
The Global Occlusion Map:
A New Occlusion Culling Approach*

Wei Hua Hujun Bao Qunsheng Peng A. R. Forrest
State Key Lab of CAD & CG,

 Zhejiang University
Hangzhou, P.R. China

86-571-87951045
{huawei|bao|peng}@cad.zju.edu.cn

School of Information System,
University of East Anglia

 Norwich， NR4 7TJ.， U.K
44-1603-592605

forrest@sys.uea.ac.uk

ABSTRACT
Occlusion culling is an important technique to speed up the
rendering process for walkthroughs in a complex environment.
In this paper, we present a new approach for occlusion culling
with respect to a view cell. A compact representation, the
Global Occlusion Map (GOM), is proposed for storing the
global visibility information of general 3D models with respect
to the view cell. The GOM provides a collection of Directional
Visibility Barriers (DVB), which are virtual occluding planes
aligned with the main axes of the world coordinates that act as
occluders to reject invisible objects lying behind them in every
direction from a view cell. Since the GOM is a two-dimensional
array, its size is bounded, depending only on the number of the
sampled viewing directions. Furthermore, it is easy to
conservatively compress the GOM by treating it as a depth
image. Due to the axial orientations of the DVBs, both the
computational and storage costs for occlusion culling based on
the GOM is minimized. Our implementation shows the Global
Occlusion Map is effective and efficient in urban walkthrough
applications.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords

visibility culling, occlusion culling, global visibility, rendering
system, potentially visible set.

1. INTRODUCTION
Visibility computation is a fundamental topic in computer
graphics. The intrinsic problem of determining the visible
portions of the scene was recognized as a problem of sorting in
three dimensions and was solved by a variety of hidden surface
removal (HSR) algorithms. The Z-buffer algorithm, a hardware
supported HSR algorithm, has been commonly employed for
interactive rendering. In fact it is the only HSR algorithm with
linear complexity O(N) where N denotes the input number of
faces in the scene. Nevertheless, as the number of faces in
scenes is increasing rapidly in current applications, the
traditional HSR algorithms fail to process them in real time.
Visibility culling is a promising technique to reduce the cost of
visibility determination. It aims at culling most of the invisible
faces with minimal computation remaining during rendering.
Visibility culling includes back-face culling, view frustum
culling and occlusion culling[12]. Occlusion culling tries to set
up the appropriate occluders to reject objects behind them
without elaborate comparisons. For walkthroughs of urban area
or complex architectures, occlusion culling is imperative since
most objects are hidden behind the occluders with respect to the
current viewpoint. Probably the earliest work in this area is by
Jones in 1971 [23].
Depending on whether the occluders are applicable for just one
viewpoint or for a view region, there are two kinds of occlusion
culling algorithms. The so-called point-based occlusion culling
approaches [1,2,13] derive a discrete representation for the
occluders in the image space with respect to the current
viewpoint during the rendering and the invisibility of objects
can be easily determined by organizing this discrete
representation into a hierarchical form. Due to the discrete form
of occluder representation, point-based occlusion culling
approaches are simple to implement and the occluders can be
dynamically fused.
Other occlusion culling approaches treating a single viewpoint
set up the occluders in object space [14,15,16]. Since all the
computations for occlusion culling are accomplished by the
CPU, their performances are no longer affected by the time
consuming feedbacks from the graphics hardware. Nevertheless
these approaches might be less effective for fusing occluders
when no larger occluder is available.
Clearly the choice of occluders heavily influences the
performance of occlusion culling approaches. Most approaches
select occluders based on heuristic rules, but their effect as
occluders for invisibility culling is not always satisfactory.
Recently, Bernardini et al. [3] proposed an approach that
approximates the scene model by an octree and sets the valid
boundary faces of some octree’s nodes as occluders. This

*This work received support from the National Natural Science
Foundation of China for Innovative Research Groups (Grant
No. 60021201) and for Distinguished Young Scholars(No.
69925204), National 863 Program (No. 2001AA135040), and
The Royal Society China Joint Project No. Q807.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VRST’02, November 11-13, 2002, Hong Kong.
Copyright 2002 ACM 1-58113-530-0/02/0011…$5.00.

