
Real-time Dynamics for Geometric Textures in Shell

Jin Huang†∗, Hanqiu Sun‡, Kun Zhou†and Hujun Bao†
†State Key Lab of CAD&CG, Zhejiang University, China

‡The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Abstract

Embedding geometric textures in a shell space around an arbitrary
surface has been a popular way to add highly detailed geometric
details and enhance visual richness in graphics community, but the
dynamic effects of geometric textures have not been modeled and
simulated. In this paper, we introduce an efficient algorithm for
deforming geometric textures with dynamic effects. The algorithm
consists of two steps. First, it computes a deformed shell space by
optimizing a material related energy function, which is then used
to evaluate the equilibrium position of the geometric texture. Sec-
ond, an explicit time integration scheme is applied for vibrating the
geometric texture around its equilibrium position. Users can de-
form the geometric textures by dragging its vertices directly, and
the dynamic behavior of the geometric textures can be changed by
adjusting several material parameters. The dynamic simulation of
geometric textures can be easily implemented on GPU and runs at
real-time rates.

1 Introduction

Embedding geometric textures in a shell space around an arbitrary
surface has been used in computer graphics as a way to enhance
the visual richness of a 3D surface [Porumbescu et al. 2005; Zhou
et al. 2006]. But the dynamic effects have never been modeled for
the embedded geometry details when the mesh deforms. In this
paper, we present an efficient method to simulate the dynamics of
geometric textures with alterable material properties.

Considering the complex structure and huge number of vertices of
the embedded geometry details, directly simulating the effects by
physically dynamic model is not applicable. Generating the shell at
each frame of mesh deformation can hardly take the material into
account. And simply embedding the geometry details in the shell
will lose high frequency vibrations.

To overcome the above problems, we propose a novel two-step
scheme for this application. Given a sequence of mesh deformation
which is supplied by arbitrary methods, we setup a material related
energy function which is easy to be optimized to measure the dis-
tortion of the shell, and evaluate the equilibrium state of the shell by
optimizing it under the constraints of the deformed mesh. Differ-
ent from the accurate physical measurement which leads to highly
nonlinear energy, our distortion measurement can provide plausible
material effects by solving a simple quadratic energy. After evalu-
ating the equilibrium state of the embedded geometry details by in-
terpolation, we vibrate the geometry details around it by an explicit
time integration (Figure 1). We also propose a method to directly
manipulate the geometric textures which can transfer the position
constraints to the external base mesh deformation algorithm.

The contributions of this paper include:

1. An efficient method to deform the offset mesh with the control
of Poisson’s ratio.

2. Real-time simulation of the dynamic effects for geometric tex-
tures with variant material effects.

∗Correspondence author: hj@cad.zju.edu.cn

Figure 1: Dynamic effects of geometric textures can be simulated
efficiently by our two-step scheme. In the left, we render the base
mesh as a green solid, and the offset mesh as a translucent surface.
The right figure shows one frame of the dynamic deformation of the
geometric textures which are embedded between them.

3. Direct interaction with the geometric textures.

1.1 Related Work

Deforming the offset mesh according to the deformation of base
mesh is related to many mesh deformation methods. Gradient do-
main techniques preserve surface details by maintaining the length
and orientation of the differential coordinates or mean curvature
normal [Yu et al. 2004; Sorkine et al. 2004]. Various techniques
have been proposed for manipulating the orientation, including
distance based propagation [Yu et al. 2004; Zhou et al. 2005],
harmonic guidance based interpolation [Zayer et al. 2005], and
rotation-invariant representation [Lipman et al. 2005]. In [Huang
et al. 2006], the orientation is automatically optimized, which elimi-
nates some manual interactions. [Sumner and Popović 2004] solves
the deformed shapes based on triangle-to-triangle transformation.
They copy the target deformation gradient from the source, and then
obtain the deformation results by solving linear systems. But in our
application, these methods can hardly prevent serious self intersec-
tion between the base mesh and offset mesh. [Botsch et al. 2006]
augments the surface meshes with rigid prisms and minimizes the
elastic energy between neighboring prisms. The method needs to
track the local rotation by time consuming polar decomposition,and
cannot take the important material property, Poisson’s ratio, into ac-
count.

