
Spectral Quadrangulation with Orientation and Alignment Control

Jin Huang† Muyang Zhang Jin Ma Xinguo Liu† Leif Kobbelt∗ Hujun Bao†

State Key Lab. of CAD&CG, Zhejiang University ∗RWTH Aachen University

(a) (b) (c) (d)

Figure 1: Quadrangulation on Rockarm model. Figure (a) shows the quasi-dual Morse-Smale complex of an unconstrained eigenfunction.
Taking the direction (arrows), alignment (lines) and sizing (color) fields of figure (b) into account, our scheme computes a scalar function
with the quasi-dual Morse-Smale complex shown in (c). In (d) we depict our final quadrangulation result.

Abstract

This paper presents a new quadrangulation algorithm, extending the
spectral surface quadrangulation approach where the coarse quad-
rangular structure is derived from the Morse-Smale complex of an
eigenfunction of the Laplacian operator on the input mesh. In con-
trast to the original scheme, we provide flexible explicit controls of
the shape, size, orientation and feature alignment of the quadrangu-
lar faces. We achieve this by proper selection of the optimal eigen-
value (shape), by adaption of the area term in the Laplacian operator
(size), and by adding special constraints to the Laplace eigenprob-
lem (orientation and alignment). By solving a generalized eigen-
problem we can generate a scalar field on the mesh whose Morse-
Smale complex is of high quality and satisfies all the user require-
ments. The final quadrilateral mesh is generated from the Morse-
Smale complex by computing a globally smooth parametrization.
Here we additionally introduce edge constraints to preserve speci-
fied features accurately.

Keywords: quadrangular remeshing, Laplacian eigenfunctions,
constrained optimization

1 Introduction

Although triangular meshes have been widely used in computer
graphics community, quadrilateral meshes are more desired in some
applications, such as texturing, simulation with finite elements and
B-spline surface reconstruction, etc. Many approaches have been
proposed to remesh triangular meshes into quadrilateral meshes.
However, it is a challenging problem to generate a satisfactory
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quadrilateral mesh with few irregular vertices and faces. Further-
more, the size, edge orientation and feature alignment of quadrilat-
eral mesh should be under control in many applications, which add
more difficulties.

In this paper, we propose a controllable spectral method to remesh
triangular meshes into quadrilateral meshes. We focus on the con-
trol of the Morse-Smale complex according to the edge length of
the coarse quadrilateral, direction field guided edge orientation and
the alignment of feature lines. Users can use weighting to control
the distance between nodes, assign a direction field over the mesh
to make final quadrangulation result coincide with it and specify the
feature lines to be preserved when remeshing. Most of the above
constraints can be automatically derived from principal curvature
directions and feature detections. To ensure better feature align-
ment, we also augment the global smooth parameterization by in-
troducing edge constraints for feature lines.

2 Related Work

The problem about quadrangulation has been a focus of graphics
research in many years. A detailed survey for remeshing can be
found in [Alliez et al. 2005]. We only review the most related works
here.

Direction field is an important guidance for the quadrangulation,
and is widely used. The method proposed by [Alliez et al. 2003] in-
tegrates principal curvature lines in the parameter domain of the in-
put mesh and constructs a quadrilateral dominant mesh through the
intersections of the curvature lines. Marinov and Kobbelt [Boier-
Martin et al. 2004] enhanced this method by directly integrating the
curvature lines on the surface. Dong et al. [2005] create a harmonic
function, then tracking the iso-lines and gradient lines to generate
the quadrilateral mesh. But it is a challenging problem to create a
harmonic function whose gradient aligns with the given direction
field.

