
The Global Occlusion Map:  
A New Occlusion Culling Approach* 

Wei Hua Hujun Bao Qunsheng Peng A. R. Forrest
State Key Lab of CAD & CG, 

 Zhejiang University 
Hangzhou, P.R. China 

86-571-87951045 
{huawei|bao|peng}@cad.zju.edu.cn

School of Information System, 
University of East Anglia 

 Norwich， NR4  7TJ.， U.K 
44-1603-592605 

forrest@sys.uea.ac.uk 
 

ABSTRACT 
Occlusion culling is an important technique to speed up the 
rendering process for walkthroughs in a complex environment. 
In this paper, we present a new approach for occlusion culling 
with respect to a view cell. A compact representation, the 
Global Occlusion Map (GOM), is proposed for storing the 
global visibility information of general 3D models with respect 
to the view cell. The GOM provides a collection of Directional 
Visibility Barriers (DVB), which are virtual occluding planes 
aligned with the main axes of the world coordinates that act as 
occluders to reject invisible objects lying behind them in every 
direction from a view cell. Since the GOM is a two-dimensional 
array, its size is bounded, depending only on the number of the 
sampled viewing directions. Furthermore, it is easy to 
conservatively compress the GOM by treating it as a depth 
image. Due to the axial orientations of the DVBs, both the 
computational and storage costs for occlusion culling based on 
the GOM is minimized. Our implementation shows the Global 
Occlusion Map is effective and efficient in urban walkthrough 
applications. 

Categories and Subject Descriptors 
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and 
Realism. 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 

visibility culling, occlusion culling, global visibility, rendering 
system, potentially visible set. 

 