Many physically-based techniques have been proposed over the
past few years to simulate the dynamics of deformable objects.
Most algorithms focus on deformable solid objects [Debunne et al.
2001; Müller and Gross 2004; Irving et al. 2006]. Thin shell ob-
jects, such as cloth, plate and paper are also addressed by [Baraff
and Witkin 1998; Bridson et al. 2003; Grinspun et al. 2003]. How-
ever, to the best of our knowledge, few algorithms address the
deformation and dynamics of geometric textures embedded in a
“thick” shell space. Geometric textures are often modeled as poly-
gon soups, and contain complex structure and huge number of ver-
tices [Zhou et al. 2006]. It is thus prohibitive to directly simulate
the effects using physically dynamic model. Although [Galoppo
et al. 2006] proposed a method to represent deformable object as a

1

soft shell over a rigid core, our method can handle deformable base
mesh.

Recent geometrically based approaches are capable of generat-
ing physically plausible simulation results with interactive perfor-
mance. Müller et al. [2005] introduced an excellent deformable
model for point-base objects. At each time step of the dynam-
ics simulation, each point is pulled toward its goal position which
comes from shape matching. This approach provides uncondition-
ally stable dynamic simulations with simple computation, and has
been extended to general constraints [Müller et al. 2007]. A linear-
time fast summation algorithm is proposed in the FLSM algorithm
[Rivers and James 2007] to accelerate the simulation and compu-
tation discussed in [Müller et al. 2005] on a regular volumetric lat-
tices. In this paper, we adopt the explicit time integration proposed
in [Müller et al. 2005]. However, because of the highly complex
topology structure of geometric textures and huge number of ver-
tices, using shape matching to evaluate the goal positions is un-
affordable for real-time applications, and it is hard for the shape
matching approaches to simulate different material properties such
as Poisson’s ratio and anisotropic.

1.2 Overview

Suppose that the geometric textures are represented as an arbi-
trary polygon soup with a set of vertices p = {pi}, which
are embedded in a shell space between a base mesh Mb and
an offset mesh Mo. Mb = (xb,Tri) consists of N vertices
xb = (xb

1,x
b
2, ...,x

b
N)T ,xb

i ∈ R3, and a set of triangles Tri.
Mo = (xo,Tri) also has N vertices xo and shares the same con-
nectivity as Mb. The shell mapping technique [Porumbescu et al.
2005] is used to tessellate the shell space as S = (x,Tet), where
x = (xb,xo) and Tet is the collection of the tetrahedrons. The
vertices of the geometric texture are embedded into the tetrahedra
by barycentric coordinates, and can be interpolated by the matrix-
vector multiplication Φx.

Given a base mesh animation which is deformed by any standard
mesh deformation approach, we simulate the dynamic effects of the
geometric textures with variant material effects using the following
two-steps:

1. Compute the deformed shell Ŝ according to Mb.

2. Interpolate the goal position g of the geometric textures from
Ŝ, then add dynamics to the geometric textures by vibrating
its vertices around g.

In our approach, the volume preservation property (i.e., Poisson’s
ratio ν) is considered in Step 1, and other material properties such
as the stiffness related vibration frequency ω, energy dissipation
(damping ζ) and anisotropic are considered in Step 2. The soft and
stiff effects of the geometric textures can also be reflected when
directly manipulating the geometric textures.

2 Deformation of the Offset Mesh

Physically based deformation may be the most straightforward
method to deform the shell with material effects. For each tetrahe-
dron element with element stiffness matrix Ke which contains the
Young’s modulus E and Poisson’s ratio ν, one can formulate the
following deformation energy as described in [Müller and Gross
2004]:

Ve(x̂) = ‖(RT
e x̂− x)T Ke(R

T
e x̂− x)‖2

where Re is the local rotation. Although such a formulation can be
solved more efficiently than using Green’s strain tensor, it still re-

quires iteratively tracking the local rotation, updating stiffness ma-
trix and solving a linear system with variant coefficient matrix.

Because the embedded geometry details can only vibrate in a shell
space around the driven mesh, we can estimate the local rotation in
the tetrahedron from the associated triangle. But even though, polar
decomposition is still a time consuming procedure, when consider-
ing the tetrahedron elements in the shell are often inverted, more
stable and complex polar decomposition [Irving et al. 2006] is re-
quired.