Global parameterization is another useful tool for quadrangulation.
Periodic parameterization technique, proposed in [Ray et al. 2006],
can automatically parameterize the input model under the parame-
ter domain, whose coordinate axes coincide with the principle di-
rections. It generates quadrilateral meshes with controlled orienta-
tion of mesh faces. To generate good results, non-linear optimiza-
tion is needed together with an integrable direction field. Removing



the curl of the direction field will decrease the number of singular
regions, but may stretch the parameterization greatly. As a conse-
quence, it’s hard to ensure good shape of quadrilateral faces while
keeping a small number of irregular vertices. In [Kälberer et al.
2007], by cutting the graph open to a topological disk, the curl in
the direction field can be kept, so they can achieve high quality
quadrangulation results with much fewer irregular vertices. This
method does not require the irregular vertices located at the corners
of some coarse meta mesh. All irregular vertices in both methods
have to be known a priori from the input direction field. For noisy
input direction field, they cannot optimize the irregular vertex posi-
tions for good quadrangulation.

Another way to control the quadrangulation result is to decompose
the manifold into coarse patches which satisfy the users’ intention,
and then convert these patches into quadrilaterals. For the CAD
and CAE models, Marinov and Kobbelt [2006] propose a patch
based quadrangulation method. They divide the model into a few
polygonal patches according to the variational shape approxima-
tion, then remesh the patches individually into quadrilaterals. With
given coarse meta mesh, [Tong et al. 2006] presents a linear solu-
tion with the consideration of Gaussian curvature, and achieves low
distortion parameterization results. With the assistance of the cur-
vature analysis proposed in [Tong et al. 2006], users specify a quad-
rangular base domain as well as the types of singular continuity at
the edges for further global parameterization. When a quadrangu-
lar base domain is not good enough, the result may contain fold and
significant stretch.

[Dong et al. 2006] can automatically create coarse quadrangular
domain by the Morse-Smale complex which comes from a eigen-
function of the mesh Laplacian. Then they track the iso-line of the
global multi-chart parameterization to generate the final quadran-
gulation results. By virtue of the property of eigenfunctions, the
coarse quadrangular complex contains only a few number of irreg-
ular vertices without any non-quad polygon. But the method is not
good enough for controllable quadrangulation because of lacking
controls over size, orientation and feature alignment.

3 Finding the Optimal Morse-Smale Complex

Similar to [Dong et al. 2006] we derive a coarse global quadrangu-
lar structure by computing the Morse-Smale Complex (MSC) of a
scalar function f defined at mesh vertices. Our algorithm refines
the idea of spectral surface quadrangulation in the sense that we
provide flexible user controls over the shape, size, orientation and
alignment of the resulting quadrangular structure. In particular we
want to achieve the following goals:

1) In order to generate quadrangular patches with rectangular shape,
the stationary points should be distributed periodically in two (lo-
cally) orthogonal directions across the mesh.

2) The size of these patches should follow a user specified sizing
field.

3) The orientation of the two (locally) orthogonal directions should
be consistent with the user specified tangent direction field.

4) The boundaries of some quadrangular patches should properly
align with some feature lines on the mesh.

Notice that throughout this paper we make a distinction between
orientation and aligment of a quadrilateral mesh. The term orien-
tation refers to the rotational degree of freedom that is used to take
the user specified direction field into account. The term alignment
refers to the phase-shift degree of freedom that controls the actual
location of the edges. With mere orientation control, we can only
make the edges of a quadrilateral mesh parallel to the feature lines.

The addition of alignment control enables a parallel shift of mesh
edges such that they lie exactly on the feature lines (see Figure 6).

As empirically observed in [Dong et al. 2006], the eigenfunctions of
the Laplacian operator do have the potential to satisfy requirements
(1) and (2) but lacks analysis of under which circumstances it actu-
ally happens. As we will show, these requirements can be achieved
by selecting a proper eigenvalue λ. For the requirements (3) and (4)
we have to add weighted constraints to the original eigenproblem.

By taking these additional constraints into consideration, our so-
lution is no longer an exact eigenfunction to the Laplacian opera-
tor but rather a close enough approximation that inherits most of
the nice analytical properties of the true eigenfunction while at the
same time satisfying all the above requirements.

