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Figure 1: Our method generates smooth frame fields without internal singularities to guide the polycube construction, and results in high-
quality hexahedral meshes. Compared with results from the ℓ1-based polycube method ((b) and (d)), our results ((a) and (c)) have fewer
unnecessary stairs, corners, and better element shapes at the same time. The number of corners and minimal/mean scaled Jacobians are
listed below each result.

Abstract

The polycube-based hexahedralization methods are robust to gen-
erate all-hex meshes without internal singularities. They avoid the
difficulty to control the global singularity structure for a valid hex-
ahedralization in frame-field based methods. To thoroughly utilize
this advantage, we propose to use a frame field without internal
singularities to guide the polycube construction. Theoretically, our
method extends the vector fields associated with the polycube from
exact forms to closed forms, which are curl free everywhere but
may be not globally integrable. The closed forms give additional
degrees of freedom to deal with the topological structure of high-
genus models, and also provide better initial axis alignment for sub-
sequent polycube generation. We demonstrate the advantages of
our method on various models, ranging from genus-zero models
to high-genus ones, and from single-boundary models to multiple-
boundary ones.
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1 Introduction

High-quality, boundary-conforming all-hex mesh generation is one
of the most challenging meshing problems due to its computational
complexity. Recently, much research efforts have been devoted to
extending frame field guided quadrangulation algorithms to volu-
metric hexahedral mesh generation [Nieser et al. 2011], resulting in
significant progresses in smooth 3D frame field optimization algo-
rithms [Huang et al. 2011; Li et al. 2012]. However, such optimiza-
tion algorithms are sensitive to the quality of initial frame fields and
volumetric tetrahedral meshes. They cannot guarantee to get a valid
singularity structure for a non-degenerate volumetric parametriza-
tion. Although existing algorithms to correct local singularity struc-
tures of the designed 3D frame fields [Li et al. 2012; Jiang et al.
2014], it is still difficult to design a 3D frame field that possesses a
global singularity structure suitable to all-hex mesh generation.

Another line of hexahedralization methods is based on polycube.
These methods focus on a special type of hexahedral mesh that has
simpler singularity structure, i.e. no internal singularity [Gregson
et al. 2011; Livesu et al. 2013; Huang et al. 2014]. They deform
the boundary surface of a volumetric model into an axis-aligned
polycube, and tessellate the polycube to extract an all-hex mesh.
Without the complexity to control the internal singularity structure,
such methods are robust for all-hex mesh generation. However, the
state-of-the-art polycube methods parametrize an input model with
a single volumetric chart, resulting in high-distortion hexahedra.
Clearly, the polycube parametrization is only a subset of all valid
parametrization for all-hex meshing. Indeed, the polycube methods
are equivalent to the parametrization induced by a boundary aligned
and internal singularity free 3D frame field, which can be further
decomposed into three conservative vector fields, i.e. exact forms.

In this paper, we introduce a novel subset of hexahedral meshes.
They have no internal singularity as well, but may be not directly
parametrized as a single chart. Our method generates such hexahe-
dral meshes by relaxing the restriction of previous polycube meth-
ods using the superset of exact forms, i.e. closed forms. We cut
a 3D model M bounded by ∂M to break all its tunnel loops, and

http://dx.doi.org/10.1145/2897824.2925957


then turn the closed forms on M into the exact forms on the cut
mesh Mc. Each cut imposes a continuous transition condition for
hexahedral meshing. The number of cuts is the sum of genus of
all boundary surfaces, which is exactly the first Betti number of
M [Dey and Guha 1998]. Thus, our method is able to obtain all
the closed forms, or all the topological structures of internal sin-
gularity free hexahedral meshes. As a consequence, our method
inherits the robustness of polycube methods, and it is able to find
high-quality results in a much larger space. Considering a torus as
an example, the polycube methods generate no less than 16 corners
on the boundary, and produce highly distorted elements around the
corners. Such serious issues can be easily addressed in our method,
and a more complex result is shown in Figure 1.

