
GauWN: Gaussian-smoothed Winding Number and its Derivatives

HAORAN SUN, State Key Lab of CAD&CG, Zhejiang University, China

JINGKAI WANG, State Key Lab of CAD&CG, Zhejiang University, China and Shanghai Jiao Tong University, China

HUJUN BAO, State Key Lab of CAD&CG, Zhejiang University, China

JIN HUANG∗, State Key Lab of CAD&CG, Zhejiang University, China

For a �xed polygon, one can easily determine whether a point is inside or

outside it using the winding number. However, deforming a given polygon

based on a set of points with expected inside/outside labeling is much more

di�cult. It asks the winding number to be di�erentiable with respect to loca-

tions of the inside/outside test point and the polygon vertices. We propose a

method to address this even for a possibly intersected 2D polygon through

Gaussian kernel convolution. Our method can be applied to various prob-

lems such as resolving embedding issues (e.g., intersections), editing curves

using an in-out brush, and o�setting curves with feature preservation.

It may seem di�cult to compute the value and derivatives of this smoothed

winding number (GauWN) e�ciently, but the cost is only 4 to 6 times that of

the vanilla one. To achieve this e�ciency, we employ two key strategies: 1)

For value computation, we extend the divergence theorem to handle self-

intersected cases and transform the convolution into a line integral that can

be computed e�ciently. 2) For derivatives, we utilize local decomposition to

�nd a line integral form and leverage the radial symmetry and orthogonal

separability of the Gaussian kernel. With this di�erentiable winding number,

we can solve the aforementioned problems e�ciently by formulating them

to involve both the explicit boundary and its implicit �eld. Surprisingly,

there is no need to create a background mesh despite the involvement of an

implicit �eld, making our method easy to apply.

CCS Concepts: • Computing methodologies→ Shape modeling.

Additional Key Words and Phrases: Winding number, geometry processing,

di�erentiable

ACM Reference Format:

Haoran Sun, JingkaiWang, Hujun Bao, and Jin Huang. 2024. GauWN: Gaussian-

smoothed Winding Number and its Derivatives. In SIGGRAPH Asia 2024

Conference Papers (SA Conference Papers ’24), December 3–6, 2024, Tokyo,

Japan. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3680528.

3687569

1 INTRODUCTION

For a solid region in Euclidean space, boundary representations

(i.e., explicit representations) and volumetric representations (i.e.,

implicit representations) have di�erent features and both are widely

∗Corresponding author.

Authors’ addresses: Haoran Sun, hrsun@zju.edu.cn, State Key Lab of CAD&CG, Zhe-
jiang University, Hangzhou, Zhejiang, China; Jingkai Wang, ohg@zju.edu.cn, State
Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang, China, and Shanghai
Jiao Tong University, Shanghai, China; Hujun Bao, Jin Huang, {bao, hj}@cad.zju.edu.cn,
State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1131-2/24/12
https://doi.org/10.1145/3680528.3687569

⋆

Fig. 1. The winding number (WN) closely connects the boundary and the gen-

eralized in-out field (Le�). We propose GauWN, a di�erentiable approximation

of WN achieved through Gaussian kernel convolution (Middle). This allows

for easy computation of the gradient of GauWN at a point ⋆ with respect

to the curve vertices (Right, top) and spatial locations (Right, bo�om). With

these di�erentiability properties, GauWN enables expressing the objective

in an implicit manner while still using the explicit representation as the

degrees of freedom, without the need for a background grid.

used. The winding number is well-known for its ability to trans-

form a boundary representation into a �eld that characterizes the

inside/outside labeling, and serves as a classical inside/outside test

tool for many applications involving 2D polygons (e.g., rasteriza-

tion [Doan 2004]).

This feature has been signi�cantly enhanced by extending the

winding number de�nition from 2D to 3D, and to non-closed bound-

aries [Barill et al. 2018; Jacobson et al. 2013]. All these extensions

bring more interesting applications [Jacobson et al. 2013; Xu et al.

2023] to the winding number. For example, one can compute the

generalized winding number to approximate the inside/outside indi-

cator �eld from a problematic boundarywith holes and intersections,

then complete the boundary and extract the part “inside” this bound-

ary [Hu et al. 2020, 2018], or resolve the intersections [Zhu et al.

2019]. [Feng et al. 2023] even shows that it can work similarly to

correct broken and intersected curves on a discrete surface.

In most of the aforementioned boundary correction and com-

pletion techniques, the resulting boundary is determined in two

sequential stages: implicit �eld generation (from the boundary) and

explicit boundary extraction (from the �eld). Such a two-stage pro-

cedure makes it di�cult to control the boundary in its explicit and

implicit representations simultaneously. Additionally, it imposes

the requirement of creating a suitable background mesh to store

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

HTTPS://ORCID.ORG/0009-0002-2824-6750
HTTPS://ORCID.ORG/0009-0002-1278-4642
HTTPS://ORCID.ORG/0000-0002-2662-0334
HTTPS://ORCID.ORG/0000-0002-2549-6810
https://doi.org/10.1145/3680528.3687569
https://doi.org/10.1145/3680528.3687569
https://doi.org/10.1145/3680528.3687569

2 • Haoran Sun, Jingkai Wang, Hujun Bao, and Jin Huang

the intermediate implicit �eld, which requires the users to carefully

decide the resolution to strike a balance between e�ciency and

robustness.

It is worth mentioning that the recent work [Xu et al. 2023] is

not a two-stage procedure, as it simultaneously optimizes both the

winding number �eld and the explicit boundary (normals at the

given points). This work demonstrates the power of optimizing both

the explicit representation (e.g., aligning the normal to the pole of

the Voronoi cell) and the implicit representation (e.g., achieving bal-

anced winding numbers of 0 and 1 around the boundary). Bringing

such a power to other applications is attractive. For example, to

resolve self-intersections, we want to: (a) preserve the topology and

mesh connectivity, (b) limit shape changes, often through regulariza-

tions that penalize deformation, (c) enforce a winding number of 0 at

all exterior points and 1 at all interior points. Requirements (a) and

(b) are easy to formulate in an explicit representation, while an im-

plicit representation is much more suited for (c). Unfortunately, the

winding number �eld for a closed boundary is piecewise constant,

and its derivatives are either trivially zero or in�nity. Therefore, it

is hard to solve an optimization problem directly formulated with

the winding number.

1.1 Overview

To address this issue, we propose to apply the Gaussian kernel to

the winding number �eld. We demonstrate that after this simple

convolution, the �eld becomes di�erentiable w.r.t. both the spa-

tial locations and locations of the polygon vertices. This enables

a two-way coupling between the winding number �eld and its as-

sociated polygon. More importantly, by utilizing the extendend

divergence theorem, local decomposition, and the radial symmetry

and orthogonal separability of the Gaussian kernel, we derive an

e�cient computation form, though the formulation may initially

appear challenging to compute e�ciently. Unlike many previous

works, we do not rely on a background mesh or prescribed points

to approximate the winding number �eld, simplifying its use in

various applications that heavily rely on implicit representation. All

of these help to formulate problems involving both representations

into numerical friendly forms.

The contributions of our work can be summarized as follows:

• Convolving the piecewise constant winding number �eld

with the Gaussian kernel to obtain a smooth �eld for di�er-

entiability,

• deriving e�cient numerical methods to compute the values

and derivatives of the �eld with linear complexity (w.r.t. the

number of polygon vertices), and utilizing spatial hierarchical

structures for further acceleration,

• and demonstrating the ability to solve optimization problems

involving implicit-�eld-based objectives without the need for

background meshes.