In this section, we describe an efficient method to compute the de-
formed shell Ŝ by using deformation gradients. Deformation gra-
dient is widely used in mesh deformation techniques [Sumner and
Popović 2004]. It has a simple formulation for a tetrahedron ele-
ment:(
q̂1 − q̂4 q̂2 − q̂4 q̂3 − q̂4

)
·
(
q1 − q4 q2 − q4 q3 − q4

)−1

where q̂i and qi are the position of the tetrahedron vertices at de-
formed state and the rest state respectively. After unrolling and
packing the deformation gradients of all tetrahedrons of the shell
S into a high dimensional vector m, we can simply evaluate it as:
m′ = Gx̂, where G is a sparse matrix decided by the rest pose of
the shell.

Our basic idea is estimating the deformation gradient m′ for each
tetrahedron from M̂b, and then deforming the shell by minimizing
the following quadratic energy using least squares optimization:

V o(x̂o) = ‖
√

EV(Gx̂−m′)‖2

=

∥∥∥∥√EV

((
Gb Go

)(x̂b

x̂o

)
−m′

)∥∥∥∥2

= ‖
√

EV(Gox̂o + (Gbx̂b −m′))‖2

(1)

where E is a diagonal matrix whose entries come from the Young’s
modulus E, and V is also a diagonal matrix which contains the
volume of tetrahedrons.

To estimate the deformation gradient m′, for each triangle on the
base mesh (xb

i ,x
b
j ,x

b
k) with normal n, we create a reference tetra-

hedron by introducing the fourth node:

xb
i + xb

j + xb
k

3
+

〈
xo

i + xo
j + xo

k

3
− xb

i ,n

〉
n = xb

c + hn

where xb
c is the center of the base triangle, and h is the distance

from the center of the associated offset triangle to the base triangle.
For each triangle of the deformed base mesh, we can construct the
deformed reference tetrahedron, compute its deformation gradient
and fill the results into the entries in m′ which correspond to the
three tetrahedrons extruded from the triangle.

The above estimation of the deformation gradient does not con-
sider Poisson’s ratio of the material. When a sample of material
with Poisson ratio ν is stretched from length l to l̂ in one direction,
it tends to contract (or rarely, expand) in the other two directions
by the ratio (l̂/l)−ν [Lemaitre and Chaboche 1990]. Simply con-
structing the fourth node of the deformed reference tetrahedron as
x̂b

c + hn̂ cannot simulate the above effect. To overcome this prob-
lem, we use the following equation to evaluate the position of the
fourth node:

x̂b
c +

(
Â

A

) ν
ν−1

hn̂ (2)

where Â and A are the areas of the triangle at current state and
the rest state respectively. Please see Appendix A for the detailed
proof.

2

3.8% 9.5%

4.4% 8.7%

(a) (b) (c)

0.0%

2.0%

4.0%

6.0%

8.0%

(a)

(b)

(c)

Figure 2: The upper box model shows the effect of incompressible
material (ν = 0.5). The change in volume is shown by the values
below the figures. The lower bunny model shows the comparison
with the physically based approach [Müller and Gross 2004] (ν =
0.3). The original bunny model (a) is deformed to (b), then (c).
The diagram below the bunny figures shows the average difference
in Frobenius norm of the deformation gradient in the tetrahedrons
generated by the two methods.

As shown in the upper part of Figure 2, we can simulate incom-
pressible material ν = 0.5 without great error. The comparison
between our method and the physically based technique proposed
in [Müller and Gross 2004] with Poisson’s ratio ν = 0.3 is shown in
the lower part of Figure 2. Because we only solve a time-invariant
linear system, the performance is 10 times faster than the non-linear
physically based simulation [Müller and Gross 2004].

3 Dynamics of Embedded Geometry

Given the deformed shell Ŝ, the deformed vertices p̂ in the embed-
ded geometry can be easily evaluated by barycenter interpolation.
Although p̂ may appear some dynamic effect which comes from
the animation of base mesh, the dynamics is often highly damped
and has no high frequency vibration.