3.1 Setup

LetM = (V, T ) be the input mesh with V the set of vertices and T
the connectivity information. Each vertex vi ∈ V is equipped with
a position pi and a tangent vector di which provides a 4-symmetry
direction field on the mesh for the orientation of the final quadrilat-
eral mesh.

A scalar function f on M is defined by assigning a scalar value
fi to each vertex vi. In order to transfer concepts from differen-
tial geometry to this discrete setting, we compute a local quadratic
approximation to f for the one-ring neighborhood of each vertex.

We first assign local parameter values (u, v) to vi and each of its
adjacent neighbor vertices vj ∈ N (i) by exponential map. The ro-
tational degree of freedom is used to orientate the u-direction in pa-
rameter space to the projected tangent direction di associated with
vi (we will exploit this orientation of the parametrization later in
Section 3.4). Then we find the best fitting quadratic polynomial

qi(u, v) = ci
0 + (ci

u, ci
v)

(
u
v

)
+

1

2
(u, v)

(
ci

uu ci
uv

ci
uv ci

vv

) (
u
v

)
by minimizing the error functional

E(qi) =
∑

j∈{i}∪N (i)

Dj(qi(uj , vj)− fj)
2 (1)

where the weight factor Dj takes the relative surface area associated
with each vertex into account

Dj =
1

3

∑
t∈N (j)

|t|. (2)

Since the least squares minimizer of (1) is found by solving the
corresponding normal equations, we can derive the linear operators
Qi
∗ for ∗ ∈ {0, u, v, uu, uv, vv} such that

ci
∗ = < Qi

∗, f > .

Notice that these Taylor-operators Qi
∗ depend only on the lo-

cal parametrization of the input mesh M and the direction field
spanned by the vectors di. Hence we can precompute these oper-
ators in advance and reuse them for any function f defined on M.
The local operator Qi

∗ is the i-th row of the matrix operator Q∗
which maps the vector of all function values f to the vector of cor-
responding Taylor-coefficients c∗. This operator will be used later
in the optimization of f .

In order to optimally capture the geometry of the input mesh M,
we use the well-established cotangent form Laplacian operator L
[Pinkall and Polthier 1993]:

L(fi) =
∑

j∈N (i)

(cot(αij) + cot(βij)) (fj − fi)



with αij , βij being the two angles opposite to the edge [i, j] in the
meshM. In order to keep the Laplacian operator L symmetric, we
do not normalize by the reciprocal surface area 1/Di (cf. equation
2). Instead we formulate a generalized eigenproblem

Lf = −λDf ⇔

 min
‖g‖=1

∥∥∥(
√

D
−1

L
√

D
−1

+ λI) g
∥∥∥2

where f =
√

D
−1

g

(3)

where the diagonal matrix D with area elements Di appears explic-
itly. We will use this formulation later in Section 3.3 to adjust the
local cell size of the MSC.

Figure 2: Example of a Laplacian eigenfunction f(x, y) =
cos(πx) cos(πy). The corresponding Morse-Smale complex is de-
picted by black arrows.

3.2 Square Patches

Let f be an eigenfunction of the discrete Laplacian operator, i.e.,

L f = −λ f. (4)

The Laplacian operator is tightly related to discrete cosine trans-
form [Strang 1999]. By intuition, we extend the relationship to
locally developable surface: there exist two intrinsic parameter di-
rections x and y such that f is a discrete analogon to a function of
the form

f(x, y) = A cos(α x + φx) cos(β y + φy) (5)

where α, β define the frequencies in x and y directions respectively,
A is the amplitude, (φx, φy) defines the phase shift, and the eigen-
value is λ = α2 + β2. The corresponding MSC is an affine grid
consisting of two sets of lines with a slope of (β, α) and (−β, α)
respectively. This affine grid turns out to be an orthogonal one if
and only if α = β. See Figure 2 for a depiction of this situation.