2 RELATED WORK

A key aspect of our method is to make the winding number �eld

smooth. While there are techniques available to create smooth im-

plicit �elds from polygons, it is challenging to obtain a smooth �eld

that accurately captures the properties of the winding number �eld

and allows for e�cient derivative computation.

The signed distance �eld (SDF) is a candidate for the inside/outside

test. However, it has non-smooth points at the medial axis. Besides,

it is not well-de�ned for polygons with embedding issues (e.g., in-

tersection) shown in Section 4.2, but handling such cases is a key

advantage of the winding number. Some implicit polygon meth-

ods (e.g. [Rvachev et al. 2001]) derive a smooth �eld based on the

signed distance �eld of a contour, but they still cannot be applied

to polygons with embedding issues. Moreover, such methods do

not allow for e�cient derivative computation w.r.t. the vertices of

the polygon. The same applies to antialiased polygon rasterization

methods [Du� 1989; Manson and Schaefer 2011, 2013].

Among all such smooth �elds, the regularized double layer poten-

tial method [Beale et al. 2016] is very interesting. It is well-known

that the winding number can be computed by integrating Green’s

function along the boundary. Unlike our method that smooths the

resulting winding number �eld directly, this method smooths the

Green’s function before integration. However, it is unclear how to

compute its derivatives e�ciently.

It should be noted that the famous Poisson point reconstruction

method [Kazhdan et al. 2006] shares a strong similarity with the

winding number �eld. It computes a smooth indicator �eld (1 for

inner and 0 for outer). However, the indicator �eld is solved numer-

ically on a mesh, while the winding number in Euclidean space is

evaluated in a mesh-less fashion.

The concurrent work [Minarcík et al. 2024] demonstrates that

many geometric predicates can also be made di�erentiable through

the use of Minkowski penalties. This allows for solving optimization

problems for various tasks, such as shape arrangement. Di�erent

from [Minarcík et al. 2024] that applies constraints to each object

pair, ourmethod relies on a single �eld contributed by all the objects.

3 GAUSSIAN-SMOOTHED WINDING NUMBER

For an oriented closed curve1 Γ, its winding number (WN) �eldFΓ (x)
is piecewise constant, and the gradient is zero everywhere except at

the curve. This characteristic makes it di�cult to use the winding

number to guide gradient-based optimization. To address this issue,

we propose to smooth the winding number with a Gaussian kernel.

The Gaussian-smoothed winding number, GauWN, at q is de�ned as

, Γ
f (q) :=

∬

R2\Γ
FΓ (x)� (x − q;f2I) d(, (1)

where� (x;f2I) = 6(x.G ;f2)6(x.~;f2), and6(G ;f2) is the 1DGauss-

ian kernel with mean 0 and variance f2 evaluated at G .

The naïve way to compute Equation (1) is to construct a grid and

perform the convolution with the Gaussian kernel. However, even

though WN itself is fast enough with BVH, this method would still be

too slow and inaccurate (see Figure 3 in the supplementary material).

Fortunately, there are special techniques to e�ciently compute both

Equation (1) and its gradient if the curve is piecewise linear.

1In this paper, the term “curve” actually refers to a “multi-curve”, i.e., an immersion of
one or more disjoint circles [Chang and Erickson 2017].

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

GauWN: Gaussian-smoothed Winding Number and its Derivatives • 3

3.1 Value of, Γ

f

To calculate the convolution over a domain quickly and accurately,

we adopt the idea of previous works like [Manson and Schaefer

2011, 2013], which transform the area integrals into line integrals.

To handle closed boundaries with possible self-intersections, we

apply the following extendend divergence theorem:

Lemma 3.1. For a closed 2D piecewise smooth curve (possibly with

self-intersections) Γ and a smooth vector �eld F on the plane, we have
∬

R2\Γ
FΓ (x)∇ · F d(=

∮

Γ

⟨F, n⟩ dB, (2)

where n is the unit normal vector of Γ.

Please refer to Section A of the supplementary material for the

proof. Lemma 3.1 makes it possible to compute the convolution w.r.t.

the winding number simply by computing the line integral along

the curve, without bothering to perform geometric intersection

explicitly.

It is not hard to verify

Fq (x) = [6(x.~ − q.~;f2)Φ(x.G − q.G ;f2), 0]⊤, (3)

where Φ(G ;f2) is the 1D Gaussian cumulative distribution with

mean 0 and variance f2, satis�es

∇ · Fq (x) = 6(x.G − q.G ;f2)6(x.~ − q.~;f2) = � (x − q;f2I) . (4)

For a piecewise linear curve,
∮

Γ

〈

Fq, n
〉

dB has a closed form in

terms of the bivariate normal cumulative distribution function that

can be computed e�ciently:

∮

Γ

〈

Fq, n
〉

dB =
∑

W=v8v9

Δ~ O′′f
(

0, 1, v8 .~ − v9 .~, v9 .~,
v8 .G − v9 .G, v9 .G, q.~, q.G

)

.
(5)

The O′′f is de�ned as follows, and details are provided in Section B

of the supplementary material:

O(., 0, 1) ≔ BvN

(

0
√
1 + 12

, . ;
−1
√
1 + 12

)

,

Of (., 0, 1, `1, `2) ≔ O

(

. − `1
f

,
0 + 1`1 − `2

f
,1

)

,

O′f (ℎ, :, 0, 1, `1, `2) ≔ Of (:, 0, 1, `1, `2) − Of (ℎ, 0, 1, `1, `2),

O′′f (ℎ, :, 0, 1, 4, 5 , `1, `2):=
1

0
O′f

(

0ℎ+1, 0:+1, 5 −14
0
,
4

0
, `1, `2

)

,

(6)

where BvN is the bivariate normal cumulative distribution function

that can be computed e�ciently with [Tsay and Ke 2023].

3.2 Gradient of, Γ

f

When f and the topology of Γ are �xed,, Γ
f (q) is a function of the

vertices v8 of Γ and q, and is therefore denoted as, Γ
f (q; v1, · · · , v=).

This implies that there are two types of gradients of, Γ
f : the gradient

w.r.t. the vertices v8 and the gradient w.r.t. the spatial locations q.

It is easy to see that the winding number is invariant under trans-

lation, i.e., for any ∆ ∈ R2,, Γ
f (q + ∆; v1, · · · , v=) = , Γ

f (q; v1 −
∆, · · · , v= − ∆). Taking the derivative w.r.t. ∆ on both sides, we get

m, Γ
f

mq
= −

=
∑

8=1

m, Γ
f

mv8
=: ∇, Γ

f . (7)

Therefore, we can focus on the gradient m, Γ
f

/

mv8 .

For any single vertex v8 , we have

m, Γ
f

mv8
=

m

mv8

∬

R2\Γ
FΓ (x)� (x − q;f2I) d(

=

∬

R2\Γ
� (x − q;f2I) m

mv8
FΓ (x) d(.

(8)

The challenge lies in computing the integration in Equation 8 due

to the presence of the gradients of the winding number, which

has singular behavior. However, we can use a local decomposition

technique to handle this integration.

FW (x)

v9
v8

�
〈

n, x − v9
〉

Y (x)

+2
+1
0

−1

Fig. 2. In a neighborhood* (W) of the edge W = v8v9 , the winding number

can be decomposed into a step function � jumping at W and contributions

Y from other vertices. Black lines are the edges involved in the functions,

while the gray lines are the other edges of Γ but not involved.

For any edge W = v8v9 of Γ, we notice that there exist some

neighborhoods* (W), where we can locally decompose the winding

number as

FW (x) = �
〈

n, x − v9
〉

+ Y (x), (9)

where � is the Heaviside step function whose derivative is the

Dirac delta function X , and Y (x) is some other term that is not

related to v8 (see Figure 2 for an illustration). Therefore, within this

neighborhood, we have

m

mv8
FW (x) = m

mv8
�
〈

n, x − v9
〉

= X
〈

n, x − v9
〉 m

mv8

〈

n, x − v9
〉

.