To complement the vibration for more realistic effect, we adopt the
stable explicit time integration scheme proposed in [Müller et al.
2005] to vibrate the vertices around the goal position, i.e. the equi-
librium position g which is interpolated from the deformed shell:

v(t + ∆t) = v(t) + ω
g − p̂(t)

∆t
p̂(t + ∆t) = p̂(t) + ∆tv(t + ∆t)

(3)

where the coefficient ω is in range (0, 1] used to control the stiffness
of the geometry details, which affect the frequency of vibration. To
introduce damping to the vibration, we can simply scale the velocity
v by (1− ζ) after updating the position p̂, where ζ is the damping
coefficient in range [0, 1].

Overshoot As shown in Figure 3, the above method cannot make
the geometry details follow rapidly deformed mesh well, especially
when the stiffness ω is close to 1 and damping ζ is close to 0.

(a)

(b)

Figure 3: As the plane is bulging and denting, the goal position of
textured strips raises up and drops down. Without the restriction of
vibration amplitude, the strips often overshoot the desired position
(a). We smoothly move the vertices of geometric textures towards
the goal position to prevent such artifacts (b).

To solve this problem, we first calculate the distance di between
the current position p̂i(t) and the goal position gi, then move p̂
towards g before vibrating the geometry details by Equation 3 if
the max distance max {di} is larger than a threshold r:

p̂(t)← g +
r

max {di}
(p̂(t)− g) (4)

In all of our experiments, the threshold r is set to 50% of the thick-
ness of the shell.

Uniform vs. Non-uniform Varying the material over the object
can produce interesting effects, which can be incorporated into our
algorithm by assigning different stiffness parameter ω and damping
parameter ζ for the vertices in the geometric textures. Figure 4
shows such a result to demonstrate the non-uniform material effect.
To simulate a teapot model made by the brass straps, uniform stiff
and damping parameters lead to unrealistic result as shown in (a).
To achieve nearly rigid effect on the handle in (b), we use larger ω, ζ
in these regions, and set smaller ω, ζ over the body of the teapot.

Isotropic vs. Anisotropic Different from the isotropic material,
behavior of the anisotropic material is related to local directions.
The local frame (e1, e2, e3) of the material is often evaluated by di-
agonalizing the deformation gradient which is known from step 1 of
our algorithm. In our implementation, just transforming the direc-
tions ei, i = 1, 2, 3 to êi = m′ei/‖mei‖ by the estimated defor-
mation gradient m′ at each triangle also produces plausible results,
although the transformed three directions êi may not be orthogonal
anymore. When vibrating a vertex in the geometric textures, we
decompose the velocity and the offset between its current position
and goal position to these directions, and apply different material
parameters to each component. In Figure 4, the vibrations of the
strips are highly damped in different directions.

3

(a) (b)

(c) (d)

Figure 4: (a) is the dynamic result of uniform stiffness and damp-
ing parameters. As shown in (b), different parameters can make the
body of the teapot vibrates in larger amplitude and lower frequency
than other regions. The goal position is rendered in translucent ap-
pearance. Anisotropic effects by assigning direction related damp-
ing coefficients. (c) and (d) are both driven by the same base mesh
animation. The damping coefficient is smaller along the directions
shown in the upper row. Such an anisotropic material makes the
strips, which are orthogonal to the directions, vibrate less.

4 Directly Manipulating the Geometric Tex-
tures

In addition to driving the dynamics of geometric textures by the
base mesh, users can also directly manipulate the vertex in the ge-
ometry textures.

After a vertex p̂c in the geometric textures is selected, we create
a spring to connect it and the target position qc specified by the
user. Because the vertex vibrates around its goal position in small
amplitude, we replace the position of one end of the spring from
p̂c to gc. Then the following energy in the springs are put into
Equation 1:

V o
c (x̂o) = ko ‖p̂c − qc‖2

≈ ko ‖gc − qc‖2

= ko
∥∥∥Φo

cx̂
o + (Φb

cx̂
b − qc)

∥∥∥2

(5)

where ko is the stiffness of the spring, and Φb
c and Φo

c are the sub-
matrices associated with the base mesh and offset mesh respectively
in the whole tetrahedron interpolation matrix Φ.

As shown in Figure 5 (a), we can drag a vertex slightly like touch-
ing it, and not only the vertex itself will move and vibrate, but the
neighbor vertices are also affected, which produces realistic result.