We use the “Multiresolution Spectral Analysis” technique [Dong
et al. 2006] to solve the generalized eigenproblem on a large mesh,
and then pick the eigenfunction for producing the best results. To
find an eigenvalue λ whose eigenfunction f yields an as orthogonal
as possible MSC, let

Esquare =
α2

β2
+

β2

α2
=

α4 + β4

α2β2
(6)

be a measure for the “non-orthogonality” of the MSC grid. Then
we compute a small number of eigenfunctions f [λk] for several
eigenvalues λk around the estimated λ which is selected according
to the number of critical points in the complex (c.f. [Dong et al.

2006]). For each f [λk] we check the non-orthogonality measure
(6) at all the extrema (in the simplified MSC). This will produce
orthogonal candidates to select from. Figure 3 shows an example
of how this procedure allows us to find out the most orthogonal
MSC.

To evaluate Esquare, we consider the Hessian of (5)

H[f(x, y)] = A

(
−α2 cc αβ ss
αβ ss −β2 cc

)
(7)

where we set cc = cos(α x + φx) cos(β y + φy) and ss =
sin(α x + φx) sin(β y + φy). At an extremum, we have cc = ±1
and ss = 0. Hence

H[f(
πi− φx

α
,
πj − φy

β
)] =

(
∓A α2 0

0 ∓A β2

)
.

This means that Esquare can be expressed by the ratio of the eigen-
values of the Hessian and hence it does not depend on the amplitude
A (which may vary at different extrema).

Since for a given eigenfunction f we cannot easily derive the in-
trinsic directions x and y, it is quite difficult to exploit (5) directly.
However, we can replace f(x, y) by the local quadratic fit q(u, v)
whose Hessian

H[q(u, v)] =

(
cuu cuv

cuv cvv

)
has approximately the same eigenvalues as H[f(x, y)]. This is ob-
vious because the rotation between the (u, v) and the (x, y) co-
ordinate systems only affect the eigenvectors, not the eigenvalues.
From

trace H[q(u, v)] = cuu + cvv ≈ −A (α2 + β2)

det H[q(u, v)] = cuu cvv − c2
uv ≈ A2α2β2

at the extrema we conclude that

Esquare =
α4 + 2α2β2 + β4

α2β2
− 2 ≈ (cuu + cvv)2

cuu cvv − c2
uv

− 2.

index = 22 32 35
Esquare = 10.75 6.58 2.670

Figure 3: Finding eigenfunctions with approximately orthogonal
MSC. By testing eigenfunctions f [λk] for eigenvalues λk around
the estimated λ (center column), we can find the most orthogonal
eigenfunction (right column) among them.

3.3 Adaptive Size Control

In order to preserve fine details in some surface regions without
introducing redundant over-tesselation in other regions, we would



like to vary the distance between stationary points locally in a con-
trolled fashion. Therefore, we exploit the physical meaning of the
Laplace eigenproblem.

The generalized eigenproblem in (3) can be viewed as a vibration
analysis on the elastic membrane given by the input mesh. As dis-
cussed in [Vallet and Lévy 2007], we can interpret the Laplacian
matrix L as a stiffness matrix, and D as a lumped mass matrix. The
eigenvalue λ is related to the vibration frequency by ω =

√
λ and

the eigenfunction f represents the corresponding stationary wave.

From the theory of wave propagation in an elastic body [Alford
et al. 1974], we have the following relationship:

wave speed = frequency× wavelength = k1

√
stiffness

mass density

and for the distance l between two adjacent extrema we obtain

l = k2
1√
λD

(8)

where k1, k2 are constant coefficients.

Due to the surface area weights Di in (3), the underlying elastic
body is assumed to have uniform material properties. Hence, the
wave speed is nearly constant over the mesh and thus for a given
eigenvalue (frequency), the stationary points of the eigenfunction
are uniformly distributed. From (8), we can also understand why
the stationary points move closer to each other when the eigenvalue
(frequency) is increasing.

