
The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/.

DOI: 10.1111/cgf.14395 COMPUTER GRAPHICS forum
Volume 0 (2021), number 0 pp. 1–11

Economic Upper Bound Estimation in Hausdorff Distance
Computation for Triangle Meshes

Yicun Zheng, Haoran Sun, Xinguo Liu, Hujun Bao and Jin Huang

State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
hj@cad.zju.edu.cn

Abstract
The Hausdorff distance is one of the most fundamental metrics for comparing 3D shapes. To compute the Hausdorff distance
efficiently from a triangular mesh A to another triangular mesh B, one needs to cull the unnecessary triangles on A quickly. These
triangles have no chance to improve the Hausdorff distance estimation, that is the parts with local upper bound smaller than
the global lower bound. The local upper bound estimation should be tight, use fast distance computation, and involve a small
number of triangles in B during the reduction phase for efficiency. In this paper, we propose to use point-triangle distance, and
only involve at most four triangles in B in the reduction phase. Comparing with the state-of-the-art proposed by Tang et al. in
2009, which uses more costly triangle-triangle distance and may involve a large number of triangles in reduction phase, our local
upper bound estimation is faster, and with only a small impact on the tightness of the bound on error estimation. Such a more
economic strategy boosts the overall performance significantly. Experiments on the Thingi10K dataset show that our method can
achieve several (even over 20) times speedup on average. On a few models with different placements and resolutions, we show
that close placement and large difference in resolution bring big challenges to Hausdorff distance computation, and explain why
our method can achieve more significant speedup on challenging cases.

Keywords: computational geometry, modeling

ACM CCS: • Computing methodologies → Shape analysis; Mesh geometry models;

1. Introduction

The Hausdorff distance is a classical, de facto standard criterion
to measure the difference between two geometric models. Its
efficiency and accuracy is very important for applications like
reliable shape matching [DJ94, ABB95, ZPYW18], accurate reg-
istration [Mem07], error controllable decimation [BF05], quality
measurement of mesh generation [ASCE02] and so on.

Compared with point clouds, triangular meshes raise significant
challenges in computing Hausdorff distance, because they include
infinite number of points. Some methods approximate the prob-
lem by computing Hausdorff distance on point clouds by sampling
points on triangular meshes. Although sampling more points im-
proves the accuracy, it is difficult for the user to decide the proper
number of sampling points for the required accuracy.

To compute the Hausdorff distance from triangle mesh A to an-
other triangle mesh B, more effective methods adopt a branch-and-
bound strategy [TLK09]. This strategy can quickly find the trian-

gles in A including the ‘Hausdorff points’, that is the points in A
with the farthest distance to the other mesh B, then accurately locate
the Hausdorff points in them. The key is to cull the triangles irrele-
vant to the Hausdorff points quickly by using a spatial data structure
and the associated bound estimation method. The BVH (bounding
volume hierarchy) is a widely applied [TLK09] spatial data struc-
ture here. Though the uniform grid shows excellent performance for
‘near-zero’ cases [KKYK18, KYKK19], its performance strongly
depends on how close the models are to each other, and whether the
user properly chooses the grid density.

To provide a generally applied method, we re-explored the BVH-
based method [TLK09]. This method estimates the local Hausdorff
upper bounds in two phases: one selects a set L of triangles from
mesh B with respect to a known triangle in mesh A, and the other
estimates the upper bound of the Hausdorff distance based on the
set L (see Section 3). Though any subset L gives an upper bound,
the one leading to a tight upper bound is desirable for higher culling
ratio. Tang et al. [TLK09] rely on the triangle-triangle distance

© 2021 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

1

1

http://diglib.eg.org/
http://onlinelibrary.wiley.com/

2 Y. Zheng et al. / Economic Upper Bound Estimation in Hausdorff Distance Computation for Triangle Meshes

computation to find an L possibly composed of many triangles,
which makes the upper bound estimation the most time-consuming
part. We propose to sample four points in � and use their closest
triangles in B as L. Though the resulting upper bound is slightly less
tight than Tang’s, our four-point strategy is much faster because it
only involves a few efficient point-triangle distance computations
and makes the size of L very small. In other words, we provide a
more economic upper bound estimation which strikes a balance
between the tightness and computational cost.

Except for the experiments about the tightness and speed of upper
bound estimation, we also evaluate the overall performance of our
method under various conditions. The experiments on a large dataset
(Thingi10K) show over four times speedup on average, even over
10 times speedup on some models. We also check how the different
placements and resolutions impact the performance of the algorithm
on a few models. Results show that our method can achieve more
significant speedup on challenging cases with near-zero Hausdorff
distance and large resolution difference. By analysing the culling
rate and the time consumption at each stage, we provide the expla-
nation about this behaviour.

2. Background and Related Work

Hausdorff distance has various applications ranging from computer
graphics [LRC*03, ABCO*03], computer vision [JKF01] to image
analysis [HKR93]. The methods to calculate Hausdorff distance can
be grouped as direct ones and culling-based ones.

2.1. Direct methods

Computes the exact Hausdorff distance without using the iterative
cull strategy on certain spatial hierarchy data structure. Such meth-
ods usually give exact Hausdorff distance, but are only applicable
to relatively simple geometry entities. Although there is a linear-
time algorithm for two 2D convex polygons [Ata83], for triangular
meshes, the complexity of methods [BHEK10] and [ABG*03] re-
lying on Voronoi diagram is over O(n3) for a mesh with n triangles,
which makes them not practical. For parametric surfaces or splines,
the continuity of the patches implies the possibility of finding exact
distance by solving equations. For example, the method in [EG08]
computes the accurate distance by finding the root of a few non-
linear equations. However, the complexity is high even for curves
(at least O(n2) for two curves composed of O(n) coefficients).

2.2. Culling-based methods

These are more suitable for many complex situations. To estimate
the lower and upper bounds of the Hausdorff distance, they recur-
sively update the bounds and cull the spatial data structure (e.g.
BVH). If the upper bound of a region is smaller than the current
lower bound, this region can be safely culled without any sacrifice
of accuracy, thus efficiently reducing the scale of the problem. Ob-
viously, the bound estimation through distance computation is the
key of the performance.