approach takes advantage of the fact that all occluders are
aligned with the world coordinate axes. However, collecting the
valid occluders by traversing the octree during walkthrough
causes extra costs.
Another kind of occlusion culling approach aims at providing
the occlusion information for a view cell along all directions.
Some approaches offer answers to global visibility queries, but
suffer from extremely large complexity both of computation
and of storage. The 3D visibility complex [17] is another way
of describing and studying the global visibility of 3D space, but
its size is still O(n4). Recently, Durand proposed a new structure,
called the visibility skeleton, to compactly encompass accurate
global visibility information [18]. However, either its size or its
construction cost cannot yet meet the demand for walkthroughs
of a complex scene.
Rather than computing global visibility, a variety of approaches
attempt to estimate the potential visible object set (PVS) for
each view cell. Teller et al. [4,19] presented a cell-to-cell
visibility determination scheme for architectural models.
Wonka et al. designed a distributed system to calculate the PVS
online [20]. By shrinking the occluders, the visible faces with
respect to a number of points on the boundary of a view cell
conservatively form the PVS of the view cell. Subdividing the
5D ray space suggests another way to compute PVS [21,22].
Recent research makes use of fused occluders to compute the
PVS. Schaufler et al. [7] used the cuboid opaque interior of
objects as occluders. Such choice of occluders facilitates the
combined occlusion of adjacent opaque regions of space.
Koltun et al. [9] introduced the concept of a virtual occluder,
which is calculated by merging the umbra of the front
polygonal occluder with that of the rear one repeatedly. In [8]
the cross sections of occluders in a stack of slices are
discretized and aggregated to form the discrete representation,
which is used to determine the potential visibility of the
occludees.
The most severe problem for PVS-based approaches is their
huge storage cost. This is particularly true when the global
visibility of the scene varies dramatically from one view cell to
another view cell when the scene is complex.
In this paper, we present a new approach for occlusion culling
with respect to a view cell. A compact representation, the
Global Occlusion Map (GOM), is proposed for storing the
global visibility information of general 3D models with respect
to the view cell. The GOM provides a collection of Directional
Visibility Barriers (DVB) which are virtual occluding planes
aligned with the axes of the world coordinates and which act as
occluders to reject invisible objects lying behind in every
direction from a view cell. Since the GOM is a two-dimensional
array, its size is bounded, depending only on the number of the
sampled viewing directions. Furthermore, it is easy to
conservatively compress the GOM by treating it as a depth
image. Due to the axial orientations of the DVBs, both the
computation and storage costs for occlusion culling based on
theGOM are minimized.
In the following section, we will give a straightforward
definition for the GOM. An equivalent but convenient form of
cube-based GOM is introduced in section 3. We propose a
conservative method to estimate the DVB for a view direction in
section 4.1. An adaptive algorithm for GOM construction is
presented in section 4.2. Section 5 outlines our new approach
based on the GOM while section 6 shows some experimental
results. The challenging issues for future research work are
addressed in the final section.

2. THE GLOBAL OCCLUSIOIN MAP
The region a viewer can traverse in the environment can be
divided into a number of sub-regions, called view cells. We use
ray(v,q) to denote a ray cast from the point q within a view cell
Q in the direction v. Let pvis(v,q) be the first intersection point
between ray(v,q) and the surfaces in the scene. Based on the
above notations, a Global Occlusion Map of a view cell Q can
be defined as

GOM(v) = Max{ (pvis(v,q) – c) • v | q ∈ Q }, v∈ S (1)
where c is the center of the view cell and v can be any direction
vector within the direction space of a unit sphere S. Intuitively,
pvis(v,q) is composed of the visible point set from all points q
within a view cell along a specific direction v, GOM(v)
records the maximum distance between pvis(v,q) and the center
of the view cell in the direction v, as shown by Fig.1. In the case
where some rays do not hit any surfaces, GOM(v) is set to be
infinite (∞). Clearly the GOM(v) defines a boundary plane in
object space that guarantees all objects lying behind it are
invisible from any point in the view cell in the direction v (Fig.
1). We call this virtual plane a Directional Visibility Barrier
(DVB). The GOM is in fact a compact representation of the
collection of DVB(v) along all directions v.
It is easy to use a precomputed GOM to conservatively
determine whether a point p in object space is invisible for any
viewpoint q within the view cell Q during rendering stage. If
(p-c) •v > GOM(v), (2)
where v=(p-q)/||p-q||, then p must be invisible (Fig.2).