(a) (b) (c) (d)

Figure 4: Creating a quadrangulation with adaptive density by
changing the surface area weights D. (a) Local surface areas are
scaled by 1, 3, and 6 in the gray, green, and red regions respec-
tively. (b) The quasi-dual Morse-Smale complex constructed from
the generalized eigenproblem. (c)(d) The front and back view of
the quadrangulation result with smaller quads in the green and red
regions.

To control the cell size of the MSC, i.e., the density distribution of
the eigenfunction’s stationary points, we can simply scale the cor-
responding entries in the lumped mass matrix D up (to increase the
density) or down (to decrease it). Thus we can effectively adapt the
resulting quadrilateral mesh density for better feature preserving.
See Figure 4 for an example.

In [Dong et al. 2006], the eigenproblem is solved without consid-
ering the mass matrix D and consequently the distance between

stationary nodes in the MSC strongly depends on the tesselation of
the input mesh. Our adaptive size control also provides a physical
interpretation of the partial shifting technique used in [Dong et al.
2006] which reduces the diagonal entries of the Laplacian matrix
for some vertices. From the relation:

(L− S)f = λf ⇔ Lf = λ(I + S)f

with S being a diagonal matrix, we find that partial shifting actually
corresponds to adding offsets to the corresponding entries of the
mass matrix (while we apply a scaling factor). In the region with
partial shifting, the wavelength becomes much shorter, so extrema
more likely appear.

3.4 Orientation Control

In section 3.2 we already exploited the Hessian (of the continu-
ous analogon) of the eigenfunction f to identify the function which
leads to a MSC with an orthogonal structure. Here we take this idea
even further by using the coefficients of the Hessian for orientation
control.

For eigenfunctions f with orthogonal MSC, we can assume the di-
rectional frequencies α and β to be equal and hence the Hessian of
the continuous analogon (5) simplifies to

H[f(x, y)] = Aα2

(
−cc ss
ss −cc

)
. (9)

The eigenvectors e+ =

(
1
1

)
and e− =

(
−1
1

)
of this ma-

trix, i.e., the principal directions of f do not change with (x, y).
They coincide with the two orthogonal directions of the correspond-
ing MSC.

The basic idea of orientating the MSC is to take an eigenfunction f
which has an approximately orthogonal MSC and to “twist” it to-
wards a function with the property that the principal directions (i.e.,
the eigenvectors of the Hessian) coincide with the prescribed direc-
tion field. Our approach is to add an energy term to the Laplace
eigenproblem which penalizes the deviation of the principal direc-
tions.

Again, instead of using the Hessian of (5) directly we use the Hes-
sian of the local quadratic fit q(u, v). Since we have oriented the
(u, v)-coordinate system such that its u-direction coincides with
the prescribed direction field di, we simply have to make sure that
the principal directions of q(u, v) coincide with the main axes in
(u, v)-parameter space. This is guaranteed if the Hessian of q(u, v)
is a diagonal matrix. Hence, our local penalizing energy is

(ci
uv)2 = < Qi

uv, f >2 .

The total penalizing energy is then obtained by integration over the
entire mesh, i.e.,

Eorient =
∑
vi∈V

Di < Qi
uv, f >2 = ‖Qorient f‖2. (10)

As mentioned in [Dong et al. 2006], the angle between the edge
direction of quasi-dual and primal complex is π/4, we can use the
π/4 rotated direction field to make the orientation of a quasi-dual
complex coincide with this direction field. See Figure 5 for orien-
tation examples.

3.5 Alignment Control

When the input mesh has sharp or non-sharp feature lines, they
should be represented by a sequence of polygon edges in the output.



(a) (b) (c)

Figure 5: Orientation control on the torus model. (a) make the
edges of the quasi-dual Morse-Smale complex coincide with the
principal curvatures (b) rotate the direction field in (a) by 20 de-
gree. (c) rotate the direction field in (a) by 45 degree.

Hence, besides orientation control we have to introduce control on
feature alignment. Many feature detection techniques have been
proposed, for example [Yoshizawa et al. 2005]. In this paper we
assume that the relevant features on the input mesh are given.