For point cloud, the key is to avoid computing the distance of
all point pairs. For two sets consisting of n and m 3D points,

the algorithm [ABG*03] proposed by Alt et al. has the com-
plexity ofO((n+ m+ (nm)

2
3) log(n+ m)) in randomized expected

time. More efficient methods usually adopt lower and upper bound
driven culling strategies. Based on aggregate nearest neighbours
(ANN), Papadias et al. [PTMH05] proposed an algorithm with bet-
ter performance. Nutanong et al. [NJS11] improved the algorithm in
[PTMH05] by using two R-Trees for nearest neighbour querying in
both directions simultaneously. Later, Taha et al. [TH15] proposed
an efficient algorithm with nearly-linear complexity by combining
the early breaking strategy and the random sampling method. Zhang
et al. [ZHH*17] used local subalgorithms to deal with the efficiency
problem in high-overlapping data. Chen et al. [CHWH17] also tried
to address this problem by using local start search (LSS).

For B-spline curves, Chen et al. [CMXP10] accelerated the pro-
cedure of root-finding with a similar scheme, which prunes the sub-
intervals via lower and upper bound estimation. Using biarc ap-
proximation, Kim et al. [KOY*10] proposed a method of the lower
bound estimation to trim the 2D freeform curves with the help of a
GPU rendered distance map. Except for utilizing the GPU, the key
ingredients of methods [KMH11] and [HKM12] are also about ef-
fective bound estimation. In [KOY*13], to address the case of close
proximity, they proposed to use a hierarchy of Coons patches to ap-
proximate the NURBS surface for more effective bound estimation.

For triangular meshes, Cignoni et al. [Str07] computed the ex-
act Hausdorff distance from all relevant triangle pairs on the two
triangular meshes. To accelerate the algorithm, they applied the
voxel grid as a spatial acceleration structure. Though performance is
not reported in the paper, without an efficient culling when finding
the relevant triangle pairs, the computational cost should be high.
The ‘Metro’ method [CRS98] samples one mesh and computes
the distance from the sample points to another mesh with the spa-
tial acceleration structure of the grid. Besides the problem of the
unclear error bound because of the sampling strategy, no bound
guided culling makes its complexity still far from satisfactory. As-
pert et al. [ASCE02] accelerated the method of [CRS98] by skip-
ping unnecessary triangles when computing the distance from the
sampled points to another mesh. Instead of sampling on the mesh,
Guthe et al. [GBK05] proposed an algorithm by using a subdivision
strategy. It yields more efficiency, especially in high accuracy situa-
tion, and can get upper and lower bounds of Hausdorff distance, but
still does not use them for further acceleration. The state-of-the-art
work [TLK09] provides error bounds estimation for triangular mesh
via iteratively increasing the lower bound and decreasing the upper
bound, and successfully beats previous techniques in performance.
In [TLK09], the authors also proposed a new upper bound estima-
tion method to achieve higher accuracy, with which they make fur-
ther culling to achieve better performance.

The performance of the method in [TLK09] is affected by the
Hausdorff distance between objects. When the two models are
highly overlapping, the Hausdorff distance is usually very close to
zero, and only a few triangles can be culled which reduces the over-
all performance of the algorithm. By utilizing a uniform grid with
an appropriate size, [KKYK18] and [KYKK19] get rid of an un-
necessary traverse on the BVH tree and improve the performance
significantly. This method is suitable for the ‘near zero’ cases, but
not universally applicable. Moreover, the grid size for good perfor-
mance is hard to determine automatically.

© 2021 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

Y. Zheng et al. / Economic Upper Bound Estimation in Hausdorff Distance Computation for Triangle Meshes 3

3. Preliminary and Overview

Before elaborating our key contribution about the upper bound es-
timation, we first introduce the basic concepts about Hausdorff
distance computation and the BVH-based framework proposed
in [TLK09].

3.1. Hausdorff distance and approximation

The Hausdorff distance [DD09] measures the maximum difference
between the two models, which is defined as the maximum distance
as follows:

h(A,B) ≡ max
a∈A

{
min
b∈B

d(a, b)

}
, (1)

where A ⊂ R3 and B ⊂ R3 are two compact 3D models, and d(·, ·)
denotes the Euclidean distance between two points. The Hausdorff
distance is not symmetric, that is, h(A,B) �= h(B,A). To remedy this
issue, a symmetric (or two-sided) Hausdorff distance is defined as
H(A,B) = max{h(A,B), h(B,A)}.
In this work, we consider only the one-sided, non-symmetric

Hausdorff distance defined in Equation (1).

Suppose that A′ ⊆ A, B′ ⊆ B be two subsets. One can show that

h(A′,B) ≤ h(A,B) ≤ h(A,B′), (2)

which is proved in [TLK09]. Computing Hausdorff distance is
a classical, fundamental problem in computational geometry and
many graphics applications. A naïve way to compute the Hausdorff
distance is to iterate all primitives on model A directly, compute
the nearest distance to model B, and take the maximum. This naïve
method is however not practical due to the high computational cost.

We take an approximate approach to compute the Hausdorff dis-
tance. Specifically, we compute a lower bound h(A,B) and an upper
bound h(A,B), instead of the exact Hausdorff distance h(A,B), as
the approximated Hausdorff distance, which satisfies:

h(A,B) ≤ h(A,B) ≤ h(A,B).

Given an error tolerance ε, the approximation error is obviously
below ε, as long as the bounds satisfy the following condition:

h(A,B) − h(A,B) ≤ ε. (3)

Therefore, Hausdorff distance can be asymptotically approxi-
mated by a series of bounds {[hk, hk]}:
h1 ≤ h2 ≤ · · · ≤ hk ≤ h(A,B) ≤ hk ≤ · · · ≤ h2 ≤ h1,

until hk − hk ≤ ε.

3.2. BVH-based framework

We adopt the BVH-based framework proposed by [TLK09]. In
order to make it easier to follow, we introduce the whole pipeline
here. Readers familiar with the calculation of Hausdorff distance in

Algorithm 1. Compute Hausdorff Distance h(A,B)

[TLK09] can jump to Section 4 for the introduction and analysis of
our method, or to Section 5 for experiment results.