(10)

The Dirac delta and the auxiliary* can be eliminated using its

composition property [Hörmander 2003, Theorem 6.1.5], i.e.,

∫

*
5 (x)X (ℎ(x)) d(=

∫

R=
5 (x)X (ℎ(x)) d(=

∫

ℎ−1 (0)

5 (x)
|∇ℎ | dB, (11)

where ℎ−1 (0) ⊂ * .

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

4 • Haoran Sun, Jingkai Wang, Hujun Bao, and Jin Huang

Again, the calculation of the gradient becomes a line integral

along the edges:

m

mv8
, Γ

f =

∑

W=v8v9

∫

W
� (x − q;f2I)

m/mv8
〈

n, x − v9
〉

�

�m/mx
〈

n, x − v9
〉�

�

dB

=

∑

W=v8v9

−6(3 ;f2)/;
[

f26(−`;f2) − f26(; − `;f2)
+`Φ(; − `;f2) − `Φ(−`;f2)

]

n.

(12)

The details can be found in Section C of the supplementary material.

3.3 Acceleration with bounding volume hierarchy

When computing, Γ
f (q) or its gradient, it is unnecessary to keep

all the �ne details of the entire curve Γ, as the parts far away from

q have little contribution to the result. Similar to previous work on

the winding number [Barill et al. 2018], we can utilize a bounding

volume hierarchy (BVH) to accelerate the computation by clustering

distant complex elements into simpler ones. Although the winding

number can be generalized to incomplete curves and point clouds

(e.g. [Jacobson et al. 2013]), we only consider the closed situation,

as indicated by the usage of Lemma 3.1. It is important to note that

the approximated integral must also be a closed curve integral to

avoid signi�cant bias, even when the clustering occurs far away

(see Figure 3).

(a) (b) (c) (d)

Fig. 3. GauWN (b) is the result of smoothing the winding number field (a) by

the Gaussian kernel. When the curve is not closed, there will be significant

bias. This behavior is invariant to f (c): f = 10−6,(d): f = 0.05.

We employ a special clustering method to

meet this requirement. We use a standard

AABB tree for the hierarchy and store the

two ends of each connected component in the

nodes. Then, a segment connecting the two

ends is used to approximate each connected

component (see the inset). By leveraging the

properties of the AABB tree, we ensure that each end is a vertex

of the original curve Γ and is also an end in the nearby AABB

node. Consequently, the approximation curve remains closed (see

Figure 4).

The gradient case is simpler. Due to the fast-decay property of

the Gaussian kernel, when computing the gradient w.r.t. the spatial

locations, we can simply discard the contributions from nodes that

are su�ciently far away. Similarly, when computing the gradient of

GauWN at a point q w.r.t. locations of the vertices, we only need to

consider the vertices in the nearby nodes. The details are provided

as pseudocode in the supplementary material.

0 4 8

⋆

Fig. 4. When using the AABB tree to evaluate the GauWN of the red thin

curve at ⋆ , it is equivalent to evaluating the GauWN of the black thick

curve, which is a closed curve approximated using the AABB tree. The colors

indicate the depth of each AABB node.

4 RESULTS AND APPLICATIONS

In this section, we will demonstrate the performance of GauWN,

showcase some applications of GauWN, and discuss its behaviors. All

experiments were conducted on a desktop computer with an AMD

Ryzen™ 9 5900X processor running at 4.4GHz. The input curves

were normalized to have bounding boxes with unit length along

their major axis. The core code of GauWN is available at

https://github.com/ZJUCADGeoSim/GauWN2D.

4.1 Performance

To measure the performance, we built a 100 × 100 grid on the afore-

mentioned bounding box and evaluated the values and gradients

on the 10000 grid nodes using 20 threads for parallelization. For

better visualization in the plots, we �t piecewise linear curves to

the scatter points. The curves have 4 uniformly distributed nodes,

and the sum of squared time di�erences to the points is minimized.

Complexity. The time complexity of WN is $ (∥!∥) without BVH
and $ (log ∥!∥) with BVH, where ∥!∥ is the number of segments.

GauWN has a similar complexity but with some di�erences because

BvN has no closed form and requires numerical computation. To

experimentally demonstrate the complexity of GauWN, we started

with a curve with 180 vertices and resample it to have up to 18000

vertices. Figure 5 shows that without BVH, although slower than

WN, the time cost of GauWN and its derivatives generally increases

linearly with the number of vertices.

Speed comparison on the dataset. In this experiment, we used the

boundary polygons of 426 parameterized 2D shapes from [Li et al.

2018] as input.

From Figures 6 and 7, we can observe that the in�uence of f is

not obvious when BVH is applied. Indeed, f has little impact on the

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

GauWN: Gaussian-smoothed Winding Number and its Derivatives • 5

Fig. 5. Time cost of 10000 evaluations of WN, GauWN, and the spatial gradient

of GauWN on the same curve up-sampled to di�erent resolutions. Le�-top:

zoom-in for time w/ BVH.

performance if no BVH is used as well. Therefore, we only show

the performance of GauWN with f = 0.01 for other comparisons.

In this dataset, without BVH, evaluating the value of GauWN is

about 3 ∼ 4 times slower than WN, but it is less than 2 times slower

after applying BVH. Since the gradientw.r.t. the spatial locations and

the gradientw.r.t. locations of the vertices share the same underlying

form, we only exhibit the performance of the spatial gradient (i.e.,

∇, Γ
f). As explained earlier, spatial gradient evaluation can ignore

the contribution from distant vertices, so it is faster than value

evaluation if BVH is applied.

Fig. 6. Time cost of 10000 evaluations of GauWN and WN on each model in

the dataset. Le� : GauWN is slower than WN but is less than two times slower

when BVH is applied. Right : The performance of GauWN depends on the

parameter f , but the di�erences are small.

4.2 Embedding issue resolving

Preserving the topology of the input curve and resolving its embed-

ding issues (e.g., intersections) is an important application of GauWN.

The approach involves sampling points in the domain as test points

Fig. 7. Time cost of 10000 evaluations of the spatial gradient of GauWN. Le� :

The gradient evaluation benefits more from BVH acceleration than the value

evaluation. Right : f has li�le influence as well.

and using the di�erences in WN to identify inconsistencies between

the current embedding and the desired objective.

v8It is easy to see that if a curve Γ has no em-

bedding issues, WN in a small neighborhood

of the curve must be consistent with the in-

trinsic topology. In other words, the winding

numberFΓ should be 0 on its right side and

1 on its left side respectively. As illustrated in

the inset, we sample some test points (= {x}
on the locus of points with a small distance Y to the dual region ∠8

of each vertex v (i.e., the near halves of adjacent edges of v8), i.e.,

(⊂
{

y ∈ R2
�

�

� min
p∈∠8
∥y − p∥ = Y

}

\
{

y ∈ R2
�

�

� min
p∈m∠8

∥y − p∥ = Y
}

.

(13)

If a test point x is sampled on the right side, we assign F̂Γ (x) =
0 as the expected winding number, and vice versa. To detect the

inconsistencies, it is su�cient to compare F̂Γ withFΓ for the points

x ∈ (. However, with GauWN, we can penalize the inconsistencies

using the following di�erentiable objective function:

�� (Γ, f) :=
∑

x∈(

(

, Γ
f (x) − F̂Γ (x)

)2
. (14)

Its gradient w.r.t. a single vertex v8 of Γ is:

m�� (Γ, f)
mv8

= 2
∑

x∈(

(

, Γ
f (x) − F̂Γ (x)

) m, Γ
f (x)
mv8

. (15)

Because the test point x depends on the shape of Γ, it may move

if v8 moves. To consider the partial derivatives of x w.r.t. v8 , we

denote x as x(v8) and, Γ
f (x) as, (v8 , x(v8)) in the following for

convenience. Then, we have:

m, Γ
f (x)
mv8

=

d

dv8
, (v8 , x(v8))

=

m

mv8
, (v, x(v8)) +

(

mx

mv8

)⊤
m

mx
, (v8 , x(v8)).