In the local DCT approximation (5) of the eigenfunction f , we can
observe that the edges of the primal MSC lie on the diagonals:
(αx + φx) ± (βy + φy) = kπ, and the edges of dual MSC are
on: αx + φx = kπ and βy + φy = kπ. These lines represent
the set of symmetry axes of f . Hence in order to make the MSC of
the function f align to a certain feature line l, we enforce f to be
symmetric with respect to l.

Let (û, v̂) be a local parametrization such that the û-axis is aligned
to the feature line l. Then the symmetry condition on f written in
terms of the local quadratic approximation q(û, v̂) is

q(û,−v̂) = q(û, v̂)

which is equivalent to

cûv̂ = 0 and cv̂ = 0.

Thus, the penalizing energy for feature alignment over the whole
mesh becomes:

Ealign =
∑
vi∈l

Di(< Qi
ûv̂, f >2 + < Qi

v̂, f >2) = ‖Qalignf‖2.

(11)

In the primal MSC case, we can expect that the feature is oriented
along the prescribed tangent direction field d. In this case the
parametrization (û, v̂) coincides with (u, v) and the first condition
cûv̂ = 0 simply repeats the orientation condition. Consequently the
penalizing energy for misalignment to the feature line l is simplified
as

Ealign =
∑
vi∈l

Di < Qi
v, f >2. (12)

3.6 Meshes with Boundaries

The original framework proposed in [Dong et al. 2006] cannot han-
dle meshes with boundaries which are very common in practice.
By treating boundaries of the mesh as feature lines, we can easily
exploit the orientation and alignment control to handle them.

As shown in Figure 7 and Figure 8, we create a direction field which
is perpendicular or parallel to the boundaries in the nearby region,
and use the orientation control to ensure that some of the edges of
the MSC are parallel with the boundaries. The alignment control
finally snaps edges precisely to the boundaries. In Figure 8, we
also add size controls to make the wavelength compatible with the
alignment configuration (which will be discussed in section 5).

(a) (b) (c)

Figure 6: Using alignment control to snap some edges of the quasi-
dual MSC in (b) to the specified feature lines in (a). (c) shows the
quasi-dual MSC for the unconstrained eigenproblem.

(a) (b) (c) (d)

Figure 7: Handle meshes with boundaries by treating boundaries
as feature lines. (a) the direction field which is perpendicular to
the boundaries (b) the unconstrained MSC which is not aligned
with the boundaries. (c) some edges of the MSC are aligned with
the boundaries by orientation and alignment control. (d) the final
quadrangulation result.

Since there is no appropriate definition of the Laplacian operator
on boundaries, we use the definition proposed in [Vallet and Lévy
2008]: if the edge [i, j] is on the border, the term of cot(βij) in
ωij vanishes. This definition matches the FEM formulation with
Neumann boundary conditions.

3.7 Constrained Eigenproblem

To eventually find a scalar function f on M which satisfies all the
requirements, we first select a proper λ and D with the methods
presented in Sections (3.2) and (3.3), then combine Equations (3),
(10) and (11) to obtain:

min
f

(∥∥∥(
√

D
−1

L
√

D
−1

+ λI)
√

Df
∥∥∥2

+w1‖Qorientf‖
2 + w2‖Qalignf‖2

)
s.t.‖

√
Df‖2 = 1

(13)

(a) (b) (c)

Figure 8: Quadrangulation on the car model. (a) the direction
field. Different weights D are indicated by different color. (b) the
quasi-dual Morse-Smale complex, (c) the final quadrilateral mesh.



where w1 and w2 are the user specified weights to balance the ori-
entation energy, alignment energy and the quality of MSC (see Fig-
ure 9). We experimentally find that w1 = 0.5 and w2 = 1.0 works
well in all our results.