Besides the highly restricted topological structure, there is another
issue in the existing polycube methods. The final parametriza-
tion is almost prescribed by the initial axis alignment of surface
normals. Although the ℓ1-based method [Huang et al. 2014] is
able to automatically rotate the model into an optimal orienta-
tion, it cannot generate high-quality results for the case shown
in the left of the inset. Our closed-form based method initial-
izes the alignment according to a smooth frame field instead of

Figure 2: Our method (right)

provides better axis alignment.

a globally uniform one, and
produces a high-quality result,
as shown in the right of the in-
set. Therefore, except for the
obvious advantage over previ-
ous hexahedral meshing meth-
ods on handling high-genus
models, our method also can
generate hexahedral meshes
with much lower distortion on
many genus-zero models.

The main contributions of this paper include:

• Extending the polycube method to handle all internal singu-
larity free structures.

• An effective way to construct a boundary aligned smooth
frame field without internal singularities, i.e. closed form for
hexahedralization.

• Providing better initial values for normal alignment in poly-
cube optimization.

1.1 Related work

All-hex meshing employs hexahedra as basic geometric elements to
approximate a volumetric object. Thorough surveys on hexahedral
meshing are available in [Shimada 2006; Shepherd and Johnson
2008]. Semi-automatic all-hex meshing methods, such as multiple
sweeping [Shepherd et al. 2000] and paving and plastering [Staten
et al. 2005], have been well studied and used in a prestigious hexa-
hedral meshing software CUBIT. In addition, Sheffer et al. [1999]
investigated how to decompose the volume using Voronoi graph for
hexahedral meshing for CAD objects, and Carbonera et al. [2006]
presented Geode-Template to constrain hexahedral meshing.

Recent trends in automatic all-hex meshing rely on proper volu-
metric parametrization to control the singularities and distortion of
resulting hexahedral meshes. Inspired by the success of frame-
field guided surface parametrization in automatic surface quad-
rangulation [Bommes et al. 2009], frame-field guided volumetric
parametrization for all-hex meshing has been studied in [Nieser
et al. 2011; Huang et al. 2011; Li et al. 2012]. The theoretical treat-
ment on how the frame transitions determine the singularity type
of an edge in hexahedral meshes is thoroughly studied by Nieser
et al. [2011], which gives a local definition for internal improper

singularity edges. To avoid the degeneracy in hexahedralization, Li
et al. [2012] proposed to locally fix the internal improper singulari-
ties via matching adjustment and edge collapse. Jiang et al. [2014]
investigated the local degeneracy problem on both internal and sur-
face singularities, and locally fixed all the improper singularities
with proof via subdivision. A recent approach [Kowalski et al.
2014] generated block structures for hexahedral meshing guided
by a 3D frame field defined on vertices. However, if there are non-
local conflicts in the whole singularity structure as mentioned in [Li
et al. 2012; Jiang et al. 2014], all such methods fail to generate a
hexahedral mesh without degeneracy.

Polycube parametrization maps the volumetric mesh into joined
and axis-aligned cubes. It was first proposed by Tarini et al. [2004]
for texture parametrization and quad-meshing, and its automatic
generation is explored in [Lin et al. 2008]. Gregson et al. [2011] de-
veloped a volumetric deformation to deform a complex shape into a
polycube shape. A sketch-based polycube mapping method was de-
veloped in [Garcı́a et al. 2013]. The frequently occurred small stairs
in polycube parametrization, which will lead to unnecessary sin-
gularities on the boundary surface of a resulting hexahedral mesh,
can be efficiently reduced through Polycut [Livesu et al. 2013] and
ℓ1-based polycube parametrization [Huang et al. 2014]. The topol-
ogy of singularity graph for an all-hex mesh can also be improved
through base complex optimization [Gao et al. 2015] and edge-cone
rectification [Livesu et al. 2015]. By virtue of internal singularity
free, such methods enjoy great robustness. However, because of the
limited topological structure and strong dependence on initial nor-
mal alignment, such methods cannot produce high-quality results
for complex models.