First, assuming that the models involved are represented as trian-
gular meshes or triangle soups:

A = {� j}|A|
j=1, B = {� j}|B|

j=1,

where � represents triangles on model A, � represents triangles on
model B.

As shown in Algorithm 1, the main steps of [TLK09] are:

1. Initialization Build a BVH tree for A and B, and make an empty
max heap.

2. Traversing Traverse the BVH tree of model A in depth first or-
der, obtaining a set of triangles, sorted by the up-
per bound of the triangles’ Hausdorff distance to
model B. See Algorithm 2.

3. Reduction Examine the triangles in the heap to reduce the gap
of the global Hausdorff distance bounds, until the
termination condition is satisfied. See Algorithm
3.

The BVH (Bounding Volume Hierarchy) used in Algorithm 1 is
a kind of spatial acceleration data structure. The basic idea of BVH
is to use proxies to wrap original geometry objects and form a hier-
archy tree structure to exploit pruning operation in searching oper-
ations. Different types of bounding volume generate different BVH
trees. For example, the BVH tree using axis-aligned bounding box
is called AABB tree, which is also used in this paper. Readers can
refer to [Ber97, LGLM00] and [Eri04] for more details about BVH.
In this work, AABB tree is used as the hierarchy structure.

Before going to explain the details, we first show some impor-
tant properties and lemmas about the Hausdorff distance, as well as
some bound estimation results, which are necessary for understand-
ing the ideas.

3.3. Bound analysis on Hausdorff distance

Let {A1, . . . ,AJ} be a cover of model A, that is A = ⋃J
j=1 Aj. Then,

by the definition of Hausdorff distance, we have

h(A,B) = max
1≤ j≤J

h(Aj,B).

© 2021 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

4 Y. Zheng et al. / Economic Upper Bound Estimation in Hausdorff Distance Computation for Triangle Meshes

Then, a lower bound and an upper bound can be computed as:

h(A,B) = max
1≤ j≤J

h(Aj,B), h(A,B) = max
1≤ j≤J

h(Aj,B).

Lemma 3.1. Suppose [h, h] be a bound of h(A,B), and A′ ⊂ A be
a subset of model A. If h′ = h(A′,B) > h, then [h′, h] is a tighter
bound of h(A,B).

3.4. Subset culling by proxy bound

Let P(·) denote a bounding volume proxy of a model. Since A ⊆
P(A) and it gives maxx∈A d(x,B) ≤ maxx∈P(A) d(x,B), we have

h(A,B) ≤ h(P(A),B).

Lemma 3.2. Suppose [h, h] a bound of h(A,B), and A′ ⊂ A a subset
of model A. If h(P(A′),B) < h, then

h(A,B) = h(A \ A′,B).

Proof. From Equation (1):

h(A,B) = max(h(A \ A′,B), h(A′,B)).

Since A′ ⊂ P(A′) and Equation (2), there is

h(A′,B) ≤ h(P(A′),B) < L.

Therefore,

h(A,B) = h(A \ A′,B). �

This lemma states a condition to discard a subset model during
computing h(A,B).

3.5. Upper bound for BVH proxy

Let P be an AABB proxy, {pi}1≤i≤8 be the vertices of P, and b ∈ B
be an arbitrary point on model B. Since any point in the AABB can
be expressed as a convex combination of the AABB’s vertices, say
p = ∑

i wipi,
∑

i wi = 1. Then we have

d(p, b) = d

(∑
i

wipi, b

)
≤
∑
i

wid(pi, b) ≤ max
i

{d(pi, b)}.

Therefore, we have the following upper bound for the AABB proxy:

h(P,B) ≤ h(P,b) = max
p∈P

d(p,b) ≤ max
i

{d(pi, b)} ≡ h(P,B). (4)

In order to get a tighter upper bound, b needs to be as close to the
proxy as possible. A heuristically good choice for b is the closest
point to the proxy’s center, that is

b = argmin
y∈B

d(P.center, y), (5)

the closest point b can be retrieved by searching the BVH tree.

3.6. Bound for triangles

Consider a triangle � = (v1, v2, v3) on the model A. According to
Equation (2), a lower bound of h(�,B) can be defined as

h(�,B) = max
x∈�

d(x,B) ≥ max
1≤i≤3

d(vi,B) ≡ h(�,B). (6)

For the upper bound, derived from Equation (2), by picking some
� to build L, since any L is a subset of B, there is

h(�,B) ≤ min
�∈L

h(�,�). (7)

The Hausdorff distance h(�,�) is computed as [Ata83]:

h(�,�) = max
1≤i≤3

d(vi,�). (8)

The way to build set L plays a key role in Hausdorff distance
computation. Generally speaking, the more triangles L contains, the
tighter the upper bound is. However, a large L will incur more com-
putation cost in upper bound estimation. Therefore, L should be
carefully constructed to be as small as possible and to provide tight
upper bound estimation for effective culling.

In [TLK09], L is built by a traversal on B and culling triangles on
B by d(�,�) > h(�,B). It needs to calculate the distance d(�,�)
between triangles. During the BVH culling to find�, the culling also
involves the computation of the distance d(�,P) for BVH proxy P
in B. The computation of such distance between a triangle and an-
other entity is expensive compared with the computation between
points and entities. In our experiments, computing point-triangle
distance is about 5–10 times faster than triangle–triangle distance.
According to this observation, we propose a newmethod to build set
L which only involves the distance between point to another entity
(triangle or BVH proxy). The resulting upper bound is slightly less
tight than the above one, but its computational cost is much lower.
As a result, the overall performance improves significantly because
of the more economical balance between the tightness and compu-
tational cost. The details will be elaborated in Section 4.

3.7. Traverse phase

Line 3 in Algorithm 1 makes a traversal on A, which computes a
series of ascending lower bounds and uses the lower bounds to prune
the child BVH nodes and the triangles whose local upper bounds are
below the global lower bound. The results are a set of triangles that
can be used to approximate the Hausdorff distance. The pseudo-
code of this algorithm is shown in Appendix Algorithm 2.