1. INTRODUCTION 
Visibility computation is a fundamental topic in computer 
graphics. The intrinsic problem of determining the visible 
portions of the scene was recognized as a problem of sorting in 
three dimensions and was solved by a variety of hidden surface 
removal (HSR) algorithms. The Z-buffer algorithm, a hardware 
supported HSR algorithm, has been commonly employed for 
interactive rendering. In fact it is the only HSR algorithm with 
linear complexity O(N) where N denotes the input number of 
faces in the scene. Nevertheless, as the number of faces in 
scenes is increasing rapidly in current applications, the 
traditional HSR algorithms fail to process them in real time. 
Visibility culling is a promising technique to reduce the cost of 
visibility determination. It aims at culling most of the invisible 
faces with minimal computation remaining during rendering. 
Visibility culling includes back-face culling, view frustum 
culling and occlusion culling[12]. Occlusion culling tries to set 
up the appropriate occluders to reject objects behind them 
without elaborate comparisons. For walkthroughs of urban area 
or complex architectures, occlusion culling is imperative since 
most objects are hidden behind the occluders with respect to the 
current viewpoint. Probably the earliest work in this area is by 
Jones in 1971 [23]. 
Depending on whether the occluders are applicable for just one 
viewpoint or for a view region, there are two kinds of occlusion 
culling algorithms. The so-called point-based occlusion culling 
approaches [1,2,13] derive a discrete representation for the 
occluders in the image space with respect to the current 
viewpoint during the rendering and the invisibility of objects 
can be easily determined by organizing this discrete 
representation into a hierarchical form. Due to the discrete form 
of occluder representation, point-based occlusion culling 
approaches are simple to implement and the occluders can be 
dynamically fused.  
Other occlusion culling approaches treating a single viewpoint 
set up the occluders in object space [14,15,16]. Since all the 
computations for occlusion culling are accomplished by the 
CPU, their performances are no longer affected by the time 
consuming feedbacks from the graphics hardware. Nevertheless 
these approaches might be less effective for fusing occluders 
when no larger occluder is available. 
Clearly the choice of occluders heavily influences the 
performance of occlusion culling approaches. Most approaches 
select occluders based on heuristic rules, but their effect as 
occluders for invisibility culling is not always satisfactory. 
Recently, Bernardini et al. [3] proposed an approach that 
approximates the scene model by an octree and sets the valid 
boundary faces of some octree’s nodes as occluders. This 
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approach takes advantage of the fact that all occluders are 
aligned with the world coordinate axes. However, collecting the 
valid occluders by traversing the octree during walkthrough 
causes extra costs. 
Another kind of occlusion culling approach aims at providing 
the occlusion information for a view cell along all directions. 
Some approaches offer answers to global visibility queries, but 
suffer from extremely large complexity both of computation 
and of storage. The 3D visibility complex [17] is another way 
of describing and studying the global visibility of 3D space, but 
its size is still O(n4). Recently, Durand proposed a new structure, 
called the visibility skeleton, to compactly encompass accurate 
global visibility information [18]. However, either its size or its 
construction cost cannot yet meet the demand for walkthroughs 
of a complex scene. 
Rather than computing global visibility, a variety of approaches 
attempt to estimate the potential visible object set (PVS) for 
each view cell. Teller et al. [4,19] presented a cell-to-cell 
visibility determination scheme for architectural models. 
Wonka et al. designed a distributed system to calculate the PVS 
online [20]. By shrinking the occluders, the visible faces with 
respect to a number of points on the boundary of a view cell 
conservatively form the PVS of the view cell. Subdividing the 
5D ray space suggests another way to compute PVS [21,22].  
Recent research makes use of fused occluders to compute the 
PVS. Schaufler et al. [7] used the cuboid opaque interior of 
objects as occluders. Such choice of occluders facilitates the 
combined occlusion of adjacent opaque regions of space. 
Koltun et al. [9] introduced the concept of a virtual occluder, 
which is calculated by merging the umbra of the front 
polygonal occluder with that of the rear one repeatedly. In [8] 
the cross sections of occluders in a stack of slices are 
discretized and aggregated to form the discrete representation, 
which is used to determine the potential visibility of the 
occludees. 
The most severe problem for PVS-based approaches is their 
huge storage cost. This is particularly true when the global 
visibility of the scene varies dramatically from one view cell to 
another view cell when the scene is complex. 
In this paper, we present a new approach for occlusion culling 
with respect to a view cell. A compact representation, the 
Global Occlusion Map (GOM), is proposed for storing the 
global visibility information of general 3D models with respect 
to the view cell. The GOM provides a collection of Directional 
Visibility Barriers (DVB) which are virtual occluding planes 
aligned with the axes of the world coordinates and which act as 
occluders to reject invisible objects lying behind in every 
direction from a view cell. Since the GOM is a two-dimensional 
array, its size is bounded, depending only on the number of the 
sampled viewing directions. Furthermore, it is easy to 
conservatively compress the GOM by treating it as a depth 
image. Due to the axial orientations of the DVBs, both the 
computation and storage costs for occlusion culling based on  
theGOM are minimized.  
In the following section, we will give a straightforward 
definition for the GOM. An equivalent but convenient form of 
cube-based GOM is introduced in section 3. We propose a 
conservative method to estimate the DVB for a view direction in 
section 4.1. An adaptive algorithm for GOM construction is 
presented in section 4.2. Section 5 outlines our new approach 
based on the GOM while section 6 shows some experimental 
results. The challenging issues for future research work are 
addressed in the final section. 

2. THE GLOBAL OCCLUSIOIN MAP 
The region a viewer can traverse in the environment can be 
divided into a number of sub-regions, called view cells. We use 
ray(v,q) to denote a ray cast from the point q within a view cell 
Q in the direction v. Let pvis(v,q) be the first intersection point 
between ray(v,q) and the surfaces in the scene. Based on the 
above notations, a Global Occlusion Map of a view cell Q can 
be defined as 

GOM(v) = Max{ (pvis(v,q) – c) • v | q ∈ Q },  v∈ S       (1) 
where c is the center of the view cell and v can be any direction 
vector within the direction space of a unit sphere S. Intuitively, 
pvis(v,q) is composed of the visible point set from all points q 
within a view cell along a specific direction v,  GOM(v) 
records the maximum distance between pvis(v,q) and the center 
of the view cell in the direction v, as shown by Fig.1. In the case 
where some rays do not hit any surfaces, GOM(v) is set to be 
infinite (∞). Clearly the GOM(v) defines a boundary plane in 
object space that guarantees all objects lying behind it are 
invisible from any point in the view cell in the direction v (Fig. 
1). We call this virtual plane a Directional Visibility Barrier 
(DVB). The GOM is in fact a compact representation of the 
collection of DVB(v) along all directions v.  
It is easy to use a precomputed GOM to conservatively 
determine whether a point p in object space is invisible for any 
viewpoint q within the view cell Q during rendering stage. If  
(p-c) •v > GOM(v),                      (2) 
where v=(p-q)/||p-q||, then p must be invisible (Fig.2).  