Note that every point (ϕ,θ) on the surface of a unit sphere
specifies a direction. We sample the unit sphere uniformly and
represent the continuous direction space by a set of discrete
directions. GOM(v) can then be represented by a discrete 2D
array. The discretisation may incur some aliasing. The general
solution to alleviate such aliasing is to super-sample the unit
sphere.

Clearly GOM has an advantage over PVS by representing the
global visibility information of an environment. PVS as the
collection of indices of all potential visible faces or objects
from each view cell whilst GOM is the collection of DVB for all
directions. For each direction, GOM only records a distance
value to represent the corresponding DVB. Therefore the size of
the GOM is independent of both the complexity of the scene
and the location of the view cell. It is bounded once the
resolution of the direction discretization is determined. By
contrast, the size of PVS relies heavily on the complexity of the

Figure 2: The condition
(p-c)•v > GOM(v) is used
to determine the
invisibility of p with
respect to the viewpoint
q, where v=p-q/||p-q||.

Figure 1: GOM(v) is the
projected distance
between c and the
furthest visible point
from the view cell in
direction v.

v

GOM(v)
c q

DVB(v)

(p-c)•v

p
v

GOM(v)

c

DVB(v)

scene as well as the location of the view cell, and hence is
unbounded. Furthermore, the PVS information is difficult to
compress because it stores indices. Conservative PVS
undoubtedly means more storage. This is to be compared with
the efficient compression of GOM information. In fact, the
GOM can be regarded as a depth image and depth coherence
between adjacent elements in the GOM exists, enabling various
image compression methods to be used for compression of
GOMs. Note that, when a maximum depth value of adjacent
elements is used to replace the diverse value of each of these
elements, the GOM is still conservative in occlusion culling.
Finally, to calculate the visibility of moving objects in the scene,
current PVS-related approaches estimate the potential visibility
of the envelope of these objects during motion rather than
calculating directly the visibility of each dynamic object at each
specific moment, or they just simply add these dynamic objects
into the PVS. Overestimation of visibility is therefore inevitable
when the trajectories of these objects are very long or
unpredictable during the stage of PVS precomputation. On the
other hand, the DVB may remain the same regardless of these
dynamic objects. Although they may potentially decrease the
distance value of each DVB from time to time, the original
GOM can still be used conservatively to cull any objects
moving in random routes on-the-fly according to their updated
position.

3. CUBE-BASED GOM
Alternatively, we can use a cube to represent the direction space.
We call each face of the cube a principal viewport denoted by
PVPort(k) (k=0…5). A point on PVPort(k) is specified by (s,t,k),
where (s,t) are the local coordinates of the point on PVPort(k).
The origin of the local coordinates is set at the center of
PVPort(k), with the s-axis and t-axis parallel to the two edges of
PVPort(k). We use v(s,t,k) to denote a direction vector. v(0,0,k)
is called the principal direction of PVPort(k), abbreviated to
v(k).
Using the convention of a cube system, the definition of GOM
can be expressed as the following.

GOM(s,t,k)=Max{(pvis(v(s,t,k),q)–c)•v(k)|q∈Q} (3)
Note in this definition, (pvis(v(s,t,k),q) – c) is projected onto the
principal direction v(k) instead of v(s,t,k). This kind of GOM,
called cube-based GOM, also generates an appropriate DVB for
each direction, as shown in Fig. 3. Note the new DVB is
perpendicular to the principal direction v(k). Using a cube-based
GOM, the condition for determining the invisibility of point p
with respect to viewpoint q is

(p-c)•v(k) > GOM(s,t,k), (4)
where (s,t,k) is specified by v(s,t,k)=(p-q)/||p-q||.