3.8. Reduction phase

The reduction phase comes after the traverse phase, which takes ad-
vantage of the triangle heap to reduce the gap between the lower
bound and the upper bound. The heap H is a max heap ordered by
the upper bound Hausdorff distance from triangle to B, which is also
used in [KYKK19] and [KKYK18]. The detailed algorithm is put
in Appendix Algorithm 3.

© 2021 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

Y. Zheng et al. / Economic Upper Bound Estimation in Hausdorff Distance Computation for Triangle Meshes 5

Algorithm 2. TraverseModel - traverse model A, culling and
sorting triangles

Algorithm 3. ReduceBound - reduce bound gap

4. Four-Point Estimation for Upper Bound

In this section, we introduce our method to estimate the upper bound
of h(�,B) in detail and explain the motivation behind it.

Suppose x1, . . . , xJ be a set of points sampled on triangle � ⊂ A.
And let x∗

j ∈ B denote the closest point to x j on model B, and�x∗
j
⊂

B denote an owner triangle of x∗
j , that is x

∗
j ∈ �x∗

j
⊂ B.

Since every �x∗
j
is a subset of B, by Equation (2), we have

h(�,B) ≤ min
1≤ j≤J

h(�,�x∗
j
) ≡ h(�,B). (9)

Figure 1: Sampling stencils on a single triangle: the first takes three
vertices and one centroid, the second uniformly subdivides the orig-
inal triangle into four and takes the vertices and centroid points of
all sub-triangles. By such stencils, the number of sampling points
are: 4, 10, 31, 109, 409, 1585, and we name the upper bound esti-
mation with a stencil containing n points as an n-point strategy.

The triangles {�x∗
j
, 1 ≤ j ≤ J} that are used in the upper bound

above form a set L, which has a similar meaning to the notation in
[TLK09].

Substituting Equation (8) into Equation (9), we have the follow-
ing upper bound for a triangle:

h(�,B) ≤ min
1≤ j≤J

(
max
1≤i≤3

d(vi,�x∗
j
)

)
. (10)

Picking different number of points on � can generate a series
of methods to estimate the upper bound. In general, choosing fewer
points leads to a faster but coarser approximation, while more points
leads to tighter bounds at a slower speed. In our implementation,
we use the sampling stencils illustrated in Figure 1 to take sam-
pling points.

The key difference to Tang’s algorithm is the way to build set L,
which can be defined mathematically as:

LTang = {
�|d(�,�) > h(�,B),� ∈ B

}
, (11)

LOurs =
{
�x∗

j
|�x∗

j
= arg min

�
d(x j,�),� ∈ B

}
, (12)

where LTang and LOurs represent the resulting subsets L in [TLK09]
and our method, respectively. In Equation (11), LTang needs to
calculate the distance between triangles, while in Equation (12),
we use a much cheaper operation: the distance between point
and triangle. In detail, to calculate the distance between trian-
gles, one needs to calculate the distance between each edge pair,
test whether the two triangles are overlapped, and so on. On the
contrary, the distance between point and triangles can be eas-
ily calculated by a projection and some simple tests [Eri04].
In our experiment, we found the calculation of distance be-
tween point and triangle can be ten times faster than the cal-
culation of distance between triangles. It should be noticed that
during the BVH culling to find the closest triangle to a point
also involves point-triangle distance evaluation. Besides, the size
of LOurs is limited by the number of x j, that is, |LOurs| is
never larger than |x j|. However, |LTang| depends on the thresh-
old h(�,B), which could be very large. In our experiments,
|LTang| could be huge if mesh B has much higher resolution than
mesh A.

© 2021 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

6 Y. Zheng et al. / Economic Upper Bound Estimation in Hausdorff Distance Computation for Triangle Meshes

101 102 103

0

1

2

·10−2

4-point

10-point

31-point

109-point

409-point
1585-point

Tang

time (µs)

ti
gh

tn
es

s
τ

Figure 2: Experiment results on the tightness of the upper bound
(vertical axis) and its computation time (horizontal axis). ‘Tang’
represents the method in [TLK09] and “n-point” represents our
method using n sampling points. The dashed line shows the trend
that as the number of sampling points increases, the time consump-
tion increases and the estimation becomes tighter. The slope of the
trend line in this figure is −5.3 × 10−6.

Figure 2 shows some experimental results on the relationship
between the tightness τ of upper bound h(�,B) and the computation
time. The tightness of the upper bound is computed as:

τ = h(�,B) − h(�,B)

h(�,B)
, (13)

where h(�,B) is calculated by iteratively subdividing � until the
estimated error is below 10−9. We use this h(�,B) as the reference
to estimate the tightness of each method. In this experiment, the
model A is the ‘dec4’ model of ‘hand’ in Table 2 and the model B
is the original model of ‘hand’ in Table 2.

Figure 2 gives a clear view that as the number of sampling points
goes up, the upper bound gets tighter (smaller value of τ), but the
computation time also increases. In our implementation, we choose
‘4-point’ strategy.What’s more, because the vertices of triangles are
shared with their neighbours, we can cache the traversal results for
further speedup.

5. Implementation Details and Experiments

We implement our algorithm in C++ and use anAABB tree to build
the BVH. Uniform subdivision is adopted in subdivision phase. As
mentioned before, the overall framework is highly consistent to
[TLK09], but our method is easier to implement since we use a sim-
pler method to estimate the upper bound.

The experiments include two parts. In the first part, we make a
comparison on computation performance between our method and
[TLK09] based on the Thingi10K dataset [ZJ16]. In the second part,
we show the detailed algorithm behaviour under different place-
ments and resolutions on a few models. All experiments were run
on the same machine with Intel i7-8700K CPU.

5.1. Termination condition

Culling-based methods usually terminate the iteration once the
lower and upper bounds are close enough. A natural and widely ap-
plied termination condition [TLK09] uses the difference between
the two bounds at k-th iteration:

ε = hk − hk, (14)

which is an upper bound for the absolute error.