Our work can be viewed as a combination of frame-field guided
hexahedralization and polycube parametrization. We guide the
polycube parametrization through an optimized smooth frame field
instead of a globally uniform one. It reduces the number of singu-
larities and the distortion of the resulting all-hex mesh. The internal
singularity free constraint is still maintained in our method, which
provides great help on getting across the challenge of resolving non-
local singularity conflicts.

1.2 Overview

The input to our algorithm is a tetrahedral mesh M = {X ,F , T },
where X is a set of vertices {x1, ..., xn}, F the set of trian-
gles {f1, ..., fm}, and T the set of tetrahedra {t1, ..., tq}. The
output is the vertex coordinates after closed-form induced poly-
cube parametrization, denoted by X . As illustrated in Figure 3,
the algorithm will cut the mesh along some faces C ⊂ F into
Mc. Then starting from an initial frame field computed by [Huang
et al. 2011], we optimize an internal singularity free and bound-
ary aligned smooth cross-frame field R by allowing frame transi-
tions at the cuts. Guided by the resulting frame field and transi-
tions on cuts, the cut mesh Mc is deformed into a shape close to
a polycube, which implies the desired closed forms for polycube
parametrization. Using the deformed mesh as the initial value, we
apply the extended ℓ1-based polycube method which takes the tran-
sition functions into account to generate the final result and extract
the hexahedral mesh. In the following, we will elaborate each step
in detail.

2 Cut Generation

According to the proof in [Dey and Guha 1998], the first Betti num-
ber β1 of M is equal to the sum of genus on all its boundary meshes
∂M. Thus, for each handle loop (i.e. the latitudinal generator)
on ∂M, we cut M by a connected, open 2d-manifold inside M,
where the handle is required to be on its boundary, and then in-
troduce only one possibly non-trivial transition function on the cut.



Figure 3: Pipeline of our algorithm. From the left to the right are input mesh, cut faces, frame field, deformed cut mesh, polycube parametriza-
tion and final hexahedral mesh.

With the additional transition functions, our method can represent
all the closed 1-forms. To make sure that one cut is associated with
a single transition function, we recursively build the cuts, and each
cut reduces the first Betti number of M just by one. Specifically,
starting from the input mesh Mc,0 = M, at step k = 1, 2, · · · , β1,
we find a handle Hk−1 on Mc,k−1, and then construct a cut ck in
Mc,k−1 which does not contain any triangle and any isolated ver-
tex of ∂Mc,k−1 according to the handle, and finally cut Mc,k−1

into Mc,k. Mc,β1
is the final cut mesh Mc.

Cuts containing a small number of triangles are preferred for the
efficiency in the subsequent computation. Therefore, we use the
method introduced in [Dey et al. 2013] to compute surface handle
loops. To get the cut for a handle loop Hk, we first construct a small
connected submanifold B ⊂ Mc,k with the following properties:
(a) ∂B contains Hk; (b) ∂B−∂Mc,k are two disconnected patches.
More specifically, we initialize B as all the tetrahedra immediately
adjacent to vertices in Hk for (a), and then iteratively add an adja-
cent tetrahedron to it until ∂B−∂Mc,k is split into two components
for (b), which can be checked by the floodfill algorithm with a seed
in ∂B − ∂Mc,k. In each iteration, if ∂B becomes a non-manifold,
all the tetrahedra adjacent to the non-manifold vertices or edges are
added to correct B into a manifold one. Then, under the constraints
of (a) and (b), we remove tetrahedra in B containing triangles or
isolated vertices of ∂Mc,k. In this process tetrahedral subdivision
may be required. Then we reduce the number of tetrahedra in B by
removing boundary tetrahedra of B iteratively. If one of the con-
straints is violated when reducing, the next candidate tetrahedron is
chosen. The process stops with no removable tetrahedron. At last,
the patch with fewer triangles in ∂B − ∂Mc,k is chosen as the cut.