Note that the invisibility condition (4) can be computed less
expensively. If we align the cube with the world coordinates of
the scene, then v(k) (k=0…5) will be consistent with the axis of
the world coordinates and calculation of (p-c)•v(k) will be
reduced to evaluating the difference of a corresponding
coordinate component of p and c.
By discretizing each principal viewport, we can get the discrete
form of the cube-based GOM. In the remaining sections, we
will use the notation GOM(i,j,k) to represent a discrete
cube-based GOM and GOM(s,t,k) to denote a continuous
cube-based GOM.

4. GOM CONSTRUCTION
To construct GOM, we can sample the view cell densely and
use the Z-buffer algorithm to calculate the visible points at each
sample viewpoint with the viewing directions aligned with the
principal directions. These visible points can then be used to
update GOM. Unfortunately, this naïve approach is impractical
since it incurs massive computation with complexity of O(N5)
where N×N is the resolution of the Z-buffer.
In this section, we present an adaptive algorithm for GOM
construction based on conservative estimation of DVB. In the
following, we assume that the scene is composed of a set of
triangles. Such assumption is general enough to handle almost
all kinds of 3D scene.

4.1 Conservative estimation of DVB
Let us see how to conservatively estimate DVB based on the
information of a few directional visible points. Fig. 4 shows a
case where three directional visible points have been detected
and identified by three gray dots. We can easily find the visible
triangles at which these directional visible points are located.
Then we perform a so-called directional occlusion test, to judge
whether these triangles are sufficient to occlude all the rays cast
from any point within the view cell along the direction v. If the
result is true, these visible triangles constitute DVB(v) and we
can use them to estimate GOM(v).

Figure 3: GOM(s,t,k) is the distance between the
DVB and c. DVB is perpendicular to the
principal direction v(k) instead of v(s,t,k).

v(s,t,k)

GOM(s,t,k)

c

DVB(v)

v(k)

v

c

fa

fb

fc

Figure 5: Triangles fa,
fb and fc cannot occlude
all the rays cast from
view cell along the
direction v.

Figure 4: Triangles fa and
fb occlude all the rays cast
from view cell along the
direction v. fa and fb are
obtained from the
corresponding directional
visible points.

v

c

fa

fb

fc

projection plane

v
projection of fa

fb

Q

c

fa

projection of fb

projection
of Q

Figure 6: The orthogonal projection of the visible
triangles fa, fb and view cell Q along v. The right
shows the projection results. The union of
projections of fa and fb can cover that of Q.

To perform the directional occlusion test, we project all these
visible triangles and the surface of the view cell along v
orthogonally onto a plane that passes through the center of the
view cell and is perpendicular to v. In the projection plane, we
test whether the union of the projections of the triangles can
completely cover the projected region of the view cell (Fig.6).
If it can, the test succeeds, otherwise, the test fails and more
directional visible points should be sampled (Fig.5). We adopt a
progressive approach to get more directional visible points. The
directional occlusion test is then repeatedly continued by
incorporating more triangles which the newly found directional
visible points belong into until either they occlude all rays or
the number of directional visible points exceeds a given
threshold.
Several methods can be used to evaluate GOM(v) once the
respective directional occlusion test succeeds. For example we
can use a Z-buffer algorithm supported by the graphic
accelerator to find all the visible points along the direction v and
get the largest depth, which is GOM(v). However, this method
has to read the Z-buffer pixel by pixel from the graphic
accelerator in order to find the largest depth, which inevitably
decreases the efficiency of our approach.
Instead, we make use of the vertices of the visible triangles to
conservatively estimate GOM(v). It is evident that

GOM(v) ≤ GOMest(v) (5)

where GOMest(v) = max{ (p-c)•v | p is any vertex of the visible
triangles}, and the estimated DVBest(v) can also ensure that all
points behind it are definitely invisible from the view cell along
v. Fig. 7a gives an example to illustrate DVBest(v) and
GOMest(v). Therefore for the cube-based GOM, we can estimate
GOM by using (Fig. 7b)

GOMest(s,t,k) = max{ (p-c)•v(k) | p is any vertex of the visible
triangles}.
In the remainder of this paper, we do not distinguish GOM(s,t,k)
and GOMest(s,t,k) since both of them can describe an effective
DVB.