Normalizing the error in above by the diagonal length of the
bounding box of A, that is Diag(A), gives an error measurement in-
dependent of mesh scaling:

εdiagA = hk − hk
Diag(A)

. (15)

εdiagA is in terms of mesh size instead of the exact Hausdorff dis-
tance, therefore it is not related to relative error.

Here, we would like to introduce a method to compute the up-
per bound of the relative error. Ideally, the relative error should be
computed as:

δ = ε/h(A,B). (16)

In practice, the exact Hausdorff distance h(A,B) is unknown, so we
use the current lower bounds to approximate it:

δ = ε/hk, (17)

where hk is lower than the exact Hausdorff distance, which means
the error tolerance defined in Equation (17) will not exceed the
definition in Equation (16). Therefore, Equation (17) defines an
upper bound of the relative error.

As with Equation (15), the value of Equation (17) is indepen-
dent of mesh scaling as well, and it relates to the exact Hausdorff
distance. Therefore, it is more intuitive when user does not have
much prior knowledge of the meshes.

However, in order to make fair comparisons to Tang’s algorithm,
we use Equation (14), that is the upper bound of absolute error in the
termination condition in following experiments, that is the iteration
stops when ε < 10−3.

5.2. Performance benchmark

In this part, we build the benchmark datasets based on Thingi10K
to show the performance on models with various vertex numbers
ranging from tens to millions. In the package downloaded from the
Thingi10K website, we found six models without any faces, and
used the 9994 models remaining below.

For a model A in the Thingi10K dataset, we use the following two
methods to get another mesh as model B.

• We use the decimate modifier of blender to halve the number
of vertices. The dataset generated by this method is named as
‘Blender dataset’, and contains 9994 pairs.

• For 9823 models in the Thingi10K dataset, TetWild [HZG*18]
generates a dataset (https://github.com/Yixin-Hu/TetWild) com-
posed of the volumetric remeshing results. We take the surface

© 2021 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://github.com/Yixin-Hu/TetWild

Y. Zheng et al. / Economic Upper Bound Estimation in Hausdorff Distance Computation for Triangle Meshes 7

1500 3000 4500 6000 7500 9000
10−1

100

101

model (sorted by number of vertices in ascending order)

sp
ee

d
up

ra
ti

o

Figure 3: Speedup on Blender dataset. There are 8896 blue points
in total. The red points on the red line indicates the averaged
speedup ratio in each group.

1000 2000 3000 4000 5000 6000
10−1

100

101

102

model (sorted by number of vertices in ascending order)

sp
ee

d
up

ra
ti

o

Figure 4: Speedup on TetWild dataset. There are 6412 blue points
in total. The red points on the red line indicates the averaged
speedup ratio in each group.

meshes of these volumetric meshes as model B. The dataset gen-
erated by this method is named as ‘TetWild dataset’, and contains
9823 pairs.

Because the two models in each pair are similar in this experi-
ment, the ground truth Hausdorff distance is close to zero, which
is a major challenge for Hausdorff distance calculation. In order
to make the experiment time affordable, if our method or Tang’s
method does not terminate the iteration on a testing pair in 3 min,
we marked this pair as a failure and did not calculate the speed-up
ratio for it. In the following experiments, we only take the testing
pairs that successfully terminate in 3 uus for both methods. To anal-
yse the possible relationship between the speedup ratio and the ver-
tex number in model A, we sort these pairs in ascending order of
vertex number in model A, and plot a blue point for each pair with
the coordinates (order, speedup ratio) in Figure 3 and Figure 4.
For each dataset, we divide the pairs into 10 groups according to the
vertex number in model A, and each group has the same number of
pairs. For each group of pairs, we plot a point with the coordinates
(center of the group, average speedup ratio in the group). The red
curve interpolates these points piecewise linearly. As indicated by
the red curves for the two datasets, the speedup ratio has no strong
relationship to the vertex number in model A.

10−1 100 101 102
0

500

1,000

1,500

speedup ratio (Blender dataset)

nu
m

be
r

of
m

od
el

s

10−1 100 101 102 103

0

200

400

600

speedup ratio (TetWild dataset)

nu
m

be
r

of
m

od
el

s

Figure 5: Distribution histogram of speedup ratio.

Table 1: Statistics of the benchmark experiments. The column of ‘< 3 min’
lists the percentage of finishing computation in 3 min. From left to right, the
three numbers in this column are for ourmethod, [TLK09] and bothmethods,
respectively. The other two columns lists the average speedup ratio and ratio
of winnings of our method over [TLK09], respectively.

< 3 min average winnings

Blender dataset 97.65%/91.05%/89.01% 4.38 87.94%
TetWild dataset 97.49%/66.44%/65.28% 27.50 97.86%

We also show the histogram of the speedup in Figure 5, and
list some statistics of the experiments in Table 1. In some cases,
our method is slower than [TLK09] (12.06% of cases in models
generated by Blender and 2.14% of cases in models generated by
TetWild). The main reason is that the upper bound of our method is
weaker, which may bring extra subdivision operations, the cost of
which cannot be compensated for by the faster upper bound estima-
tions. There are cases that only one method (our method or Tang’s
method) terminates the iteration in 3 min, so in the column of ‘< 3
min’, the last number is smaller than the previous two.

5.3. Behaviour analysis with respect to different input
conditions

Besides the overall benchmark on a large dataset, we are also very
interested in the performance behaviour on various input condi-
tions. Since our algorithm is based on culling and subdivision op-
erations, the number of triangles culled and the number of subdivi-
sions needed to reach the desired precision are crucial to the overall
performance. We noticed that the culling rate and subdivisions are
highly dependent on the conditions of input models, especially the
two key factors: the placements of the models and the ‘resolution’
difference between models. ‘Resolution’ here means the number of
triangles in a model. The high-resolution models have more trian-
gles than low-resolution models. In the following, we first discuss
the placement, then resolution, and the models used in this experi-
ment are shown in Figure 6.