The order of adding and removing tetrahedra is heuristically deter-
mined to form a small cut. Giving a fitting plane to Hk, the tetra-
hedron with a smaller distance between its barycenter to the plane
has a high priority for adding and a low priority for removing. Be-
cause the handle generated from the method [Dey et al. 2013] is
usually small and planar, such a heuristic method works well in our
experiments.

3 Frame Field Generation

The goal of this step is to generate a frame field constant in each
tetrahedron to guide the volumetric parametrization. In our method,
there are three desirable properties of the generated frame field:

• It should be as smooth as possible to obtain a low dis-
tortion parametrization. This property is the main opti-
mization objective in previous frame field optimization algo-
rithms [Huang et al. 2011; Li et al. 2012].

• The frame at each boundary tetrahedron should transform the
normal of its triangles on boundary surface into one coordi-

nate axis of a selected canonical coordinate system. This is
corresponding to boundary alignment conditions.

• It should have no internal singularity, but may have non-trivial
transitions on the cuts.

In this section, we will first introduce the rotation-matrix based al-
gorithm, and then detail how to extract the transitions from the op-
timized frame field.

3.1 Rotation-matrix based frame field generation

We require the frame at each tetrahedron to be orthogonal. Thus
it can be conveniently encoded into a rotation matrix R. In our
setting, each row of R corresponds to an axis vector in the frame
defined in a tetrahedron. Moreover, such rotation-matrix based rep-
resentation is also convenient for us to formulate constraints on the
transformation of boundary triangle normal n.

Formulation. The generation of the smooth frame field can be
posed as an optimization problem with the following objective
function:

min
R

wf

∫

F\C

‖∇R‖2 + wc

∫

C

∇̃R

+ wa

∫

∂M

‖Rn‖1 + wd

∫

∂M\∂C

‖∇(Rn)‖2

+ wR

∫

M

‖RT
R− I‖2.

(1)

The first two terms are used to measure the smoothness of a frame
field at tetrahedra since the frame field is piece-wise constant. The
∇ operator indicates that we need to measure the rotation matrix
difference there. However, at the cutting boundaries, we need to
take the frame transitions into consideration. The operator ∇ thus

is changed to ∇̃, and its formula will be made clear soon. The third
term encodes the constraint that the transformed normal should be
axis-aligned. The fourth term penalizes the normal difference under
local frame R, which helps to reduce the switching of axis align-
ment. The last one is used for the orthogonal constraint on R.

Smoothness Terms. The first term, used to measure the smooth-
ness of a frame field, can be discretized into the following formula:

∑

ti∩tj∈F\C

Vti + Vtj

VF d2ti,tj
‖Rti −Rtj‖

2. (2)

Therefore, the smoothness is measured via the Frobenius norm at
every two tetrahedra sharing a common triangle. In Equation (2),
the volume of a tetrahedron ti is denoted by Vti , and dti,tj is
the distance between the barycenters of ti and tj . The weights of



the difference between the two rotation matrices are normalized by
VF =

∑
ti∩tj∈F\C (Vti + Vtj )/(d

2
ti,tj

).

The second term, used to measure the smoothness of a frame field
at the cutting boundaries, is formulated as follows:

∑

ti∩tj∈C

Vti + Vtj

VCd2ti,tj

3∑

k=1

h
(
(RT

ti
Rtj )k

)
. (3)

The ∇̃ is represented by the function h(r) = r2xr
2
y + r2yr

2
z + r2zr

2
x

introduced in [Huang et al. 2011; Li et al. 2012], which takes k-th
column of RT

ti
Rtj as the input here. When R

T
ti
Rtj is one of ele-

ments in the cubical symmetry group [Nieser et al. 2011], the value

∇̃ is exactly zero. Here, VC =
∑

ti∩tj∈C (Vti + Vtj )/(d
2
ti,tj

).