4.2 Adaptive algorithm for construction of
GOM

In this section, we will present an adaptive algorithm for
constructing a cube-based GOM. We first subdivide the entire
region a viewer can traverse into a number of uniform cubic
view cells according to the complexity of the scene. Each face
of a view cell is divided into pixels with the resolution of N×N.
The vertices of all cubic cells constitute a 3D array Q. At each
vertex q ∈ Q, we set up a unit cube centered at q with the same
orientation as the view cell. Each face of the unit cube is also
divided into N×N pixels, so pixel(i,j) on the same oriented faces

of all cubes specifies the same direction v(i,j,k), where k refers
to the corresponding principal viewport.
We then adopt the hardware-supported Z-buffer algorithm to
find the visible points from q along each discrete direction and
record the indices of the corresponding visible triangles in an
item buffer.
Next, we perform the directional occlusion test view cell by
view cell along each direction v(i,j,k) with the information of
the visible triangle set stored in the item buffers at its eight
vertices. The results are then written into the Occlusion-buffer
of the current view cell. The results can be one of three forms:
“occluded”, “not-occluded” and “uncertain”. The “occluded”
value of Occlusion-buffer(i,j,k) indicates that the respective
DVB(v(i,j,k)) is ready to be derived along that direction. On the
other hand, the value “not-occluded” means that no visible
triangle is found in at least one item buffer along the direction
v(i,j,k). In both of the above cases, the result is deterministic. If
the value of Occlusion-buffer(i,j,k) is “uncertain”, the
directional occlusion test fails.
After the directional occlusion test is accomplished, we count
the number of pixels whose value is “uncertain” in the
Occlusion-buffer of the current view cell. We adopt two slightly
different approaches for further process. If the number is larger
than a given threshold, we subdivide the current view cell into
eight smaller view cells and establish the item buffers at the
vertices of all child view cells. The Occlusion-buffer of each
child view cell initially takes the same values as that of its
patent. It is then updated by performing the directional
occlusion test in the relevant directions.

If the number is smaller, we orthogonally project all scene
triangles along the direction v(i,j,k) onto the plane passing
through the center of the current view cell and perpendicular to
the principal direction v(k). All the visible triangles along this
direction can be immediately found in this case and no further
directional occlusion test is needed. The specific threshold
value is chosen based on the balance of the computations
involved in both approaches. Note that, the first approach
normally detects more directional visible triangles along the
direction v(i,j,k) during the subdivision process and these
triangles should be merged together to perform the directional
occlusion test for the parent view cell. This process is
repeatedly carried on until the values of all pixels in the
Occlusion-buffer of the current view cell have been determined.
Listings 1 and 2 give a pseudo code description of our
algorithm for constructing a cube based GOM. For convenience,
we describe the algorithm for a principal viewport only.
Therefore, we use GOM(i,j) to stand for GOM(i,j,k) and v(i,j)
for v(i,j,k), omitting the index k that specifies the principal
viewport.

The variable Distance, equal to max{ (p-c)•v(k) | p is any vertex
of the visible triangles} where v(k) is the principal direction of

v

c

fa
fb

fc

GOMest(v)

DVBest(v)

Figure 7a: The DVBest(v)
defined by GOMest(v) can
also occlude invisible
triangles from the view
cell.

ConstructGOM(GOM, Viewcell)
{

n of GOM and Occlusion-buffer
Refine(GOM, Viewcell, NULL, Occlusion-buffer)
For each (i,j) pair while 1≤i≤N, 1≤j≤N
 If(Occlusion-buffer(i,j) is not “occluded”)

{
Update GOM(i,j) and Occlusion-buffer(i,j) by

projecting all triangles orthogonally along v(i,j)
 }
}

Listing 1: The pseudo codes for ConstructGOM

v(s,t,k)

c

fa fb
fc

GOMest(s,t,k)

DVBest(v(s,t,k))

Figure 7b: The estimation
of the cube-based GOM

v(k)

the principal viewport, is computed to update GOM(i,j) by the
function DVBComp in Listing 2.