5.3.1. With respect to different placements

The relative placement between models affects the culling rate in
the traversal stage of the algorithm. As an intuitive example, for two
identical models placed at the same place with the same orientation,
the Hausdorff distance will be zero. Therefore, the lower bound of
Hausdorff distance is zero as well, so no triangle can be culled in the

© 2021 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

8 Y. Zheng et al. / Economic Upper Bound Estimation in Hausdorff Distance Computation for Triangle Meshes

Figure 6: Dataset used in algorithmic behaviour analysis. The name and number of vertices are listed below each model.

Table 2: Number of vertices in the original and decimated meshes.

model original dec1 dec2 dec3 dec4

hand 3426 2054 1232 738 442
robocat 7512 4506 2702 1620 972
moai 20000 12000 7200 4320 2592
elephant 49918 29950 17970 10782 6468
nicolo 100444 60265 36159 21695 13017
buddha 126524 75914 45548 27328 16396

Figure 7: Illustration of difference placements parameterized by d.
In each pair, model A is shifted to model B by distance d × Diag(A).
From left to right, d = 0.01, 0.05, 0.09.

traversal stage and the culling rate will be zero. A low culling rate in-
creases the computation cost in the traversal stage and significantly
raises the number of triangles remaining in the subdivision stage.

To illustrate this factor, for each model A in Table 2, we shift A
by distance d × Diag(A) as model B, and calculate the Hausdorff
distance from A to B. Figure 7 shows a few examples of different
placements parameterized by the value d.

The culling rate and the time consumption at each stage are shown
in Figure 8. One can find that the culling rate decreases quickly as
the distance between models becomes smaller. We also find that the
culling rate of our algorithm is a little bit lower than Tang’s algo-
rithm because their upper bound is slightly tighter than ours, but
our overall performance is much higher. That’s why we claim our
method is more economic in the sense of better balance between
the tightness and computational cost. When the distance is close to
zero, the benefit from the economic balance ismore obvious because
there are more upper bound estimations involved.

With respect to different resolutions. We use the Decimate Mod-
ifier tool of Blender to generate a series of meshes with different res-
olutions. Every time, the number of vertices is decimated by 40%.
The detail about the simplified meshes is shown in Table 2.

In this experiment, we calculate the Hausdorff distance from each
simplified mesh to the original one. Both meshes are put at the same
positionwith the same orientation, so the Hausdorff distance is close
to zero. The culling rate is relatively low for both our method and
Tang’s algorithm, which matches the behaviour of the previous ex-
periments about different placements. The time consumption at each
stage is shown in Figure 9, and the detailed results can be found in
the supplementary material.

The results show that as the simplification goes on, the time cost
in traversal stage tends to decrease, but the time cost in subdivision
tends to grow. Such a behaviour for the traversal stage is intuitive:
the main computation cost is in the traversal on BVH trees. As the
number of vertices inA decreases, the number of proxies in the BVH
tree of A decreases too, which leads to a faster traversal stage. Al-
though the behaviour during the subdivision stage looks strange at
first sight, it is reasonable because lower resolution A needs more
subdivisions of triangles to terminate the iteration for a fixed er-
ror tolerance. In this experiment, the time cost of Tang’s algorithm
grows much faster than ours because it suffers from the increas-
ing size of L. To be more specific, the mesh A with lower resolution
leads to a larger size of L for each triangle survived after the traversal
stage, and then the larger the size of L is, the more triangle-triangle
distance evaluations [KOY*10] are required for upper bound
estimation.

6. Conclusion

In this paper, we accelerate the Hausdorff distance computation
method proposed in [TLK09] by replacing the triangle based up-
per bound estimation by a four-point strategy. Such a small change
leads to surprising speedup, but can be explained by checking the
tightness and computational cost.

Our BVH based method is slower than the grid based
one [KYKK19] when two meshes are very close to each other and
the grid size is properly chosen. After all, [KYKK19] is specially de-
signed for such cases. However, their method also involves bound
estimation, and integrating our idea with their method may bring
better performance.

Asmany previous methods, our method is based on floating-point
representation. Therefore, it makes the predication (e.g. t.upper≥ h
in Algorithm 3) depending on the roundoff of floating-point coor-
dinates, and leads to inaccurate result.

© 2021 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

Y. Zheng et al. / Economic Upper Bound Estimation in Hausdorff Distance Computation for Triangle Meshes 9

0.01 0.03 0.05 0.07 0.09

0.2

0.4

0.6

0.8

50

100

150

200

T
im

e
(m

s)
hand

0.01 0.03 0.05 0.07 0.09

0.2

0.4

0.6

0.8

1

100

200

robocat

0.01 0.03 0.05 0.07 0.09

0.4

0.6

0.8

1

C
ul

li
ng

ra
te

200

400

600

moai

0.6

0.8

1

0.01 0.03 0.05 0.07 0.09

0

500

1,000

1,500

2,000

T
im

e
(m

s)

elephant

0.8

0.9

1

0.01 0.03 0.05 0.07 0.09

0

500

1,000

nicolo

0.7

0.8

0.9

1

C
ul

li
ng

ra
te

0.01 0.03 0.05 0.07 0.09

0

2,000

4,000

buddha

tang culling rate our culling rate tang traversal tang reduction tang total our traversal our reduction our total

0.01 0.03 0.05 0.07 0.09

0.2

0.4

0.6

0.8

50

100

150

200

T
im

e
(m

s)
hand

0.01 0.03 0.05 0.07 0.09

0.2

0.4

0.6

0.8

1

100

200

robocat

0.01 0.03 0.05 0.07 0.09

0.4

0.6

0.8

1

C
ul

li
ng

ra
te

200

400

600

moai

0.6

0.8

1

0.01 0.03 0.05 0.07 0.09

0

500

1,000

1,500

2,000

T
im

e
(m

s)

elephant

0.8

0.9

1

0.01 0.03 0.05 0.07 0.09

0

500

1,000

nicolo

0.7

0.8

0.9

1

C
ul

li
ng

ra
te

0.01 0.03 0.05 0.07 0.09

0

2,000

4,000

buddha

tang culling rate our culling rate tang traversal tang reduction tang total our traversal our reduction our total