(a)

(b)

Figure 5: (a):Drag a corner of the tower model slightly, and the
geometric texture vibrate locally. (b):By transferring constraints
on the geometric detail to the base mesh, we can control the whole
shape of the geometric detail.

Furthermore, when the deformation algorithm for the base mesh is
energy based, we can directly manipulate the geometric textures to
deform the base mesh. A naive method is modifying the energy in
Equation 5 to make x̂o as known, and adding the energy to the ex-
ternal algorithm to deform the current base mesh x̂b to the next base
mesh x̂′b. But such a method converges very slowly, even is unsta-
ble. It can be explained as follows: the deformation of base mesh
∆x̂b = x̂′b−x̂b fully compensates the offset between gc and qc by
Φb

c∆x̂b, and the shell space between the base mesh and offset mesh
is highly distorted, even inverted. After optimizing the energy dom-
inated by Equation 1, the deformation of offset mesh ∆x̂o roughly
follows the deformation of base mesh ∆x̂b, which contributes simi-
lar offset Φo

c∆x̂o to the constrained vertex, and makes gc overshoot
qc greatly.

Instead of using Equation 5, we formulate another energy to drive
external algorithm. The basic idea is to make the position of ver-
tex in the geometry details as independent of the offset mesh as
possible. To achieve this goal, we decompose the position of the
constrained vertex as:

gc = gb
c + hc

where gb
c is the projection position on the base mesh which is lin-

early dependent on xb, and hc is the offset vector.

To determine the above projection direction for the vertex in the
geometric textures, we first find the tetrahedron which contains it,
and further get the associated triangle in the base mesh and offset
mesh. If projecting the vertex along the normal of the base triangle,
the point gb

c may be far away from the base triangle and lead to
instability problem, especially in the region with high curvature,
e.g. the tip of the bunny ears. Instead, we project the constrained
vertex onto the base triangle along the line xb

cxo
c which connects

the centers of the related base triangle and offset triangle. Using
this projection direction, the point gb

c rarely falls outside of the base
triangle in all of our experiments, and achieves stable optimization.

The projection point gb
c can be represented as a linear combination

of the three vertices in the base triangle gb
c = Ψcx

b, where Ψc

is a sparse matrix whose non-zero entries correspond to the above

4

three vertices in the base mesh and related barycenter coordinates.
Finally, the position of the constrained vertex is expressed as:

gc = Ψcx
b + hc

Then we can formulate the following energy to simulate the spring
connecting the goal position gc of the constrained vertex and qc,
then add it into the deformation energy of external base mesh de-
formation algorithm [Huang et al. 2006]. The results can be found
in Figure 5 (b).

V b
c (x̂′b) = kb

∥∥g′c − qc

∥∥2

= kb
∥∥∥Ψcx̂

′b + hc − qc

∥∥∥2

= kb
∥∥∥Ψcx̂

′b + (gc −Ψcx̂
b)− qc

∥∥∥2

(6)

(a) (b)

(c) (d) (e)

Figure 6: Bunny: Different material effects of the geometric tex-
tures can be achieved by adjusting kb and ko. In the figure, the
bottom row shows zoomed part in the upper row. (a) and (b) using
the same kb, but ko is smaller in (a) so that it seems the geometric
textures in (a) are stiffer than (b). Vase: We deform the model in (c)
with the same ko, but kb in (d) is smaller than the one in (e). Such a
parameter setting makes the base mesh in (d) is affected less by the
manipulation of geometric textures, so that the base mesh is stiffer.

As shown in Figure 6, different effects can be achieved by tun-
ing the stiffness coefficients kb and ko. For example, when kb is
smaller but ko is larger, the base mesh only deforms a little, and

the offset mesh deforms greatly, which leads to an effect that the
geometric textures are very soft. On the contrary, the geometric
textures will appear stiff.

Kun et al. [Zhou et al. 2007] also proposed a method for manipulat-
ing the geometric textures, but they handle the offset mesh and the
base mesh together, and cannot achieve different material effects
for the base mesh and the geometric textures embedded in the shell
space.