Note that every point (ϕ,θ) on the surface of a unit sphere 
specifies a direction. We sample the unit sphere uniformly and 
represent the continuous direction space by a set of discrete 
directions. GOM(v) can then be represented by a discrete 2D 
array. The discretisation may incur some aliasing. The general 
solution to alleviate such aliasing is to super-sample the unit 
sphere.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Clearly GOM has an advantage over PVS by representing the 
global visibility information of an environment. PVS as the 
collection of indices of all potential visible faces or objects 
from each view cell whilst GOM is the collection of DVB for all 
directions. For each direction, GOM only records a distance 
value to represent the corresponding DVB. Therefore the size of 
the GOM is independent of both the complexity of the scene 
and the location of the view cell. It is bounded once the 
resolution of the direction discretization is determined. By 
contrast, the size of PVS relies heavily on the complexity of the 

Figure 2: The condition
(p-c)•v > GOM(v) is used
to determine the
invisibility of p with
respect to the viewpoint
q,  where v=p-q/||p-q||.

Figure 1: GOM(v) is the
projected distance
between c and the
furthest visible point
from the view cell in
direction v. 
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scene as well as the location of the view cell, and hence is 
unbounded. Furthermore, the PVS information is difficult to 
compress because it stores indices. Conservative PVS 
undoubtedly means more storage. This is to be compared with 
the efficient compression of GOM information. In fact, the 
GOM can be regarded as a depth image and depth coherence 
between adjacent elements in the GOM exists, enabling various 
image compression methods to be used for compression of  
GOMs. Note that, when a maximum depth value of adjacent 
elements is used to replace the diverse value of each of these 
elements, the GOM is still conservative in occlusion culling. 
Finally, to calculate the visibility of moving objects in the scene, 
current PVS-related approaches estimate the potential visibility 
of the envelope of these objects during motion rather than 
calculating directly the visibility of each dynamic object at each 
specific moment, or they just simply add these dynamic objects 
into the PVS. Overestimation of visibility is therefore inevitable 
when the trajectories of these objects are very long or 
unpredictable during the stage of PVS precomputation. On the 
other hand, the DVB may remain the same regardless of these 
dynamic objects. Although they may potentially decrease the 
distance value of each DVB from time to time, the original 
GOM can still be used conservatively to cull any objects 
moving in random routes on-the-fly according to their updated 
position.  

3. CUBE-BASED GOM 
Alternatively, we can use a cube to represent the direction space. 
We call each face of the cube a principal viewport denoted by 
PVPort(k) (k=0…5). A point on PVPort(k) is specified by (s,t,k), 
where (s,t) are the local coordinates of the point on PVPort(k). 
The origin of the local coordinates is set at the center of 
PVPort(k), with the s-axis and t-axis parallel to the two edges of 
PVPort(k). We use v(s,t,k) to denote a direction vector. v(0,0,k) 
is called the principal  direction of PVPort(k), abbreviated to 
v(k).  
Using the convention of a cube system, the definition of GOM 
can be expressed as the following.  

GOM(s,t,k)=Max{(pvis(v(s,t,k),q)–c)•v(k)|q∈Q}       (3) 
Note in this definition, (pvis(v(s,t,k),q) – c) is projected onto the 
principal direction v(k) instead of v(s,t,k). This kind of GOM, 
called cube-based GOM, also generates an appropriate DVB for 
each direction, as shown in Fig. 3. Note the new DVB is 
perpendicular to the principal direction v(k). Using a cube-based 
GOM, the condition for determining the invisibility of point p 
with respect to viewpoint q is 

(p-c)•v(k) > GOM(s,t,k),                         (4) 
where (s,t,k) is specified by v(s,t,k)=(p-q)/||p-q||.  
 