(16)

Along with the regularization term �' (Γ) =
∑

v8 ∈Γ ∥v8 − v
(0)
8 ∥

2,

we solve the following variational problem to resolve the embedding

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

6 • Haoran Sun, Jingkai Wang, Hujun Bao, and Jin Huang

issues of Γ:

min
Γ

�� (Γ, f) + _�' (Γ). (17)

Other types of regularization can also be used. Since limf→0,
Γ
f (x) =

FΓ (x), it is natural to end the optimization with a small f , similar to

the approach in [Poranne et al. 2017]. Among many possible ways

to reduce f , we adopt a simple strategy: starting with a relatively

large f (0.01) and gradually decreasing it by 5% in each iteration

(see Algorithm 1). We use a gradient-based method CCSAQ [Svan-

berg 2002] from NLopt [Johnson 2007] to solve Equation (17) in

each iteration.

ALGORITHM 1: Embedding issue resolving algorithm

Input :Γ (0) ; // the initial polygon

Input :f0 ; // the initial standard deviation

Input ::max ; // the maximum iterations

: ← 1, f ← f0;

while : ≤ :max do

Γ
(:) ← argmin

Γ
�� (Γ, f) + _�' (Γ) ;

f ← f × 0.95;

: ← : + 1;
end

As mentioned in Section 1, both explicit and implicit represen-

tations have their own advantages. In Equation (17), it is clear to

see that �� is related to the implicit �eld and �' is related to the

explicit curve. The advantages of both representations can be easily

combined in one optimization problem via GauWN.

Unlike existing methods for resolving self-intersections, using

GauWN to resolve embedding issues does not require an initial interior

tessellation [Chen et al. 2023] and does not alter the input topol-

ogy [Li and Barbič 2018]. For example, when triangulating a CAD

patch, initial intersections of the boundary curves may occur due

to insu�cient sampling density or defects in the CAD model itself,

making it challenging to use constrained Delaunay triangulation.

Figure 8 shows an example of using GauWN to resolve di�erent types

of embedding issues, including cases where it fails. It is important to

note that GauWN is primarily suitable for addressing local embedding

issues, as its gradient can only re�ect the local information of the

embedding.

4.3 Curve modeling

GauWN can be used to (interactively) model

curves. This application shares a similar idea

with resolving embedding issues: driving the

curve by the inconsistencies between the

GauWN values and the user-speci�ed wind-

ing numbers at the test points. The di�er-

ence is that the test points are not sampled

on the two sides of the curve, but provided

by the user via an in-out brush consisting

of points x with expected F̂ (x). The opti-

mization problem is still Equation (17), but

mx
/

mv8 is zero in this case, and only the gra-

dient w.r.t. locations of the vertices is used.

Fig. 8. There may be various types of embedding issues, e.g., the first “2” has

local flipping and intersections, the “0” has intersections between di�erent

curves, the second “2” has global flipping but no intersections, and the “4”

has self-intersections but no flipping. GauWN is suitable for issues that can be

resolved locally. Top: the input curves.Middle: the results with the sampling

distance Y = 0.004. Bo�om: the results with sampling distance Y = 0.02.

After each edit, the curve is re-sampled (optionally) to maintain

appropriate vertex density. Figure 10 shows an example curve mod-

eled by interactively moving the brush. More demonstrations can

be found in the supplementary video. One can try to achieve this

by simply tracing the isoline of the �eld modi�ed by the brush, but

such a method usually requires a background mesh and may change

the topology unexpectedly.

4.4 Curve o�se�ing by a flow

GauWN can also be used in a non-variational manner, for example,

to de�ne a �ow. As shown in Section 4.5, the spatial gradient of

GauWN near the curve behaves like a smoothed gradient of SDF. By

optimizing a vertex v8 to have a larger/smaller value of GauWN, it

naturally o�sets it inwards/outwards. This can be described as the

following optimization problem:

[

v
(:)
1 , · · · , v(:)=

]

= argmin
[v1,· · · ,v=]

_

=
∑

8=1

v8 − v(:−1)8

2

+
=
∑

8=1

(

, Γ
(:−1)

f

(

v8
)

−, Γ
(:−1)

f

(

v
(:−1)
8

)

− >
)2

,

(18)

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

GauWN: Gaussian-smoothed Winding Number and its Derivatives • 7

Fig. 9. O�se�ing using GauWN. The red curve is the input curve and the blue curve is the o�set curve. The sharp feature can be preserved in two o�se�ing

directions.

Fig. 10. A “Chinese dragon” curve modeled with GauWN. Please refer to the

supplementary video for the modeling procedure.

where > is the o�set of GauWN for each iteration, and _ is the regu-

larization weight. This o�setting method can keep the one-to-one

mapping between the original curve and the o�set curve, without

requiring spatial discretization like methods that rely on the dis-

tance �eld (e.g., [Chen et al. 2020]). Figure 9 illustrates the inward

and outward o�setting results of the SIGGRAPH logo with di�erent

distances. The sharp features can be preserved when the o�setting

distance is not excessively large.

For large o�setting distances, although there is no well-de�ned

ground-truth, our method can still be applied (Figure 11). However,

when the o�set curve comes close to touching itself, applying Equa-

tion (18) may result in intersections or unpredictable outcomes. To

mitigate this issue, it is recommended to incorporate the energy for

resolving embedding issues discussed in Section 4.2 and adjust >

adaptively (e.g., setting > to 0.1> for vertices with a moving distance

from the input larger than 1.5 times the average moving distance).

The next subsection provides further discussion on this scenario.

4.5 Discussion on behaviors of GauWN

The behavior of GauWN can be intuitively understood as applying

Gaussian blur to WN. By the nature of convex combination, it is easy

to see that minFΓ ≤ min, Γ
f ≤ max, Γ

f ≤ maxFΓ . As shown

in Figure 12, when f is very large, GauWN becomes over-smoothed

and approaches a zero constant function, and becomes not useful.

Fig. 11. One can perform a large o�set (le�) using the flow defined in Equa-

tion (18) with parameters > = 0.2, : = 50, f = 0.005. The o�set curve may

have self-intersections (bo�om middle) when the o�set is too large (: = 70).

With the energy for embedding issue resolving in Section 4.2 and adaptive

> , this issue can be largely resolved (bo�om right).

Thus, we only consider relatively small f , and will approximately

assume that the support of the kernel � (x − q;f2I) is just a small

disk # (q, 3f) ⊂ R2 centered at q with a radius of 3f to simplify the

following discussion.

If the disk # (q, 3f), q ∈ Γ only includes a single line segment in

Γ, considering the fact that # is subdivided into two parts with WN

ofF,F + 1 respectively, we will have, Γ
f (q) ≈ F + 0.5,∀q ∈ Γ ap-

proximately. In other words, moving q along the single segment will

not change, Γ
f . Therefore, the spatial gradient will be orthogonal

to the segment approximately.