5 Conclusion and Future Work

In this paper, we proposed a two-step scheme to simulate the dy-
namics effect of geometric textures. In the first step, the shell is
deformed by optimizing a simple quadratic energy which is much
more efficient than physically based method. Poisson’s ratio is han-
dled by explicitly estimating the deformation gradient. Stiffness,
damping, and anisotropy are taken into account in the second step
which vibrates the vertices by stable explicit time integration. We
also propose a method to manipulate the geometric textures directly,
and can transfer the position constraints to the base mesh by an ad-
ditional energy to the external base mesh deformation algorithm.
The results show that such a solution can stably produce plausible
results in real-time (Tabel 1).

model |Tet| |p| Ŝ p̂(t) in CPU p̂(t) in GPU
tower 6336 29995 13 50 9
teapot 14208 56316 30 93 12
bunny 29373 509479 56 870 106
vase 1200 200002 5 352 41

Table 1: The columns |Tet|, |p| list the number of tetrahedrons in
the shell space and the number of vertices in the geometric textures.
The latter three columns list the cost (ms as unit) of computing de-
formed shell Ŝ and vibrated geometric textures p̂(t) at each step,
which are measured in 3.0GHz Pentium IV machine with a NVIDIA
GeForce 7800 GTX graphics card.

The major limitation of current method is that the offset mesh de-
formation algorithm cannot be efficiently implemented in GPU, be-
cause we need to solve a quite large sparse linear system. Even
though our linear method is much faster than physically based
method, when the base mesh contains too many triangles, the per-
formance of the whole algorithm will drop down, which can be
observed in Tabel 1. In the future, we will try to overcome this
problem from two aspects: one is to solve the equation in GPU
parallelly by some iterative methods, e.g. the Conjugate Gradient
method, to replace the current factorization based method. Another
is to explore how to use highly simplified base mesh to driven the
geometric textures.

6 A Explicit Poisson’s Ratio

Given an isotropic material with Young’s modulus E and Poisson’s
ratio ν, the strain and the stress have the following relationship:

εx = (σx − ν (σy + σz)) /E

εy = (σy − ν (σx + σz)) /E

εz = (σz − ν (σx + σy)) /E

(A-1)

The strain and the stress in the tetrahedrons have some special prop-
erties, which leads to our explicit method to handle Poisson’s ratio.
Without the loss of generality, we assume that direction z is the
normal direction of the base mesh. Because the reference tetrahe-
drons used for estimating the deformation gradient are independent

5

of each other, the fourth node can move freely, and the stress in this
direction σz is negligible compared with the other two. Based on
this assumption, we have:

εz =
ν

ν − 1
εt (A-2)

where εt = εx + εy .

But Equation A-2 is true only in the case of small deformations. To
derive the more precise formula for large deformation, we take step
size δt to apply the strain εt by n = ln(1+εt)

ln(1+δt)
steps; meanwhile, the

strain in the z direction changes by step size δz = ν
ν−1

δt which
comes from Equation A-2, and after n steps the final strain is εz =
(1 + δz)

n − 1.

Since:

ln(1 + εz) = lim
δt→0

n ln

(
1 +

ν

ν − 1
δt

)

= lim
δt→0

ln
(
1 + ν

ν−1
δt

)
ln(1 + δt)

ln(1 + εt)

=
ν

ν − 1
ln(1 + εt)

(A-3)

Finally we have 1 + εz = (1 + εt)
ν/(ν−1). εx and εy can be

obtained by diagonalizing the deformation gradient over the base
mesh. However, in many cases, we found the stretch in the tangent
plane of the base mesh is often along one direction, and the strain
along the other direction in the tangent plane is relatively small.
Thus approximating εt by Â/A − 1 can improve the performance
and without leading to big error.

Acknowledgments

We would like to thank the reviewers for their valuable com-
ments. This work is supported in part by National Natural Sci-
ence Foundation of China (No. 60703039,), the National High
Technology Research and Development Program of China (No.
2007AA01Z336), RGC research grant (No. 416007), 973 pro-
gram of China (No. 2009CB320804) and Kun Zhou is supported
by NSFC (No. 60825201).

References

BARAFF, D., AND WITKIN, A. 1998. Large steps in cloth simula-
tion. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, ACM Press, 43–54.