Figure 8: Experiment results of different placements. The numbers on horizontal axis indicate the distance parameter d. The bar charts show
the time consumption in traversal stage, subdivision stage and the whole algorithm at different placements. The line charts indicate the culling
rate after the traversal stage.

original dec1 dec2 dec3 dec4

0

0.1

0.2

0.3

0.4

T
im

e
(s

)

hand

original dec1 dec2 dec3 dec4

0

0.1

0.2

0.3

robocat

original dec1 dec2 dec3 dec4

0

0.5

1

1.5

2
moai

original dec1 dec2 dec3 dec4

0

5

10

15

T
im

e
(s

)

elephant

original dec1 dec2 dec3 dec4

0

5

10
nicolo

original dec1 dec2 dec3 dec4

0

10

20

buddha

tang traverse tang reduction tang total ours traverse ours reduction ours total

Figure 9: Experiment results on meshes with different resolutions. We calculate the Hausdorff distance from each decimated mesh to the
original one at the same pose. The horizontal axis represents a series of meshes, from the finest to the coarsest (original, dec, dec2, dec3,
dec4), while the vertical axis represents the time of computation, measured in seconds.

More detailed understanding about the algorithm behaviour is im-
portant. We noticed that the speedup ratio on TetWild dataset is
much higher than the one on Blender dataset, but cannot explain
it clearly. The overall speed up ratio is mainly affected by three fac-
tors: distance calculation, size of L and the tightness of upper bound.
Our method uses point-based distance instead of triangle-based one
used by [TLK09], which makes a single distance calculation about
10 times faster (see Figure 2). Since we used four-point estima-
tion strategy, the size of L in our method is no more than 4, while
the size of L in [TLK09] varies significantly and is generally larger
than 4. The last factor, tightness of upper bound, works against
our method. Its specific impact depends on input models, which is
difficult to analyse. If one can get a mathematical model to relate
the overall timing, tightness of bound and cost of bound estima-

tion and so on, there is the possibility of developing more economic
strategy.

The code can be downloaded from https://github.com/
ZJUCADGeoSim/Hausdorff. We hope it is not only a tool for
Hausdorff distance computation, but also a baseline for further
research.

Acknowledgements

We would like to thank the anonymous reviewers and ed-
itors for their constructive comments and suggestions. This
work was supported by National Key R&D Program of China
(No. 2020AAA0108901), NSFC (No. 61732016, 62032011), and

© 2021 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://github.com/ZJUCADGeoSim/Hausdorff
https://github.com/ZJUCADGeoSim/Hausdorff

10 Y. Zheng et al. / Economic Upper Bound Estimation in Hausdorff Distance Computation for Triangle Meshes

Zhejiang Provincial Science and Technology Program in China un-
der Grant 2021C01108.

Appendix A: Traverse Algorithm

It begins with the root node of modelA’s BVH tree.When visiting
a node, say node N, it firstly estimates the upper bound for the node
(according to Equation 4). If node N’s upper bound is smaller than
the lower bound h, nodeN can be pruned (according to Lemma 3.2).
If N is a leaf node, there is a list of triangles stored in it. Then, we
push into heap H the triangles whose upper bounds are above the
current lower bound h, while ignoring the triangles whose upper
bounds are below h. Whenever there is a greater lower bound in the
triangles, the current lower bound h will be updated by the greater
one (by Lemma 3.1). If N is not a leaf node, the traverse algorithm
will recursively visit the child nodes. One can find that, during the
traversal, the lower bound h never goes downward.

Function NodeBound in line 1 of Algorithm 2 computes the up-
per distance bound for node N.

Function TriBound in line 6 of Algorithm 2 computes both the
lower bound and the upper bound for triangle �.

Appendix B: Reduction Algorithm

In Algorithm 3, we initialize the global lower and upper bound h
and h by the lower bound calculated in Algorithm 2 and the upper
bound of the top element inH. In every iteration, we take the triangle
with the largest upper bound from the heap.

References

[ABB95] Alt H., Behrends B., Blömer J.: Approximate match-
ing of polygonal shapes. Annals of Mathematics and Artificial
Intelligence 13, 3-4 (1995), 251–265.

[ABCO*03] Alexa M., Behr J., Cohen-Or D., Fleishman S.,
Levin D., Silva C. T.: Computing and rendering point set sur-
faces. IEEE Transactions on Visualization and Computer Graph-
ics 9, 1 (2003), 3–15.

[ABG*03] Alt H., Brass P., Godau M., Knauer C., Wenk
C.: Computing the Hausdorff distance of geometric patterns
and shapes. In Discrete and Computational Geometry. Springer,
Berlin, Germany, 2003, pp. 65–76.

[ASCE02] Aspert N., Santa-Cruz D., Ebrahimi T.: Mesh: Mea-
suring errors between surfaces using theHausdorff distance. In
Proceedings of IEEE International Conference on Multimedia
and Expo (2002), vol. 1, IEEE, pp. 705–708.

[Ata83] Atallah M. J.: A linear time algorithm for the Hausdorff
distance between convex polygons. Information Processing Let-
ters 17, 4 (Nov 1983), 207–209.

[Ber97] Bergen G. v. d.: Efficient collision detection of complex
deformable models using aabb trees. Journal of Graphics Tools
2, 4 (1997), 1–13.

[BF05] Borouchaki H., Frey P.: Simplification of surface mesh
using Hausdorff envelope. Computer Methods in Applied Me-
chanics and Engineering 194, 48 (2005), 4864–4884. Unstruc-
tured Mesh Generation.

[BHEK10] Bartoň M., Hanniel I., Elber G., Kim M.-S.: Pre-
cise Hausdorff distance computation between polygonal meshes.
Computer Aided Geometric Design 27, 8 (2010), 580–591.

[CHWH17] Chen Y., He F., Wu Y., Hou N.: A local start search
algorithm to compute exact Hausdorff distance for arbitrary point
sets. Pattern Recognition 67 (Jul 2017), 139–148.

[CMXP10] Chen X.-D., Ma W., Xu G., Paul J.-C.: Computing
the hausdorff distance between two b-spline curves. Computer-
Aided Design 42, 12 (2010), 1197–1206.