5. OCCLUSION CULLING WITH GOM
The GOM is a collection of visibility barriers for any viewpoint
along any viewing direction. It thus provides explicit
information for quickly rejecting objects hidden behind these
barriers. For any viewpoint q, we first find the respective view
cell that encloses it. A unit cube is then setup at q with the same
orientation and face resolution as that of the view cell. Any
object to be tested is projected onto the faces of the unit cube.
For each pixel(i,j,k) on the cube which is covered by the
projection of the object, its visibility barrier is found from GOM
(i,j,k). Let d(k) denote the minimum distance of the object to the
bisection plane of the view cell perpendicular to the principal
direction v(k), shown in Fig. 8. If

d(k) > GOM(i,j,k),
then the object is invisible from q along that direction.

Owing to its classic structure, GOM is adaptable to many
accelerating techniques. For example, GOM can be organized
into a hierarchical form as a hierarchical Z-buffer. An
appropriate level of the hierarchical GOM is found so that the
projection of the object falls within one pixel, hence avoiding
performing the invisibility test at multiple pixels. Also, objects
in the scene can be organized into an enclosing box tree,
enabling invisible objects to be culled in groups.
One notable feature of GOM is that it remains constant for all
viewpoints and viewing directions within a view cell. This is in
contrast with most of the current Z-buffer based algorithms for
which cases the Z-buffer has to be rebuilt and dynamically
updated according to the current viewing parameters during the
walkthrough of the scene.

6. IMPLEMENTATION AND
EXPERIMENTAL RESULTS

We built a virtual city scene as a testing dataset consisting of
29575 objects with a total of 1,556,574 triangles. A birds-eye
view is shown in Fig. 12a. A vista is shown in Fig. 12b. At the
stage of GOM construction, we divided the space along the
main streets in the virtual city into view cells, shaded in red as
shown in Fig. 12c.

We divided each face of a view cell at 128×128 resolution and
set the threshold of the number of pixels in Occlusion-Buffer
with value of “uncertain” to be 300 to launch the subdivision
process of the current view cell. The recursion is terminated
when a view cell is subdivided more than three times.
Fig. 9a shows the time cost for constructing the GOM of each
view cell. The fluctuation indicates that the scene complexity
varies over view cells. Average cost for constructing a GOM is
237.4 seconds. Fig. 9b shows the average time cost for handling
each face of the GOM, i.e., a principal viewport during GOM
construction. The principal viewports PVPort(2) and PVPort(3)
face the sky and the ground respectively. Since the scene along
these directions is of rather low complexity, it costs little
computation time. The principal directions of PVPort(0) and
PVPort(1) are aligned with the direction of the streets. More
visible triangles have to be sampled in this case and the view
cell needs to be subdivided into smaller cells. PVPort(4) and
PVPort(5) orient towards the two ends of the streets. Since
fewer objects are visible than through PVPort(0) or PVPort(1),
it consequently costs less time.
Fig. 10 shows the depth image on each face of a GOM. To
compress the information stored in the GOM, we adopt a simple
approach by storing the images on different faces of a view cell
at different resolutions according to the coherence between their
adjacent pixels. We build a z-pyramid for each face of the GOM
and count the number of pixels at a higher level whose four
children take different depth values. When the number exceeds
a given fraction γ, the resolution at the lower level is adopted
for storing the depth image on that face. The parameter γ
controls the tradeoff between storage size and conservativeness.
From experiment, the depth values in GOM were quantitized
into 256 steps by using an index table. We took γ = 0.7, and the
average size for a GOM is about 17k. The average resolution
for PVPort(0), PVPort(1), PVPort(4) and PVPort(5) is around
64×64 and the average resolution for PVPort(2) and PVPort(3)
is close to 1×1.
In order to cull objects efficiently, we reorganized the scene
into a hierarchical enclosing box tree and took the enclosing
box of objects as the culling primitives in both view frustum
culling and occlusion culling. Fig. 11a shows the effectiveness
of occlusion culling based on GOM against that of the frustum

Refine(GOM, Viewcell, Parent-O-Buffer , Occlusion-buffer)
{

Sampling the scene with N×N resolution
with viewpoint at each corner of ViewCell.