BOTSCH, M., PAULY, M., GROSS, M., AND KOBBELT, L. 2006.
Primo: coupled prisms for intuitive surface modeling. In Euro-
graphics Symposium on Geometry Processing, 11–20.

BRIDSON, R., MARINO, S., AND FEDKIW, R. 2003. Simula-
tion of clothing with folds and wrinkles. In Proceedings of the
2003 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, Eurographics Association, 28–36.

DEBUNNE, G., DESBRUN, M., CANI, M.-P., AND BARR, A. H.
2001. Dynamic real-time deformations using space & time adap-
tive sampling. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, ACM Press, 31–
36.

GALOPPO, N., OTADUY, M. A., MECKLENBURG, P., GROSS,
M., AND LIN, M. C. 2006. Fast simulation of deformable
models in contact using dynamic deformation textures. In SCA

’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics
symposium on Computer animation, Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, 73–82.

GRINSPUN, E., HIRANI, A. N., DESBRUN, M., AND SCHRÖDER,
P. 2003. Discrete shells. In SCA ’03: Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation, Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 62–67.

HUANG, J., SHI, X., LIU, X., ZHOU, K., WEI, L.-Y., TENG, S.-
H., BAO, H., GUO, B., AND SHUM, H.-Y. 2006. Subspace
gradient domain mesh deformation. ACM Trans. Graph. 25, 3,
1126–1134.

IRVING, G., TERAN, J., AND FEDKIW, R. 2006. Tetrahedral and
hexahedral invertible finite elements. Graph. Models 68, 2, 66–
89.

LEMAITRE, J., AND CHABOCHE, J. 1990. Mechanics of Solid
Materials. Cambridge University Press, England, Cambridge.

LIPMAN, Y., SORKINE, O., LEVIN, D., AND COHEN-OR, D.
2005. Linear rotation-invariant coordinates for meshes. ACM
Trans. Graph. 24, 3, 479–487.

MÜLLER, M., AND GROSS, M. 2004. Interactive virtual materials.
In GI ’04: Proceedings of the 2004 conference on Graphics in-
terface, Canadian Human-Computer Communications Society,
239–246.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching. ACM Trans. Graph. 24, 3, 471–478.

MÜLLER, M., HEIDELBERGER, B., HENNIX, M., AND RAT-
CLIFF, J. 2007. Position based dynamics. J. Vis. Comun. Image
Represent. 18, 2, 109–118.

PORUMBESCU, S. D., BUDGE, B., FENG, L., AND JOY, K. I.
2005. Shell maps. ACM Trans. Graph. 24, 3, 626–633.

RIVERS, A. R., AND JAMES, D. L. 2007. Fastlsm: fast lattice
shape matching for robust real-time deformation. ACM Trans.
Graph. 26, 3, 82.

SORKINE, O., LIPMAN, Y., COHEN-OR, D., ALEXA, M.,
RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Proceedings of the Eurographics symposium on Geome-
try processing, 179–188.

SUMNER, R. W., AND POPOVIĆ, J. 2004. Deformation transfer
for triangle meshes. ACM Trans. Graph. 23, 3, 399–405.

YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B., AND
SHUM, H.-Y. 2004. Mesh editing with poisson-based gradient
field manipulation. ACM Trans. Graph. 23, 3, 644–651.

ZAYER, R., RÖSSL, C., KARNI, Z., AND SEIDEL, H.-P. 2005.
Harmonic guidance for surface deformation. Computer Graph-
ics Forum, Proceedings of Eurographics 2005 24, 3, 601–609.

ZHOU, K., HUANG, J., SNYDER, J., LIU, X., BAO, H., GUO, B.,
AND SHUM, H.-Y. 2005. Large mesh deformation using the
volumetric graph laplacian. ACM Trans. Graph. 24, 3, 496–503.

ZHOU, K., HUANG, X., WANG, X., TONG, Y., DESBRUN, M.,
GUO, B., AND SHUM, H.-Y. 2006. Mesh quilting for geometric
texture synthesis. ACM Trans. Graph. 25, 3, 690–697.

ZHOU, K., HUANG, X., XU, W., GUO, B., AND SHUM, H.-Y.
2007. Direct manipulation of subdivision surfaces on gpus. ACM
Trans. Graph. 26, 3, 91.

6

