þ6x2y2þ116ÞsinðxÞsinðyÞþð68x�8x3�8xy2ÞcosðxÞsinðyÞþð68y�8y3�8yx2ÞcosðyÞsinðxÞ:
The analytical solution of the source problem (23) is (see Fig. 2(a)),
T ¼ ðx2 þ y2 � 1Þðx2 þ y2 � 16Þ sinðxÞ sinðyÞ:
Clearly, Eq. (23) is a special case of Example 1, and the operator in Eq. (23) is a strongly monotone operator with constant
coefficients. So the IGA-C method is convergent for the 2D source problem (23).

To solve the problem (23) with the IGA-C method, we uniformly insert 15 knots along u- and v-directions, respectively, to
the cubic NURBS patch presented in Appendix A.1, and obtain a cubic NURBS patch with 19� 19 control points. Then this
problem can be solved with the IGA-C method, by taking Greville abssissae as collocation points.

The relative errors eT and eDT with the increasing number of control points are listed in Table 4. For clarity, we illustrate
the diagram of the logarithm (base 10) of the relative error v.s. the number of the control points in Fig. 1(a), where x-axis is
the number of control points, and y-axis represents the logarithm (base 10) of the relative errors. In this figure, the diagram
of the logarithm (base 10) of eT (20) v.s. the number of the control points is in blue, and that of eDT (21) v.s. the number of the
control points is in red.1 From the data listed in Table 4 and the diagrams illustrated in Fig. 1(a), we can see that the con-
vergence rates of Tr and DTr are nearly the same.
interpretation of color in Fig. 1, the reader is referred to the web version of this article.



(a) 2D numerical example. (b) 3D numerical example.

Fig. 1. Diagram of the relative error (logarithm base 10) v.s. the number of the control points.

(a) Analytical solution. (b) Numerical solution.

(c) Absolute error distribution.

Fig. 2. Analytical solution (a), numerical solution (b) and the absolution error distribution diagram (c) in the 2D numerical example when the number of
control points is 15� 15.
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Moreover, we demonstrate the analytical solution of the 2D source problem (23) in Fig. 2(a). Fig. 2(b) is the numerical
solution with 15� 15 control points, and Fig. 2(c) is its absolute error distribution. The relative errors of the numerical solu-
tion in Fig. 2(b) are eT ¼ 0:0159 and eDT ¼ 0:0178,

4.3.3. Numerical example in 3-dimension
This numerical example is a source problem defined on 3D cubic domain X ¼ ½0;1� � ½0;1� � ½0;1�, i.e.,
�DT þ T ¼ f ; ðx; y; zÞ 2 X;

Tj@X ¼ 0;

�
ð24Þ



(a) Analytical solution. (b) Numerical solution.

(c) Absolute error distribution.

Fig. 3. Analytical solution (a), numerical solution (b) and the absolution error distribution diagram (c) in the 3D numerical example when the number of
control points is 10� 10� 10.
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where
f ¼ ð1þ 12p2Þ sinð2pxÞ sinð2pyÞ sinð2pzÞ:
The analytical solution is (see Fig. 3(a)),
T ¼ sinð2pxÞ sinð2pyÞ sinð2pzÞ:
According to the analysis in Section 4.3.1, the operator in Eq. (24) is a strongly monotone operator with constant coefficients,
and then the IGA-C method is convergent for the source problem (24) in 3D.

To solve the source problem (24) with the IGA-C method, its 3D physical domain X is modeled as a cubic B-spline solid
with 4� 4� 4 control points, listed in Appendix A2. Then, along x-, y-, and z-directions, 10 knots are uniformly inserted,
respectively, to generate a cubic B-spline solid with 14� 14� 14 control points. Accordingly, the analytical solution of
Eq. (24) is approximated by cubic B-spline functions with 4� 4� 4 to 14� 14� 14 unknown control coefficients (refer to
Table 4), respectively. Fig. 3(b) illustrates the numerical solution generated by the IGA-C method with 10� 10� 10 control
points, where eT ¼ 0:0628 and eDT ¼ 0:0578, and Fig. 3(c) is the absolute error distribution diagram.

Moreover, the statistics of the relative errors (eT and eDT ) v.s. the number of control points are listed in Table 4, and the
diagrams of the logarithm (base 10) of the relative errors v.s. the number of control points are demonstrated in Fig. 1(a). It
shows once again that the convergence rates of Tr and DTr are nearly the same.