The above constrained optimization problem are iteratively solved
by the following equation:(

A JT
k

Jk 0

) (
fk+1

ν

)
=

(
0
1

)
(14)

where ν is the Lagrange multiplier, and

A = L̂T L̂ + w1Q
T

orientQorient + w2Q
T

alignQalign

L̂ = (
√

D
−1

L
√

D
−1

+ λI)
√

D

Jk = fT
k D.

In (14) we take fk to calculate the approximate Hessian matrix at
iteration k + 1. By exploiting the block structure in (14), it can
be solved efficiently through the following two equations with pre-
factorized the matrix A:

(JkA−1JT
k )ν = −1

Afk+1 = −νJT
k .

(15)

The iteration stops when the ‖
√

D(fk+1 − fk)‖ < 10−7. In our
experiments, about 20 iterations are enough.

w1 0.0 0.015 0.040 0.060 0.10 0.7
max 3.70 1.82 1.98 2.30 2.46 1.14
mean 3.32 1.502 0.98 0.84 0.67 0.23

Figure 9: Visualization of how the eigenfunction f and the MSC
change as more and more weight w1 is put on the orientation. The
other two rows show the maximum and average value of c2

uv .

After removing the topological noise using the algorithm proposed
in [Dong et al. 2006] which includes cancellation(removing redun-
dant saddle-extremum pairs) and anti-cancellation(the inverse of
cancellation), we have constructed a quadrangular base complex
over the mesh which satisfies all the input requirements. Then we
build a parameterization over this complex and generate a regular
d × d grid of quadrilaterals in this parametric domain with a user-
specified density d .

4 Implementation Details and Results

Alike [Dong et al. 2006], we construct the MSC by
the algorithm proposed in [Edelsbrunner et al. 2003;
timo Bremer et al. 2004]. After classifying the critical
points(maximum/minimum/saddle) of f , we construct

the steepest ascending/descending lines starting from each saddle
to a maximum/minimum, and use them to partition the mesh into
quadrangular regions. We also use the cancellations [Edels-
brunner et al. 2003; timo Bremer et al. 2004] which eliminates
a connected saddle-extremum pair each time to simplify the
MSC. The priority of cancellation is ranked by their persistence
[Edelsbrunner et al. 2002]. In practice, we only perform the
anti − cancellation for the very high valency (larger than 7) ex-
tremum of MSC, and split it along the longest edge. This procedure
is actually rarely used, because high valency extrema rarely occur
in our experiments. If the quasi-dual MSC is required, we connect
the maximum-minimum diagonal within each quadrangular region
on the simplified primal MSC.

The parameterization method proposed in [Dong et al. 2006] will
relocate the edges of the MSC when swapping vertices across
boundaries to adjust patches. As a result, after the iterative relax-
ation procedure, the parameterization often distorts the edge away
from the feature lines. To accurately align the features, we augment
the original algorithm by edge constraints. The parameterization
coordinates of vertices on the feature lines are interpolated from
the corresponding nodes of the complex. Then we put these known
values as hard constraints into the parameterization equations.

The analysis of the performance, some additional results and the
quality of the final quadrilateral meshes will be demonstrated in the
following.

|M| |Mq| MSC Parameterization
Car 2818 3360 0.65s 2.28s

Rockarm 9405 9301 2.32s 19.08s
Elephant 18074 18173 4.57s 51.19s
Pegaso 23930 16693 5.84s 83.57s

Table 1: Performance of our system.

Tabel 1 summarizes the size of some models and the performance
of our system on these models. |M| and |Mq| are the number
of vertices of the input triangle mesh and output quadrangulation
mesh respectively. The column named as MSC shows the time (in
seconds) for solving the constrained eigenproblem. And the col-
umn Parameterization lists the time used in the parameterization.
Running times are measured on a 1.8G Intel DualCore 2 CPU with
2GB memory. We solve all the sparse linear equations by UMF-
PACK [Davis 2004].