Store results to Buffers.
For each (i,j) pair while 1≤i≤N, 1≤j≤N
{

 If(Parent-O-Buffer(i,j) is “uncertain”)
{

Get VisibleFaceSet from Buffers
Flag = DVBComp(VisibleFaceSet, Distance)
Occlusion-buffer(i, j) = Flag
If(Flag is “occluded”)

UpdateGOM(GOM(i, j), Distance)
}else{

Occlusion-buffer (i,j) = Parent-O-buffer (i,j)
}

}
If(NeedSubdiv (Viewcell, Occlusion-buffer)
{

Subdivide Viewcell to a set of SubViewcell
For each SubViewcell,

Refine(GOM, SubViewcell, Occlusion-buffer,
Child-O-buffer)

Update Occlusion-buffer by all Child-O-buffer
}

}

Listing 2 : The pseudo codes for Refine

view cell

q
c v(k)

bisection plane

d(k)

object

Figure 8: An object is projected onto the principal
viewport PVPort(k) with respect to q. The minimum
distance of the object to the bisection plane of the
view cell perpendicular to the principal direction
v(k) is denoted by d(k).

culling during a 700 frames walkthrough of a street in the
virtual city. While the number of objects accepted after view
frustum culling varies widely, the number of objects accepted
after GOM based occlusion culling almost remains constant.
The corresponding frame rates are shown in Fig. 11b. The PVS
curve in Fig. 11b refers to the frame rate for displaying a
pre-computed potential visible set generated offline by GOM. It
demonstrates on the other hand the time efficiency of our online
occlusion culling, only dropping about 1 frame per second.

7. CONCLUSION AND FUTURE WORK
We have proposed an innovative representation, the Global
Occlusion Map, for invisibility culling. It compactly records the
Directional Visibility Barriers in all directions for a view cell.
Each Directional Visibility Barrier is a boundary plane in object
space behind which all objects are directionally invisible with
respect to the view cell. We have proposed an adaptive
approach to construct the GOM. The key idea is to perform the
directional occlusion test for each direction, which exploits the
combined occlusion to find the Directional Visibility Barrier.
By using the coherence between the adjacent pixels in the GOM,
it is easy to compress the GOM into a bounded image of small
size despite the complexity of the scene. Since our assumption
for the scene’s geometry is general, our approach can be used in
many applications.
Compared with PVS based visibility approaches, our new
approach has the following advantages:

1. It costs much less in storage whilst maintaining a good
rendering rate comparable with PVS approaches when
walking through a complex environment

2. GOM remains conservative when some dynamic objects
intrude into the environment.

3. The information of the GOM can be conservatively
compressed.

Many issues need to be investigated in future work. The most
challenging one is to accelerate the construction process of
GOM especially for scenes including very tiny triangles relative
to the size of view cells. Exploiting the coherence between
adjacent directions when estimating the Directional Visibility
Barrier is another promising research topic to further increase
the efficiency of GOM construction. More elaborate approaches
for compressing GOM should also be studied.

8. REFERENCE
[1] Ned Greene, M. Kass, and Gavin Miller. Hierarchical

Z-buffer visibility. Proceedings of SIGGRAPH’93, pages
231-240,1993.

[2] Hansong Zhang, Dinesh Manocha, Thomas Hudson, and
Kenneth E. Hoff III. Visibility culling using hierarchical
occlusion maps. Proceedings of SIGGRAPH 97, pages
77-88, August 1997.

[3] F. Bernardini, J.T. Klosowski, and J. El-Sana. Directional
discretized occluders for accelerated occlusion culling.
Computer Graphics Forum, 19(3), 2000.

[4] Seth J. Teller and Carlo H. Sequin. Visibility
preprocessing for interactive walkthroughs. Proceedings
of SIGGRAPH’91, pages 61-69, 1991.

[5] John M. Airey, John H. Rohlf, and Frederick P. Brooks, Jr.
Towards image realism with interactive update rates in
complex virtual building environments. Computer
Graphics (1990 Symposium on Interactive 3D Graphics),
24(2), pages 41-50, March 1990.

[6] Graig Gotsman, Oded Sudarsky, and Jeffry Fayman.
Optimized occlusion culling using five-dimensional
subdivision. Computer & Graphics, 23(5), pages 645-654,
1999.

[7] Gernot Schaufler, Julie Dorsey, Xavier Decoret, and
François X. Sillion. Conservative volumetric visibility
with occluder fusion. Proceedings of SGGRAPH 2000,
pages 229-238, July 2000.