 
 
 
 
 
 
 
 
 
 
 

Note that the invisibility condition (4) can be computed less 
expensively. If we align the cube with the world coordinates of 
the scene, then v(k) (k=0…5) will be consistent with the axis of 
the world coordinates and calculation of (p-c)•v(k) will be 
reduced to evaluating the difference of a corresponding 
coordinate component of  p and c.  
By discretizing each principal viewport, we can get the discrete 
form of the cube-based GOM. In the remaining sections, we 
will use the notation GOM(i,j,k) to represent a discrete 
cube-based GOM and GOM(s,t,k) to denote a continuous 
cube-based GOM. 

4. GOM CONSTRUCTION 
To construct GOM, we can sample the view cell densely and 
use the Z-buffer algorithm to calculate the visible points at each 
sample viewpoint with the viewing directions aligned with the 
principal directions.  These visible points can then be used to 
update GOM. Unfortunately, this naïve approach is impractical 
since it incurs massive computation with complexity of O(N5) 
where N×N is the resolution of the Z-buffer.  
In this section, we present an adaptive algorithm for GOM 
construction based on conservative estimation of DVB. In the 
following, we assume that the scene is composed of a set of 
triangles. Such assumption is general enough to handle almost 
all kinds of 3D scene. 

4.1 Conservative estimation of DVB 
Let us see how to conservatively estimate DVB based on the 
information of a few directional visible points. Fig. 4 shows a 
case where three directional visible points have been detected 
and identified by three gray dots. We can easily find the visible 
triangles at which these directional visible points are located. 
Then we perform a so-called directional occlusion test, to judge 
whether these triangles are sufficient to occlude all the rays cast 
from any point within the view cell along the direction v. If the 
result is true, these visible triangles constitute DVB(v) and we 
can use them to estimate GOM(v). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: GOM(s,t,k) is the distance between the
DVB and c. DVB is perpendicular to the
principal direction v(k) instead of v(s,t,k). 
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Figure 5: Triangles fa,
fb and fc cannot occlude
all the rays cast from
view cell along the
direction v. 

Figure 4: Triangles fa and
fb occlude all the rays cast
from view cell along the
direction v. fa and fb are
obtained from the
corresponding directional
visible points.
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Figure 6: The orthogonal projection of the visible 
triangles fa, fb and view cell Q along v. The right 
shows the projection results. The union of 
projections of fa and fb can cover that of Q. 



To perform the directional occlusion test, we project all these 
visible triangles and the surface of the view cell along v 
orthogonally onto a plane that passes through the center of the 
view cell and is perpendicular to v. In the projection plane, we 
test whether the union of the projections of the triangles can 
completely cover the projected region of the view cell (Fig.6). 
If it can, the test succeeds, otherwise, the test fails and more 
directional visible points should be sampled (Fig.5). We adopt a 
progressive approach to get more directional visible points. The 
directional occlusion test is then repeatedly continued by 
incorporating more triangles which the newly found directional 
visible points belong into until either they occlude all rays or 
the number of directional visible points exceeds a given 
threshold. 
Several methods can be used to evaluate GOM(v) once the 
respective directional occlusion test succeeds. For example we 
can use a Z-buffer algorithm supported by the graphic 
accelerator to find all the visible points along the direction v and 
get the largest depth, which is GOM(v). However, this method 
has to read the Z-buffer pixel by pixel from the graphic 
accelerator in order to find the largest depth, which inevitably 
decreases the efficiency of our approach. 
Instead, we make use of the vertices of the visible triangles to 
conservatively estimate GOM(v). It is evident that 

GOM(v) ≤ GOMest(v)                           (5) 

where GOMest(v) = max{ (p-c)•v | p is any vertex of the visible 
triangles}, and the estimated DVBest(v) can also ensure that all 
points behind it are definitely invisible from the view cell along 
v. Fig. 7a gives an example to illustrate DVBest(v) and 
GOMest(v). Therefore for the cube-based GOM, we can estimate 
GOM by using (Fig. 7b) 

GOMest(s,t,k) = max{ (p-c)•v(k) | p is any vertex of the visible 
triangles}.    
In the remainder of this paper, we do not distinguish GOM(s,t,k) 
and GOMest(s,t,k) since both of them can describe an effective 
DVB.  