At sharp corners (see Figure 13), the 0.5-contour will drift away

from q, and the spatial gradient may not align with the normal of

the polygon. Intuitively speaking, GauWN �llets sharp corners. In-

out testing may be wrong around the sharp corner, and this issue

can be alleviated by taking a smaller f (see the strategy shown

in Algorithm 1). Such behavior is di�erent from SDF and implicit

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

8 • Haoran Sun, Jingkai Wang, Hujun Bao, and Jin Huang

f = 10−8f = 0.01f = 0.1f = 1

Fig. 12. When f is as small as 10−8, the result of GauWN is very close to that

of WN. As we increase f , the result of GauWN becomes smoother, o�ering

a useful gradient for optimization. However, if we continue to increase

f , GauWN will further smooth out features, and the result will eventually

become an almost zero constant function.

−1

−2

3f

Fig. 13. Top: The contour and spatial gradient around a sharp corner. Bo�om:

Due to the smoothing, the gradient may have opposite directions compared

to the normal of the boundary curve with a small local feature size.

polygon [Rvachev et al. 2001], which force a contour to exactly

align with the sharp corner. However, precisely aligning the sharp

corners makes the �eld non-di�erentiable at corners. In other words,

�lleting the corners is an inevitable behavior for di�erentiability.

This behavior also implies that the polygon tracing from a contour

of a di�erentiable implicit �eld cannot have sharp corners, and our

strategy of deforming an explicit representation is more attractive

if sharp features are required (e.g., in the o�set application).

If the disk covers parts with a small local feature size, GauWN

may signi�cantly di�er from WN due to over-smoothing. As illus-

trated in the bottom of Figure 13, four zones with winding numbers

−1, 0,−1,−2 in top-down order are covered by a disk. The spatial

gradient is opposite to the outward normal for some points on the

top curve. Reducing f weakens such a phenomenon, but the �eld

will be nearly non-di�erentiable.

5 CONCLUSION

In this paper, we have shown that the winding number can be

extended to be di�erentiable with fast numerical computation. This

extension endows the ability of e�cient two-way coupling between

the explicit representation and implicit representation. As shown

in our example applications, such an ability makes some di�cult

problems much easier to formulate and solve, especially considering

that no background mesh is required.

The most obvious limitation of our work is that we only achieve

an e�cient method in 2D. The high-level idea of smoothing a WN �eld

via a Gaussian kernel can be generalized to 3D without di�culty,

but e�ciency becomes a signi�cant challenge. In our preliminary ex-

periments, using a simple numerical quadrature for the integration

of the 3D Gaussian kernel did not yield satisfactory performance

(see Figure 14).

The derivatives are near zero far away from the boundary. This

behavior arises from the nature of Gaussian kernel convolution,

which is suitable for smoothly deforming the current boundary.

However, it can cause issues if one wants the explicit representation

to respond to distant changes in the implicit �eld. For instance, in

the curve modeling application, if the user places the in-out brush

far away from the current curve, the curve will remain unchanged,

and the optimization will get stuck in the current local minimum.

The applications provided in this paper serve as illustrations

and can be further improved individually. For example, a better

sampling strategymay help to avoid missing detection of embedding

issues, and various kinds of regularization may be applied to achieve

desired behavior. Additionally, more advanced numerical methods

and carefully designed optimization schemes may enhance their

performance. Furthermore, integrating our extension of the winding

number to other geometries, such as incomplete boundaries and

curved manifolds, is also an interesting area for future work.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their com-

ments and suggestions, especially the Shepherd reviewer who of-

fered great help in improving the language of the paper. We also

thank the SIGGRAPH English Review Service volunteers. This work

was supported in part by a few friendly companies.

REFERENCES
Gavin Barill, Neil G. Dickson, Ryan Schmidt, David I. W. Levin, and Alec Jacobson. 2018.

Fast Winding Numbers for Soups and Clouds. ACM Trans. Graph. 37, 4, Article 43
(jul 2018), 12 pages. https://doi.org/10.1145/3197517.3201337

J. Thomas Beale, Wenjun Ying, and Jason R. Wilson. 2016. A Simple Method for Com-
puting Singular or Nearly Singular Integrals on Closed Surfaces. Communications
in Computational Physics 20, 3 (2016), 733–753. https://doi.org/10.4208/cicp.030815.
240216a

Hsien-Chih Chang and Je� Erickson. 2017. Untangling Planar Curves. Discrete Comput.
Geom. 58, 4 (Dec. 2017), 889–920. https://doi.org/10.1007/s00454-017-9907-6

He Chen, Elie Diaz, and Cem Yuksel. 2023. Shortest Path to Boundary for Self-
Intersecting Meshes. ACM Trans. Graph. 42, 4, Article 146 (jul 2023), 15 pages.
https://doi.org/10.1145/3592136

Zhen Chen, Daniele Panozzo, and Jérémie Dumas. 2020. Half-Space Power Diagrams
and Discrete Surface O�sets. IEEE Transactions on Visualization and Computer

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

https://doi.org/10.1145/3197517.3201337
https://doi.org/10.4208/cicp.030815.240216a
https://doi.org/10.4208/cicp.030815.240216a
https://doi.org/10.1007/s00454-017-9907-6
https://doi.org/10.1145/3592136

GauWN: Gaussian-smoothed Winding Number and its Derivatives • 9

Fig. 14. Results of computing 3D version of the boundary integration using quadrature. Top: volumetric view; Bo�om: clip view. From le� to right, there are

1, 4, 7, 19, 27 quadrature points per triangle. There are 100 × 100 × 100 queries and the mesh contains 1584 faces.

Graphics 26, 10 (2020), 2970–2981. https://doi.org/10.1109/TVCG.2019.2945961
Khanh P. V. Doan. 2004. Antialiased Rendering of Self-Intersecting Polygons using

Polygon Decomposition. In 12th Paci�c Conference on Computer Graphics and Ap-
plications, PG 2004, Seoul, South Korea, October 6-8, 2004. IEEE Computer Society,
383–391. https://doi.org/10.1109/PCCGA.2004.1348369

Tom Du�. 1989. Polygon scan conversion by exact convolution.. In International
Conference On Raster Imaging and Digital Typography. Cambridge, 154–168.

Nicole Feng, Mark Gillespie, and Keenan Crane. 2023. Winding Numbers on Discrete
Surfaces. ACMTrans. Graph. 42, 4 (2023), 36:1–36:17. https://doi.org/10.1145/3592401

Lars Hörmander. 2003. The Analysis of Linear Partial Di�erential Operators I. Springer,
Berlin, Germany. https://link.springer.com/book/10.1007/978-3-642-61497-2

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast
Tetrahedral Meshing in the Wild. ACM Trans. Graph. 39, 4, Article 117 (July 2020),
18 pages. https://doi.org/10.1145/3386569.3392385

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July
2018), 14 pages. https://doi.org/10.1145/3197517.3201353

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust Inside-Outside
Segmentation Using GeneralizedWinding Numbers. ACMTrans. Graph. 32, 4, Article
33 (jul 2013), 12 pages. https://doi.org/10.1145/2461912.2461916

Steven G. Johnson. 2007. The NLopt nonlinear-optimization package. https://github.
com/stevengj/nlopt.