[CRS98] Cignoni P., Rocchini C., Scopigno R.: Metro: measur-
ing error on simplified surfaces. Computer Graphics Forum 17,
2 (1998), 167–174.

[DD09] Deza M. M., Deza E.: Encyclopedia of distances. In En-
cyclopedia of Distances. Springer, Berlin, Germany, 2009, pp.
1–583.

[DJ94] Dubuisson M.-P., Jain A. K.: A modified hausdorff dis-
tance for object matching. In Proceedings of 12th international
conference on pattern recognition (1994), vol. 1, IEEE, pp. 566–
568.

[EG08] Elber G., Grandine T.: Hausdorff and minimal distances
between parametric freeforms in R

2 and R3. Springer-Verlag.

[Eri04] Ericson C.: Real-Time Collision Detection. CRC Press,
Inc., USA, 2004.

[GBK05] Guthe M., Borodin P., Klein R.: Fast and accu-
rate hausdorff distance calculation between meshes. Journal of
WSCG 13, 2 (Feb. 2005), 41–48.

[HKM12] Hanniel I., Krishnamurthy A., McMains S.: Com-
puting the hausdorff distance between nurbs surfaces using nu-
merical iteration on the gpu. Graphical Models 74, 4 (2012),
255–264.

[HKR93] Huttenlocher D. P., Klanderman G. A., Rucklidge
W. J.: Comparing images using the Hausdorff distance. IEEE
Transactions on Pattern Analysis and Machine Intelligence 15,
9 (1993), 850–863.

[HZG*18] Hu Y., Zhou Q., Gao X., Jacobson A., Zorin D.,
Panozzo D.: Tetrahedral meshing in the wild. ACM Transac-
tions on Graphics 37, 4 (July 2018).

[JKF01] JesorskyO., KirchbergK. J., FrischholzR.W.: Robust
face detection using the Hausdorff distance. In Audio- and Video-
Based Biometric Person Authentication (Berlin, Germany, Aug
2001), Springer, pp. 90–95.

[KKYK18] Kang Y., Kyung M.-H., Yoon S.-H., Kim M.-S.: Fast
and robust hausdorff distance computation from triangle mesh to

© 2021 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

Y. Zheng et al. / Economic Upper Bound Estimation in Hausdorff Distance Computation for Triangle Meshes 11

quad mesh in near-zero cases. Computer Aided Geometric De-
sign 62 (May 2018), 91–103.

[KMH11] Krishnamurthy A., McMains S., Hanniel I.: Gpu-
accelerated Hausdorfff distance computation between dynamic
deformable nurbs surfaces. Computer-Aided Design 43, 11
(2011), 1370–1379.

[KOY*10] Kim Y.-J., Oh Y.-T., Yoon S.-H., Kim M.-S., Elber
G.: Precise Hausdorfff distance computation for planar freeform
curves using biarcs and depth buffer. The Visual Computer 26,
6-8 (2010), 1007–1016.

[KOY*13] Kim Y.-J., Oh Y.-T., Yoon S.-H., Kim M.-S., Elber G.:
Efficient hausdorff distance computation for freeform geometric
models in close proximity.Computer-Aided Design 45, 2 (2013),
270–276.

[KYKK19] Kang Y., Yoon S.-H., Kyung M.-H., Kim M.-S.: Fast
and robust computation of the Hausdorfff distance between tri-
angle mesh and quad mesh for near-zero cases. Computers &
Graphics 81 (Jun 2019), 61–72.

[LGLM00] Larsen E., Gottschalk S., Lin M. C., Manocha D.:
Fast distance queries with rectangular swept sphere volumes. In
Proceedings 2000 ICRA. Millennium Conference. IEEE Interna-
tional Conference on Robotics and Automation. Symposia Pro-
ceedings (Cat. No. 00CH37065) (2000), vol. 4, IEEE, pp. 3719–
3726.

[LRC*03] Luebke D., Reddy M., Cohen J. D., Varshney A.,
Watson B., Huebner R.: Level of detail for 3D graphics. Mor-
gan Kaufmann, 2003.

[Mem07] Memoli F.: On the use of Gromov-Hausdorff dis-
tances for shape comparison. In Eurographics Symposium on
Point-Based Graphics (2007), Botsch M., Pajarola R., Chen B.,
Zwicker M., (Eds.), The Eurographics Association.

[NJS11] Nutanong S., Jacox E. H., Samet H.: An incremen-
tal Hausdorfff distance calculation algorithm. Proceedings of the
VLDB Endowment 4, 8 (2011), 506–517.

[PTMH05] Papadias D., Tao Y., Mouratidis K., Hui C. K.:
Aggregate nearest neighbor queries in spatial databases. ACM
Transactions on Database Systems (TODS) 30, 2 (2005), 529–
576.

[Str07] Straub R.: Exact Computation of the Hausdorff Distance
between Triangular Meshes. In EG Short Papers (2007), Cignoni
P., Sochor J., (Eds.), The Eurographics Association.

[TH15] Taha A. A., Hanbury A.: An efficient algorithm for cal-
culating the exact Hausdorfff distance. IEEE Transactions on
Pattern Analysis and Machine Intelligence 37, 11 (2015), 2153–
2163.

[TLK09] Tang M., Lee M., Kim Y. J.: Interactive Hausdorfff dis-
tance computation for general polygonal models. ACM Transac-
tions on Graphics (TOG) 28, 3 (July 2009).

[ZHH*17] Zhang D., He F., Han S., Zou L., Wu Y., Chen Y.: An
efficient approach to directly compute the exact Hausdorfff dis-
tance for 3D point sets. Integrated Computer-Aided Engineering
24, 3 (2017), 261–277.

[ZJ16] Zhou Q., Jacobson A.: Thingi10k: A dataset of
10,000 3d-printing models. arXiv preprint arXiv:1605.04797
(2016).

[ZPYW18] Zhang J., Pang J., Yu J., Wang P.: An efficient as-
sembly retrieval method based on Hausdorfff distance. Robotics
and Computer-Integrated Manufacturing 51 (Jun 2018), 103–
111.

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Data S1

Data S2

© 2021 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