 
 
 
 
 
 
 
 
 
 
 

4.2 Adaptive algorithm for construction of 
GOM 

In this section, we will present an adaptive algorithm for 
constructing a cube-based GOM. We first subdivide the entire 
region a viewer can traverse into a number of uniform cubic 
view cells according to the complexity of the scene. Each face 
of a view cell is divided into pixels with the resolution of N×N. 
The vertices of all cubic cells constitute a 3D array Q. At each 
vertex q ∈ Q, we set up a unit cube centered at q with the same 
orientation as the view cell. Each face of the unit cube is also 
divided into N×N pixels, so pixel(i,j) on the same oriented faces 

of all cubes specifies the same direction v(i,j,k), where k refers 
to the corresponding principal viewport.  
We then adopt the hardware-supported Z-buffer algorithm to 
find the visible points from q along each discrete direction and 
record the indices of the corresponding visible triangles in an 
item buffer. 
Next, we perform the directional occlusion test view cell by 
view cell along each direction v(i,j,k) with the information of 
the visible triangle set stored in the item buffers at its eight 
vertices. The results are then written into the Occlusion-buffer 
of the current view cell. The results can be one of three forms: 
“occluded”, “not-occluded” and “uncertain”. The “occluded” 
value of Occlusion-buffer(i,j,k) indicates that  the respective 
DVB(v(i,j,k)) is ready to be derived along that direction. On the 
other hand, the value “not-occluded” means that no visible 
triangle is found in at least one item buffer along the direction 
v(i,j,k). In both of the above cases, the result is deterministic. If 
the value of Occlusion-buffer(i,j,k) is “uncertain”, the 
directional occlusion test fails. 
After the directional occlusion test is accomplished, we count 
the number of pixels whose value is “uncertain” in the 
Occlusion-buffer of the current view cell. We adopt two slightly 
different approaches for further process. If the number is larger 
than a given threshold, we subdivide the current view cell into 
eight smaller view cells and establish the item buffers at the 
vertices of all child view cells. The Occlusion-buffer of each 
child view cell initially takes the same values as that of its 
patent. It is then updated by performing the directional 
occlusion test in the relevant directions. 

 
 
 
 
 
 
 
 
 

If the number is smaller, we orthogonally  project all scene 
triangles along the direction v(i,j,k) onto the plane passing 
through the center of the current view cell and perpendicular to 
the principal direction v(k). All the visible triangles along this 
direction can be immediately found in this case and no further 
directional occlusion test is needed. The specific threshold 
value is chosen based on the balance of the computations 
involved in both approaches. Note that, the first approach 
normally detects more directional visible triangles along the 
direction v(i,j,k) during the subdivision process and these 
triangles should be merged together to perform the directional 
occlusion test for the parent view cell. This process is 
repeatedly carried on until the values of all pixels in the 
Occlusion-buffer of the current view cell have been determined. 
Listings 1 and 2 give a pseudo code description of our 
algorithm for constructing a cube based GOM. For convenience, 
we describe the algorithm for a principal viewport only. 
Therefore, we use GOM(i,j) to stand for GOM(i,j,k) and v(i,j) 
for v(i,j,k), omitting the index k that specifies the principal 
viewport.  

The variable Distance, equal to max{ (p-c)•v(k) | p is any vertex 
of the visible triangles} where v(k) is the principal direction of 
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Figure 7a: The DVBest(v)
defined by GOMest(v) can
also occlude invisible
triangles from the view
cell. 