Michael M. Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson surface
reconstruction. In Proceedings of the Fourth Eurographics Symposium on Geometry
Processing, Cagliari, Sardinia, Italy, June 26-28, 2006 (ACM International Conference
Proceeding Series, Vol. 256), Alla She�er and Konrad Polthier (Eds.). Eurographics
Association, 61–70. https://doi.org/10.2312/SGP/SGP06/061-070

Minchen Li, Danny M. Kaufman, Vladimir G. Kim, Justin Solomon, and Alla She�er.
2018. OptCuts: joint optimization of surface cuts and parameterization. ACM Trans.
Graph. 37, 6 (2018), 247. https://doi.org/10.1145/3272127.3275042

Yijing Li and Jernej Barbič. 2018. Immersion of Self-Intersecting Solids and Surfaces.
ACM Trans. Graph. 37, 4, Article 45 (jul 2018), 14 pages. https://doi.org/10.1145/
3197517.3201327

J. Manson and S. Schaefer. 2011. Wavelet Rasterization. Computer Graphics Forum 30, 2
(2011), 395–404. https://doi.org/10.1111/j.1467-8659.2011.01887.x

Josiah Manson and Scott Schaefer. 2013. Analytic Rasterization of Curves with Polyno-
mial Filters. Computer Graphics Forum 32, 2pt4 (2013), 499–507. https://doi.org/10.
1111/cgf.12070 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12070

Jirí Minarcík, Sam Estep, Wode Ni, and Keenan Crane. 2024. Minkowski Penalties:
Robust Di�erentiable Constraint Enforcement for Vector Graphics. In ACM SIG-
GRAPH 2024 Conference Papers, SIGGRAPH 2024, Denver, CO, USA, 27 July 2024-
1 August 2024, Andres Burbano, Denis Zorin, and Wojciech Jarosz (Eds.). ACM, 2.
https://doi.org/10.1145/3641519.3657495

Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung.
2017. Autocuts: Simultaneous Distortion and Cut Optimization for UV Mapping.
ACM Trans. Graph. 36, 6, Article 215 (nov 2017), 11 pages. https://doi.org/10.1145/
3130800.3130845

V.L. Rvachev, T.I. Sheiko, V. Shapiro, and I. Tsukanov. 2001. Trans�nite interpolation
over implicitly de�ned sets. Computer Aided Geometric Design 18, 3 (2001), 195–220.

https://doi.org/10.1016/S0167-8396(01)00015-2
Krister Svanberg. 2002. A class of globally convergent optimization methods based on

conservative convex separable approximations. SIAM Journal on Optimization 12
(2002), 555–573. https://doi.org/10.1137/s1052623499362822

Wen-Jen Tsay and Peng-Hsuan Ke. 2023. A simple approximation for the bivariate
normal integral. Communications in Statistics - Simulation and Computation 52, 4
(2023), 1462–1475. https://doi.org/10.1080/03610918.2021.1884718

Rui Xu, Zhiyang Dou, Ningna Wang, Shiqing Xin, Shuang-Min Chen, Mingyan Jiang,
Xiaohu Guo, Wenping Wang, and Changhe Tu. 2023. Globally Consistent Normal
Orientation for Point Clouds by Regularizing the Winding-Number Field. ACM
Trans. Graph. 42, 4 (2023), 111:1–111:15. https://doi.org/10.1145/3592129

Jiang Zhu, Yurio Hosaka, and Hayato Yoshioka. 2019. A Robust Algorithm to Remove
the Self-intersection of 3D Mesh Data without Changing the Original Shape. Journal
of Physics: Conference Series 1314, 1 (oct 2019), 012149. https://doi.org/10.1088/1742-
6596/1314/1/012149

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

https://doi.org/10.1109/TVCG.2019.2945961
https://doi.org/10.1109/PCCGA.2004.1348369
https://doi.org/10.1145/3592401
https://link.springer.com/book/10.1007/978-3-642-61497-2
https://doi.org/10.1145/3386569.3392385
https://doi.org/10.1145/3197517.3201353
https://doi.org/10.1145/2461912.2461916
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
https://doi.org/10.2312/SGP/SGP06/061-070
https://doi.org/10.1145/3272127.3275042
https://doi.org/10.1145/3197517.3201327
https://doi.org/10.1145/3197517.3201327
https://doi.org/10.1111/j.1467-8659.2011.01887.x
https://doi.org/10.1111/cgf.12070
https://doi.org/10.1111/cgf.12070
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12070
https://doi.org/10.1145/3641519.3657495
https://doi.org/10.1145/3130800.3130845
https://doi.org/10.1145/3130800.3130845
https://doi.org/10.1016/S0167-8396(01)00015-2
https://doi.org/10.1137/s1052623499362822
https://doi.org/10.1080/03610918.2021.1884718
https://doi.org/10.1145/3592129
https://doi.org/10.1088/1742-6596/1314/1/012149
https://doi.org/10.1088/1742-6596/1314/1/012149

Supplementary Material
GauWN: Gaussian-smoothed Winding Number and its Derivatives

HAORAN SUN, State Key Lab of CAD&CG, Zhejiang University, China

JINGKAI WANG, State Key Lab of CAD&CG, Zhejiang University, China and Shanghai Jiao Tong University, China

HUJUN BAO, State Key Lab of CAD&CG, Zhejiang University, China

JIN HUANG∗, State Key Lab of CAD&CG, Zhejiang University, China

A PROOF OF THE EXTENDEND FORM OF THE
DIVERGENCE THEOREM

In this section, we provide the proof of the extendend form of the

divergence theorem that can be applied to boundaries with possible

intersections.

F 9

Ω 9Ω8

F8 = F 9 + 1
mΩ

9
8

mΩ8
9

Fig. 1. When crossing a curve from right to le�, the winding number must

increase by exactly 1. For a pair of locally neighboring regions Ω8 and Ω 9 ,

the sum of the integrals
∫
⟨F, n⟩ over their respective oriented boundaries

mΩ
9

8
and mΩ8

9
, weighted by their corresponding winding numbers F8 and

F9 , is equal to the integration over the curve weighted by a factor of 1.

Lemma 3.1. For a closed 2D piecewise smooth curve (possibly with

self-intersections) Γ and a smooth vector �eld F on the plane, we have
∬

R2\Γ
FΓ (x)∇ · F d(=

∮

Γ

⟨F, n⟩ dB, (1)

where n is the unit normal vector of Γ.

Proof. The curve Γ, which may have self-intersections, divides

the plane into regions Ω1,Ω2, · · · ,Ω= . For each region Ω8 , there is

a constant winding numberF8 . Therefore,

∬

R2\Γ
FΓ (x)∇ · F d(=

=∑

8=1

F8

∬

Ω8

∇ · F d(

=

=∑

8=1

F8

∮

mΩ8

⟨F, n⟩ dB .
(2)

First, we discuss the case where the curve has no overlapping seg-

ments, i.e., there is only one curve segment between (geometrically)

adjacent regions. In other words, all intersection points are isolated.

For such a curve, we can further divide each oriented boundary mΩ8

by the adjacent regions:

∗Corresponding author.

Authors’ addresses: Haoran Sun, hrsun@zju.edu.cn, State Key Lab of CAD&CG, Zhe-
jiang University, Hangzhou, Zhejiang, China; Jingkai Wang, ohg@zju.edu.cn, State
Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang, China, and Shanghai
Jiao Tong University, Shanghai, China; Hujun Bao, Jin Huang, {bao, hj}@cad.zju.edu.cn,
State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang, China.

mΩ8 =

⋃

Ω8∩Ω 9≠∅
mΩ

9
8 . (3)

Note that mΩ
9
8 and mΩ8

9 are the same curve between Ω8 and Ω 9

but with opposite orientations, i.e., opposite normal vectors n. Thus,∫
mΩ

9

8

⟨F, n⟩ dB = −
∫
mΩ8

9

⟨F, n⟩ dB .

Furthermore, by the property of the winding number, if mΩ
9
8

has the same orientation as Γ, then F8 = F 9 + 1 and vice versa

(see Figure 1). Without loss of generality, we assume mΩ
9
8 has the

same orientation as Γ. Then,

=∑

8=1

F8

∮

mΩ8

⟨F, n⟩ dB

=

=∑

8=1

F8

∑

Ω8∩Ω 9≠∅

∫

mΩ
9

8

⟨F, n⟩ dB

=

∑

Ω8∩Ω 9≠∅

(

F8

∫

mΩ
9

8

⟨F, n⟩ dB −F 9

∫

mΩ
9

8

⟨F, n⟩ dB
)

=

∑

Ω8∩Ω 9≠∅

∫

mΩ
9

8

⟨F, n⟩ dB =
∮

Γ

⟨F, n⟩ dB .