5. Conclusion

The IGA method approximates the solution of a boundary value problem (or initial value problem) with a NURBS function
Tr . The IGA-C method solves the NURBS function Tr by making the approximate differential operator interpolate the analyt-
ical differential operator at collocation points. In this paper, we first prove that NURBS function Tr , its (partial) derivatives of
arbitrary order, and DTr all have the same knot intervals. Next, we show the consistency of the IGA-C method, i.e., the



Table 5
Control points of the quarter of annulus.

i Bi;1 Bi;2 Bi;3 Bi;4

1 (1,0) (2,0) (3,0) (4,0)
2 (1,2 �

ffiffiffi
2
p

) (2,4 � 2
ffiffiffi
2
p

) (3,6 � 3
ffiffiffi
2
p

) (4,8 � 4
ffiffiffi
2
p

)
3 (2 �

ffiffiffi
2
p

,1) (4 � 2
ffiffiffi
2
p

,2) (6 � 3
ffiffiffi
2
p

,3) (8 � 4
ffiffiffi
2
p

,4)
4 (0,1) (0,2) (0,3) (0,4)

Table 6
Weights for the quarter of annulus.

i xi;1 xi;2 xi;3 xi;4

1 1 1 1 1
2 1þ

ffiffi
2
p

3
1þ
ffiffi
2
p

3
1þ
ffiffi
2
p

3
1þ
ffiffi
2
p

3

3 1þ
ffiffi
2
p

3
1þ
ffiffi
2
p

3
1þ
ffiffi
2
p

3
1þ
ffiffi
2
p

3

4 1 1 1 1

Table 7
Control points of the cubic B-spline solid.

i j Bij;1 Bij;2 Bij;3 Bij;4

1 1 (0,0,0) (0,0,1/3) (0,0,2/3) (0,0,1)
1 2 (0,1/3,0) (0,1/3,1/3) (0,1/3,2/3) (0,1/3,1)
1 3 (0,2/3,0) (0,2/3,1/3) (0,2/3,2/3) (0,2/3,1)
1 4 (0,1,0) (0,1,1/3) (0,1,2/3) (0,1,1)
2 1 (1/3,0,0) (1/3,0,1/3) (1/3,0,2/3) (1/3,0,1)
2 2 (1/3,1/3,0) (1/3,1/3,1/3) (1/3,1/3,2/3) (1/3,1/3,1)
2 3 (1/3,2/3,0) (1/3,2/3,1/3) (1/3,2/3,2/3) (1/3,2/3,1)
2 4 (1/3,1,0) (1/3,1,1/3) (1/3,1,2/3) (1/3,1,1)
3 1 (2/3,0,0) (2/3,0,1/3) (2/3,0,2/3) (2/3,0,1)
3 2 (2/3,1/3,0) (2/3,1/3,1/3) (2/3,1/3,2/3) (2/3,1/3,1)
3 3 (2/3,2/3,0) (2/3,2/3,1/3) (2/3,2/3,2/3) (2/3,2/3,1)
3 4 (2/3,1,0) (2/3,1,1/3) (2/3,1,2/3) (2/3,1,1)
4 1 (1,0,0) (1,0,1/3) (1,0,2/3) (1,0,1)
4 2 (1,1/3,0) (1,1/3,1/3) (1,1/3,2/3) (1,1/3,1)
4 3 (1,2/3,0) (1,2/3,1/3) (1,2/3,2/3) (1,2/3,1)
4 4 (1,1,0) (1,1,1/3) (1,1,2/3) (1,1,1)
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approximate differential expression DTr will tend to the real differential expression DT , when each knot interval of Tr tends
to a point. A theoretical result on the convergence of the IGA-C method is also established. We show that, if the differential
operator is stable or strongly monotone, the corresponding IGA-C method is convergent. Since a wide class of differential
operators are stable or strongly monotone, the IGA-C method is convergent for them.
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Appendix A. Appendix

In the Appendix, we list the control points, knot vector, and weights of the NURBS representation of the physical domains
in the two numerical examples.

A.1. NURBS representation of the physical domain in the 2D numerical example in Section 4.3.2

The physical domain in the 2D numerical example presented in Section 4.3.2 is represented by a cubic NURBS patch. Its
control points are listed in the following Tables 5 and 6 presents its weights.
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The knot vectors along u- and v-direction are, respectively,
0 0 0 0 1 1 1 1;
0 0 0 0 1 1 1 1:
A.2. B-spline representation of the physical domain in the 3D numerical example in Section 4.3.3

The physical domain in the 3D numerical example presented in Section 4.3.3 is represented by a cubic B-spline solid. Its
control points are listed in the following Table 7.

The knot vectors along u-, v-, and w-directions are, respectively,
0 0 0 0 1 1 1 1;
0 0 0 0 1 1 1 1;
0 0 0 0 1 1 1 1:
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