ConstructGOM( GOM, Viewcell )   
{ 

n of GOM and Occlusion-buffer  
Refine(GOM, Viewcell, NULL, Occlusion-buffer ) 
For each (i,j) pair while 1≤i≤N, 1≤j≤N 
  If( Occlusion-buffer(i,j) is not “occluded” ) 

{ 
Update GOM(i,j) and Occlusion-buffer(i,j) by

projecting all triangles orthogonally along v(i,j) 
 } 
} 

Listing 1: The pseudo codes for ConstructGOM 
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Figure 7b: The estimation
of the cube-based GOM 
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the principal viewport, is computed to update GOM(i,j) by the 
function DVBComp in Listing 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. OCCLUSION CULLING WITH GOM 
The GOM is a collection of visibility barriers for any viewpoint 
along any viewing direction. It thus provides explicit 
information for quickly rejecting objects hidden behind these 
barriers. For any viewpoint q, we first find the respective view 
cell that encloses it. A unit cube is then setup at q with the same 
orientation and face resolution as that of the view cell. Any 
object to be tested is projected onto the faces of the unit cube. 
For each pixel(i,j,k) on the cube which is covered by the 
projection of the object, its visibility barrier is found from GOM 
(i,j,k). Let d(k) denote the minimum distance of the object to the 
bisection plane of the view cell perpendicular to the principal 
direction v(k), shown in Fig. 8. If 

d(k) > GOM(i,j,k), 
then the object is invisible from q along that direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Owing to its classic structure, GOM is adaptable to many 
accelerating techniques. For example, GOM can be organized 
into a hierarchical form as a hierarchical Z-buffer. An 
appropriate level of the hierarchical GOM is found so that the 
projection of the object falls within one pixel, hence avoiding 
performing the invisibility test at multiple pixels. Also, objects 
in the scene can be organized into an enclosing box tree, 
enabling invisible objects to be culled in groups. 
One notable feature of GOM is that it remains constant for all 
viewpoints and viewing directions within a view cell. This is in 
contrast with most of the current Z-buffer based algorithms for 
which cases the Z-buffer has to be rebuilt and dynamically 
updated according to the current viewing parameters during the 
walkthrough of the scene. 

6. IMPLEMENTATION AND 
EXPERIMENTAL RESULTS 

We built a virtual city scene as a testing dataset consisting of 
29575 objects with a total of 1,556,574 triangles. A birds-eye 
view is shown in Fig. 12a. A vista is shown in Fig. 12b. At the 
stage of GOM construction, we divided the space along the 
main streets in the virtual city into view cells, shaded in red as 
shown in Fig. 12c.  

We divided each face of a view cell at 128×128 resolution and 
set the threshold of the number of pixels in Occlusion-Buffer 
with value of “uncertain” to be 300 to launch the subdivision 
process of the current view cell. The recursion is terminated 
when a view cell is subdivided more than three times.  
Fig. 9a shows the time cost for constructing the GOM of each 
view cell. The fluctuation indicates that the scene complexity 
varies over view cells. Average cost for constructing a GOM is 
237.4 seconds. Fig. 9b shows the average time cost for handling 
each face of the GOM, i.e., a principal viewport during GOM 
construction. The principal viewports PVPort(2) and PVPort(3) 
face the sky and the ground respectively. Since the scene along 
these directions is of rather low complexity, it costs little 
computation time. The principal directions of PVPort(0) and 
PVPort(1) are aligned with the direction of the streets. More 
visible triangles have to be sampled in this case and the view 
cell needs to be subdivided into smaller cells. PVPort(4) and 
PVPort(5) orient towards the two ends of the streets. Since 
fewer objects are visible than through PVPort(0) or PVPort(1), 
it consequently costs less time.  
Fig. 10 shows the depth image on each face of a GOM. To 
compress the information stored in the GOM, we adopt a simple 
approach by storing the images on different faces of a view cell 
at different resolutions according to the coherence between their 
adjacent pixels. We build a z-pyramid for each face of the GOM 
and count the number of pixels at a higher level whose four 
children take different depth values. When the number exceeds 
a given fraction γ, the resolution at the lower level is adopted 
for storing the depth image on that face. The parameter γ 
controls the tradeoff between storage size and conservativeness. 
From experiment, the depth values in GOM were quantitized 
into 256 steps by using an index table. We took γ = 0.7, and the 
average size for a GOM is about 17k. The average resolution 
for PVPort(0), PVPort(1), PVPort(4) and PVPort(5) is around 
64×64 and the average resolution for PVPort(2) and PVPort(3) 
is close to 1×1. 
In order to cull objects efficiently, we reorganized the scene 
into a hierarchical enclosing box tree and took the enclosing 
box of objects as the culling primitives in both view frustum 
culling and occlusion culling. Fig. 11a shows the effectiveness 
of occlusion culling based on GOM against that of the frustum 