(4)

W̄8

W̄8+1W̄8−1

W̄ 9W̄ 9+1 W̄ 9−1

Denoting !(Γ) =
∬
R2\Γ F

Γ (x)∇ · F d(and

'(Γ) =

∮
Γ
⟨F, n⟩ dB , we have proved that

!(Γ) = '(Γ) if Γ is a closed curve and does

not have overlapped segments. Now we con-

sider the curve Γ with non-isolated intersection

points, i.e., there are multiple curve segments

in Γ between two (geometrically) adjacent regions Ω8 and Ω 9 . As

FΓ1+Γ2 = FΓ1 +FΓ2 , we also have !(Γ1 + Γ2) = !(Γ1) + !(Γ2). Sim-

ilarly, we have '(W1 + W2) = '(W1) + '(W2) due to the line integral

form. Now, there always exists a segmentation Γ =
∑:
8=1 W8 , such

that each W8 does not overlap with itself. It is not hard to construct

another closed curve Γ̄ =
∑:
8=1 W̄8 , satisfying: (a) W̄8 does not overlap

with W8 , (b) W8 − W̄8 is a closed circle, and (c) Γ̄ has no self-overlaps.

That is, both Γ̄ and W8 − W̄8 are closed curves with no non-isolated

intersection points, and Lemma 3.1 applies. Therefore, we have

HTTPS://ORCID.ORG/0009-0002-2824-6750
HTTPS://ORCID.ORG/0009-0002-1278-4642
HTTPS://ORCID.ORG/0000-0002-2662-0334
HTTPS://ORCID.ORG/0000-0002-2549-6810

2 • Haoran Sun, Jingkai Wang, Hujun Bao, and Jin Huang

!(W8 − W̄8) = '(W8 − W̄8), !(Γ̄) = '(Γ̄). And �nally,

!(Γ) = !(Γ − Γ̄ + Γ̄) = !(Γ − Γ̄) + !(Γ̄)

= !(
:∑

8=1

W8 −
:∑

8=1

W̄8) + !(Γ̄8)

= !(
:∑

8=1

(W8 − W̄8)) + '(Γ̄8)

=

:∑

8=1

!(W8 − W̄8) +
:∑

8=1

'(W̄8)

=

:∑

8=1

'(W8 − W̄8) +
:∑

8=1

'(W̄8)

=

:∑

8=1

'(W8) −
:∑

8=1

'(W̄8) +
:∑

8=1

'(W̄8)

=

:∑

8=1

'(W8) = '(Γ) .

(5)

□

It should be noticed that the above lemma also applies to piecewise

smooth curves as long as the measure of the set of non-smooth

points (e.g., corners of a polygon) is zero. One can simply skip the

points without a well-de�ned normal when computing the boundary

integral in Equation (1).

B DETAILS OF VALUE EVALUATION

In this section, we provide the details of the e�cient evaluation of

the Gaussian-smoothed winding number by utilizing the extendend

divergence theorem Lemma 3.1 and special functions related to

Gaussian integrals.

Applying Lemma 3.1, we have

, Γ
f (q) =

∬

R2\Γ
FΓ (x)� (x − q;f2I) d(

=

∮

Γ

〈
Fq (x), n

〉
dB

=

∑

W=v8v9

∫

W

〈
Fq (x), n

〉
dB

=

∑

W=v8v9

∫

W
Fq .G d~ − Fq .~ dG .

(6)

As

Fq (x) =
[
6(x.~ − q.~;f2)Φ(x.G − q.G ;f2)

0

]
, (7)

only the �rst component is non-zero, and we have:

∫

W
Fq .G d~ =

∫

W
6(x.~ − q.~;f2)Φ(x.G − q.G ;f2) d~

= Δ~

∫ 1

0
6(v9 .~ + C (v8 .~ − v9 .~) − q.~;f2)

· Φ(v9 .G + C (v8 .G − v9 .G) − q.G ;f2) dC .

(8)

Equation (8) can be computed using Equation 10,010.1 from [Owen

1980], i.e.,

∫ .

−∞
6(G)Φ(0 + 1G) dG = BvN

(
0

√
1 + 12

, . ;
−1
√
1 + 12

)
, (9)

where 6(G) and Φ(G) are respectively the probability density func-

tion and cumulative distribution function of a 1D Gaussian distribu-

tion with a mean of 0 and a variance of 1, and BvN is the bivariate

normal cumulative distribution function:

BvN(0, 1; d) :=
1

2c
√
1 − d2

∫ 0

−∞

∫ 1

−∞
exp

(
−G

2 − 2dG~ + ~2
2(1 − d2)

)
dG d~.

(10)

More concretely, we have

O(., 0, 1)

:=

∫ .

−∞
6(G)Φ(0 + 1G) dG = BvN

(
0

√
1 + 12

, . ;
−1
√
1 + 12

)

Of (., 0, 1, `1, `2)

:=

∫ .

−∞
6(G − `1;f2)Φ(0 + 1G − `2;f2) dG

= O

(
. − `1

f
,
0 + 1`1 − `2

f
,1

)

O′f (ℎ, :, 0, 1, `1, `2)

:=

∫ :

ℎ
6(G − `1;f2)Φ(0 + 1G − `2;f2) dG

= Of (:, 0, 1, `1, `2) − Of (ℎ, 0, 1, `1, `2)
O′′f (ℎ, :, 0, 1, 4, 5 , , `1, `2)

:=

∫ :

ℎ
6(0C + 1 − `1;f2)Φ(4C + 5 − `2;f2) dC

=
1

0
O′f

(
0ℎ + 1, 0: + 1, 5 − 14

0
,
4

0
, , `1, `2

)
.

(11)

and �nally

∫

W
Fq .G d~

= Δ~

∫ 1

0
6(v9 .~ + C (v8 .~ − v9 .~) − q.~;f2)

· Φ(v9 .G + C (v8 .G − v9 .G) − q.G ;f2) dC
= Δ~ O′′f

(
0, 1, v8 .~ − v9 .~, v9 .~, v8 .G − v9 .G, v9 .G, f, q.~, q.G

)
.

(12)

Equations (11) and (12) are the equations needed for implementation.

Although there is no closed form for BvN, there are many e�cient

numerical approximations available. We use the method from [Tsay

and Ke 2023], implementation provided by [Cortes 2022].

C DETAILS OF GRADIENT EVALUATION

In this section, we derive the e�cient gradient evaluation of the

Gaussian-smoothed winding number using radial symmetry and

orthogonal separability properties of the Guassian kernel.

Supplementary Material

GauWN: Gaussian-smoothed Winding Number and its Derivatives • 3

The line integration form of the gradient is

m

mv8
, Γ

f =

∑

W=v8v9

∫

W
� (x − q;f2I)

m
m/

〈
n, x − v9

〉
v8

��� mm/
〈
n, x − v9

〉
x
���
dB, (13)

where

m

mx

〈
n, x − v9

〉
= n

m

mv8

〈
n, x − v9

〉

=
m

mv8

〈
R90 (v8 − v9)
∥v8 − v9 ∥

, x − v9
〉

=

(
I2

∥v8 − v9 ∥
−
(v8 − v9) (v8 − v9)⊤

∥v8 − v9 ∥3

)
R⊤90 (x − v9),

(14)

and R90 is the 90
◦ rotation matrix

[
0 −1
1 0

]
.