Our method is insensitive to the noise in the direction field, and can
even apply to noisy geometry. In Figure 10, we directly use the di-
rection field which comes from the curvature tensor and weight the
orientation energy by the curvature tensor magnitude. Although the
hair of the David head model is very noisy, the orientation control
still works well. Even in the hair region, some singularities auto-
matically appear to make the quadrangulation result consistent with
some of the significant features in the direction field. Comparing
with [Ray et al. 2006; Kälberer et al. 2007], it’s an advantage that
our method can optimize irregular vertex positions for such noisy
direction field.

Finally, we measure the quality of our results. The number of irreg-
ular vertices, the distribution of the angle and edge length can be
found in Figure 11. Both models are constrained by direction field,
and size control is added on the face of pegaso horse to capture
more details. By virtue of the period property of the eigenfunction,
our result has only a few irregular vertices.



(a) (b) (c) (d) (e)

Figure 11: Quadrangulation on the pegaso horse and elephant model. (a) the direction field. Different weights D are indicated by different
color on the pegaso horse. (b) the quasi-dual Morse-Smale complex, (c)(d) the final quadrilateral mesh from the left and right view, (e) the
plot of quality measurement.

(a) (b) (c) (d)

Figure 10: Our method can directly apply to noisy geometry. (a)
the direction field which comes from the curvature tensor. (b) the
quasi-dual Morse-Smale complex. (c)(d) the final quadrilateral
mesh from two views.

5 Discussion and Future Work

In this paper, we have presented a method to control the topolog-
ical structure of the quadrangulation result by finding the optimal
Morse-Smale complex. The scalar function from which the MSC
is derived is approximated locally by DCT basis function and a
quadratic polynomial. We look into the relationships between the
MSC and the DCT basis function, then using the quadratic polyno-
mial to represent these relationships. By solving a constrained least
square problem which is dominated by a generalized eigenprob-
lem, we find the best scalar function according to the requirements.
After getting a good topological structure derived from the scalar
function, we parameterize it over the surface. For better feature
preserving, edge constraints are introduced into the global smooth
parameterization framework.

Our method can generate the quadrangulation result with low dis-
tortion and only a few number of the irregular vertices. But in
some cases, the result may not follow users’ intention, especially

when the applied constraints conflict with the period property of
the eigenfunction. As shown in Figure 12 , the Fandisk model has
many corners, and the distribution of them is very irregular. It’s a
tough job to set proper size, orientation and alignment controls to
get a scalar function which has stationary points on every corner.

Figure 12: Using the size, orientation and alignment controls can
get an approximately feature aligned result. But a perfect result
requires more controls except for the ones proposed in this paper.

The alignment control cannot work well on some complex feature
line configurations. It is hard to simultaneously align the edges of
MSC with all features if the distance between the feature lines is
contradict with wavelength, e.g. the distance between two parallel
feature lines is quite different from the integer times of the wave-
length/4.

We also tried a constrain to ensure the corners to be nodes of the
MSC (see Figure 13), which is similar to the alignment control but
without the requirement of orientation control. The nodes of the
MSC are saddles or extrema of f and hence at the positions where
nodes appear, the following equation must hold:

0 = ∂f(u,v)
∂u

= cu = < Qu, f >

0 = ∂f(u,v)
∂v

= cv = < Qv, f > .
(16)

By including above linear equations as hard constraints into (13),



(a) (b) (c)

Figure 13: We can make nodes lie on the corners of the gargoyle
model by position control. (a) without node position control. (b)
the node positions are spedified by the user on some vertices of the
model (indicated by yellow spheres), (c) the Morse-Smale Complex
with node position control.

we can impose node position constraints. However, applying po-
sition constraints at sparse locations on the mesh does not guaran-
tee that the arcs of the MSC properly align to the feature lines in
between and hence alignment control along feature lines remains
necessary.

It would be another interesting control to constrain both the position
and valance of irregular vertex simultaneously. As pointed out in
[Tong et al. 2006], the optimal quadrangulation should match the
curvature tensor. The position and valance of a MSC node should
reflect the local average of Gaussian curvature, which is heavily
related to the Hessian of f(x, y) and q(u, v).
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