Refine(GOM, Viewcell, Parent-O-Buffer , Occlusion-buffer ) 
{ 

Sampling the scene with N×N resolution  
with viewpoint at each corner of ViewCell. 

Store results to Buffers. 
For each (i,j) pair while 1≤i≤N, 1≤j≤N  
{ 

       If( Parent-O-Buffer(i,j) is “uncertain” ) 
{ 

Get VisibleFaceSet from Buffers 
Flag = DVBComp( VisibleFaceSet, Distance ) 
Occlusion-buffer(i, j) = Flag 
If( Flag is “occluded” ) 

UpdateGOM( GOM(i, j), Distance) 
}else{ 

Occlusion-buffer (i,j) = Parent-O-buffer (i,j) 
} 

} 
If( NeedSubdiv (Viewcell, Occlusion-buffer ) 
{ 

Subdivide Viewcell to a set of SubViewcell 
For each SubViewcell,   

Refine(GOM, SubViewcell, Occlusion-buffer, 
Child-O-buffer ) 

Update Occlusion-buffer by all Child-O-buffer 
} 

} 

Listing 2 : The pseudo codes for Refine

view cell 

q 
c v(k) 

bisection plane 

d(k) 

object 

Figure 8: An object is projected onto the principal
viewport PVPort(k) with respect to q. The minimum
distance of the object to the bisection plane of the
view cell perpendicular to the principal direction
v(k) is denoted by d(k). 



culling during a 700 frames walkthrough of a street in the 
virtual city. While the number of objects accepted after view 
frustum culling varies widely, the number of objects accepted 
after GOM based occlusion culling almost remains constant. 
The corresponding frame rates are shown in Fig. 11b. The PVS 
curve in Fig. 11b refers to the frame rate for displaying a 
pre-computed potential visible set generated offline by GOM. It 
demonstrates on the other hand the time efficiency of our online 
occlusion culling, only dropping about 1 frame per second. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. CONCLUSION AND FUTURE WORK 
We have proposed an innovative representation, the Global 
Occlusion Map, for invisibility culling. It compactly records the 
Directional Visibility Barriers in all directions for a view cell. 
Each Directional Visibility Barrier is a boundary plane in object 
space behind which all objects are directionally invisible with 
respect to the view cell. We have proposed an adaptive 
approach to construct the GOM. The key idea is to perform the 
directional occlusion test for each direction, which exploits the 
combined occlusion to find the Directional Visibility Barrier. 
By using the coherence between the adjacent pixels in the GOM, 
it is easy to compress the GOM into a bounded image of small 
size despite the complexity of the scene. Since our assumption 
for the scene’s geometry is general, our approach can be used in 
many applications. 
Compared with PVS based visibility approaches, our new 
approach has the following advantages: 

1. It costs much less in storage whilst maintaining a good 
rendering rate comparable with PVS approaches when 
walking through a complex environment 

2. GOM remains conservative when some dynamic objects 
intrude into the environment. 

3. The information of the GOM can be conservatively 
compressed. 

Many issues need to be investigated in future work. The most 
challenging one is to accelerate the construction process of 
GOM especially for scenes including very tiny triangles relative 
to the size of view cells. Exploiting the coherence between 
adjacent directions when estimating the Directional Visibility 
Barrier is another promising research topic to further increase 
the efficiency of GOM construction. More elaborate approaches 
for compressing GOM should also be studied. 
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Figure 12a: A bird-eye’s view of the virtual city 

Figure 12b:  A vista in the virtual city 

Figure12c: View cells in the virtual city 