Since we will only integrate over
〈
n, x − v9

〉
= 0, we can focus

on the case where x = v9 + C (v8 − v9)/;, C ∈ [0, ;], ; = ∥v8 − v9 ∥. We

can further simplify Equation (14) as follows:

m

mv8

〈
n, x − v9

〉

=
C

;

(
R⊤90 (v8 − v9)
∥v8 − v9 ∥

−
(v8 − v9)

⟨R90 (v8−v9),v8−v9 ⟩=0
︷ ︸︸ ︷
(v8 − v9)⊤R⊤90 (v8 − v9)
∥v8 − v9 ∥3

)

= − C
;
n.

(15)

q

v8

v9

q

v8 v9

;`

0 q

3

Fig. 2. The two-dimensional Gaussian kernel is the product of two one-

dimensional kernels. This means that if we rotate W to align with an axis,

the Gaussian kernel would be constant along the other axis.

It is apparent that the Gaussian kernel in 2D exhibits two proper-

ties that simplify the computation: radial symmetry and orthogonal

separability. Radial symmetry implies that if ∥x − q∥ = ∥x′ − q∥,
then � (x − q;f2I) = � (x′ − q;f2I). Orthogonal separability states

that � (x − q;f2I) = 6(x.G − q.G ;f2)6(x.~ − q.~;f2). Consequently,
the line integral can be simpli�ed (see Figure 2):

� (v8 + C (v9 − v8)/; − q;f2I) = 6(3 ;f2)6(C − `;f2), (16)

where 3 =

√
∥q − v9 ∥2 −

〈
q − v9 , (v8 − v9)/;

〉2
represents the dis-

tance from q to the edge, and ` =

〈
q − v9 , v8 − v9

〉
/; .

Using Equation 101 from [Owen 1980], i.e.,
∫

G6(0 + 1G) dG = − 1

12
6(0 + 1G) − 0

12
Φ(0 + 1G), (17)

where Φ(C) =
∫ C

−∞ 6(G) dG , and
∫

C6(C − `;f2) dC = 1

f

∫
C6

(−` + C
f

)
dC

= −f6
(−` + C

f

)
+ `Φ

(−` + C
f

)

= −f26(C − `;f2) + `Φ(C − `;f2),

(18)

we can now obtain the closed form of the integral in Equation (13)

as

m

mv8
, Γ

f

=

∑

W=v8v9

−n
;

∫ ;

0
C� (v9 + C (v8 − v9)/; − q;f2I) dC

=

∑

W=v8v9

−6(3 ;f2)/;

[
f26(−`;f2) − f26(; − `;f2) + `Φ(; − `;f2) − `Φ(−`;f2)

]
n.

(19)

D PSEUDOCODES OF THE BVH

ALGORITHM 1: GauWNBVH

Input :q ; // the query point

Input :node ; // the AABB node

Use :wnseg ; // Equation (6)

Use :far_enough

Output :wg

wg← 0;

if far_enough(node, q) then

for v1, v2 in approximated segments of node do

wg← wg + wnseg(v1,v2, q);

end

return wg;

else

if node is leaf then

for v1, v2 in children of node do

wg← wg + wnseg(v1, v2, q);

end

else

for child in children of node do

wg← wg + GauWNBVH(q, child);

end

end

return wg;

end

4 • Haoran Sun, Jingkai Wang, Hujun Bao, and Jin Huang

ALGORITHM 2: GauWNSpatialGradBVH

Input :q ; // the query point

Input :node ; // the AABB node

Use :gradvert ; // Equation (19)

Use :far_enough

Output :grad

grad← 0;

if not far_enough(node, q) then

if node is leaf then

for v in children of node do

grad← grad − gradvert(v, q);

end

else

for child in children of node do

grad← grad + GauWNSpatialGradBVH(q, child);
end

end

return grad;

end

ALGORITHM 3: GauWNVertexGradBVH

Input :q ; // the query point

Input :node ; // the AABB node

InOut :grads []

Use :gradvert ; // Equation (19)

Use :far_enough

if not far_enough(node, q) then

if node is leaf then

for v in children of node do

grads[v] ← grads[v] +gradvert(v, q);
end

else

for child in children of node do

GauWNVertexGradBVH(q, child, grads);

end

end

end

E ALTERNATIVE COMPUTATION METHODS

One might wonder how much bene�t we can get from the deriva-

tions we have made. To answer this question, we provide two alter-

native methods to compute GauWN. The �rst method is to compute

the convolution directly using WN sampled at the vertices of a 6f×6f
grid centered at each query point. The second method is to com-

pute the line integrals in Equation (6) using the midpoint rule for

quadrature. BVH is used in both methods. The results and errors

(our proposed computation as ground-truth) are shown in Figure 3.

We can �nd that the errors of numerical convolution are mainly

concentrated near the boundary, where the region of interest usu-

ally is, while the midpoint rule exhibits striped artifacts when the

number of quadrature points is small. As the number of samples or

quadrature points increases, the errors decrease faster in the line

integration method. However, it will generally still be much slower

than GauWN to get an acceptable result.

F QUADRATURE IN 3D

The extension of GauWN in 3D w.r.t. a surface P is straightforward:

, Pf (q) :=
∭

R3\P
FP (x)�3 (x − q;f2I) d(, (20)

where �3 (x;f2I) = 6(x.G ;f2)6(x.~;f2)6(x.I;f2).
Similar to the 2D setting,

Fq (x) =


6(x.~ − q.~;f2)6(x.I − q.I;f2)Φ(x.G − q.G ;f2)
0

0


(21)

satis�es

∇ · Fq (x) = �3 (x − q;f2I). (22)

And the extended form of the divergence theorem is still valid in

3D. Though we have not yet found the closed form of
∯

P

〈
Fq, n

〉
dB, (23)

it can be computed using triangle quadrature methods, though the

performance is far from satisfactory:
∯

P

〈
Fq, n

〉
dB =

∑

△∈P

∑

(x,F) ∈RULE(△)
F

〈
Fq, n

〉
. (24)

The rule used in Figure 12 of the main paper is [Dunavant 1985].

REFERENCES
David Cortes. 2022. ApproxCDF. https://github.com/david-cortes/approxcdf/blob/

master/src/other.cpp.
D. A. Dunavant. 1985. High degree e�cient symmetrical Gaussian quadrature rules

for the triangle. Internat. J. Numer. Methods Engrg. 21, 6 (1985), 1129–1148. https:
//doi.org/10.1002/nme.1620210612

D. B. Owen. 1980. A table of normal integrals. Communications in Statistics - Simulation
and Computation 9, 4 (1980), 389–419. https://doi.org/10.1080/03610918008812164

Wen-Jen Tsay and Peng-Hsuan Ke. 2023. A simple approximation for the bivariate
normal integral. Communications in Statistics - Simulation and Computation 52, 4
(2023), 1462–1475. https://doi.org/10.1080/03610918.2021.1884718

https://github.com/david-cortes/approxcdf/blob/master/src/other.cpp
https://github.com/david-cortes/approxcdf/blob/master/src/other.cpp
https://doi.org/10.1002/nme.1620210612
https://doi.org/10.1002/nme.1620210612
https://doi.org/10.1080/03610918008812164
https://doi.org/10.1080/03610918.2021.1884718

Supplementary Material

GauWN: Gaussian-smoothed Winding Number and its Derivatives • 5

f = 0.1, GauWN cost 0.050s

f = 0.01, GauWN cost 0.044s

f = 0.001, GauWN cost 0.041s

Fig. 3. Le� : numerical convolution results with 1, 25, 81 samples per query point. Right : midpoint rule results with 1, 4, 16 quadrature points per edge. “GauWN

cost” is the time cost using expressions of Section B.