2.2 1.6

43
22

83 84

0

20

40

60

80

0 1 2 3 4 5
principal viewport

tim
e(

se
c.

)

Figure 9b: Average time
for handling each
principal viewport

0

100

200
300
400

view cell

tim
e

(s
ec

.)

Figure 9a: The time cost
for GOM construction

PVPort(0)

PVPort(1)

PVPort(2)

PVPort(3)

PVPort(4)

PVPort(5)

Figure 10: The depth images on each principal
viewport of a constructed GOM.

0

4k

8k

12k

16k

Frame N
um

 o
f a

cc
ep

te
d

ob
je

ct
s

view frustum culling

GOM based occlusion
culling

(a)

0
2
4
6
8

10
12

Frame

Fr
am

es
 p

er
 se

co
nd

view frustum culling

GOM based occlusion
culling
PVS

(b)

Figure 11 (a): Effectiveness comparison between view
frustum culling and GOM based occlusion culling. (b):
The rendering rate using respectively view frustum
culling, GOM based occlusion culling and PVS.

[8] F. Durand, George Drettakis, Joelle Thollot, and Claude
Puech. Conservative visibility preprocessing using
extended projections. Proceedings of SIGGRAPH 2000,
pages 239-248, July 2000.

[9] Vladlen Koltun, Yiorgos Chrysanthou, and Daniel
Cohen-Or. Virtual occluders: An efficient intermediate
pvs representation. Rendering Techniques 2000: 11th
Eurographics Workshop on Rendering, pages 59-70, June
2000.

[10] Michiel van de Panne and James Stewart. Efficient
compression techniques for precomputed visibility.
Proceedings of Eurographics Workshop on Rendering
1999, 1999.

[11] Hansong Zhang. Effective Occlusion Culling for the
Interactive Display of Arbitrary Models. Ph.D. thesis,
Department of Computer Science, UNC-Chapel Hill,
1998.

[12] Daniel Cohen-Or, Yiorgos Chrysanthou et. al. A Survey
of Visibility for Walkthrough Applications.
SIGGRAPH ’00 Course Notes, Course 4, 2000.

[13] Dirk Bartz, Michael Messner, et. al. OpenGL-assisted
occlusion culling for large polygonal models. Computers
& Graphics, 23(5), pages 667-679, 1999.

[14] Satyan Coorg and Seth Teller. Real-time occlusion culling
for models with large occluders. 1997 Symposium on
Interactive 3D Graphics, pages 83-90, April 1997.

[15] T. Hudson, D. Manocha, et. al. Accelerated occlusion
culling using shadow frusta. Proc. 13th Annu. ACM
Sympos. Gomput. Geom., pages 1-10, 1997.

[16] J. Bittner, V. Havran, et. al. Hierarchical visibility culling
with occlusion culling. Proceedings of Computer
Graphics International ’98, pages 207-219.

[17] F. Durand. 3D Visibility: Analytical study and
Applications. PhD thesis, Université Joseph Fourier,
Grenoble, France, July 1999.

[18] F. Durand, George Drettakis, et. al. The Visibility
Skeleton: A Powerful and Efficient Multi-Purpose Global
Visibility Tool. SIGGRAPH’96.

[19] Seth Teller. Visibility Computations in Densely Occluded
Environments. PhD thesis, University of California,
Berkeley, 1992.

[20] Peter Wonka, Michael Wimmer, et. al. Instant Visibility.
EUROGRAPHICS’2001, pages C411-21, September
2001.

[21] Graig Gotsman, Oded Sudarsky, and Jeffry Fayman.
Optimized occlusion culling using five-dimensional
subdivision. Computers & Graphics, 23(5), pages
645-654, 1999.

[22] Yigang Wang, Hujun Bao and Qunsheng Peng.
Accelerated Walkthroughs of Virtual Environments
Based on Visibility Preprocessing and Simplification.
EUROGRAPHICS’98, 1998, 187-194.

[23] C.B. Jones. A new approach to the ‘hidden line’ problem.
The Computer Journal, 14(3), pages 232-7, August 1971.

Figure 12a: A bird-eye’s view of the virtual city

Figure 12b: A vista in the virtual city

Figure12c: View cells in the virtual city