Normal alignment term. The term is summed at each boundary
triangle f that belongs to tetrahedron t:

∑

f∈∂M

Af

A∂M
‖Rtnf‖1, (4)

where Af indicates the area of a boundary triangle f , and A∂M the
total area of the boundary surface. Similar notations will be used
below. Similar to [Huang et al. 2014], the ℓ1 norm of a vector u

is approximated by ‖u‖1 ≈
∑

i

√
u2
i + ε, where ε is a very small

positive real number.

Normal difference. This term is similar to the shape complexity
control in [Huang et al. 2014], and is discretized as:

∑

fi∩fj=e∈∂M\∂C

Afi +Afj

3A∂M
‖Rtinfi −Rtjnfj‖

2, (5)

where fi = ti ∩ ∂M, fj = tj ∩ ∂M.

Orthogonality term. We use penalty terms to constrain the matrix
R in each tetrahedron into an orthogonal one:

∑

t∈M

Vt

VM
‖RT

t Rt − I‖2.

In practice, we let the energy term weight wf = VF

VF+VC
, and

wc = VC

VF+VC
. The choice of these two weights balances the con-

tribution of the two terms in the objective function well, and we
do not meet scaling problems in all the experiments. The other pa-
rameters are set as wa = 0.1, wd = 0.01, wR = 1, ε = 10−3.
The L-BFGS method implemented in ALGLIB [Bochkanov n.d.]
is used to solve the problem. With the stopping criterion that the
magnitude of gradient is less than 10−5, it usually converges in less
than 300 iterations. After that, we use polar decomposition to ex-
tract the rotation part of the result as the final frame field R.

3.2 Initial frame field generation

Since the optimization problem defined in Equation (1) is non-
linear, we need a properly initialized frame field at the beginning
of the iteration to reach a local optimal solution.

In this paper, we use the spherical harmonics based method [Huang
et al. 2011] to compute the initial frame field in M. However, other
techniques, e.g. [Li et al. 2012], can also be used. With the given
frame field, we compute a globally aligned frame field by only al-
lowing transitions on the cuts from it. Specifically, we build a min-
imum spanning tree (MST) in the dual graph of the cut mesh Mc

with minimum alignment error as the edge weight. Then starting

Figure 4: Given an initial frame field, the internal singularities
(blue lines in the left) are removed after optimization (right).

from an arbitrary tetrahedron and fixing its frame, we progressively
align the neighboring frame field along the MST. Figure 4 shows the
initial frame field and the one optimized according to Equation (1).

It should be noticed that the optimization in Equation (1) cannot
guarantee that there is no internal singularity in R when the tran-
sitions between adjacent tetrahedra are determined by the criteria
of best alignment. In our experiments, a small number of internal
singularities may exist, and in most cases, they are near the bound-
ary of the model. However, it does not prohibit us from explicitly
assigning the transitions to view it as an internal singularity free
frame field, or differential 1-forms without internal singularities,
which will be turned into closed ones in the step of Poisson recon-
struction.

3.3 Extraction of transitions on cuts

After the optimization of the problem defined in Equation (1), we
are now ready to determine the frame transitions at the cuts.

For each cut ck ⊂ C, we extract a single transition Πk in the chiral
cubical symmetry group [Nieser et al. 2011] which best aligns the
frames on its both sides:

argmin
Πk

∑

ti∩tj∈ck

Ati∩tj‖ΠkRti −Rtj‖
2. (6)

The optimization can be easily solved by testing 24 choices of Πk

and choosing the one with the minimal error.

4 Frame-field Guided Polycube Generation

The goal of frame-field guided polycube generation is to overcome
the limitation of axis alignment of boundary normals in previous
polycube methods [Gregson et al. 2011; Livesu et al. 2013; Huang
et al. 2014]. It consists of three steps: First, we perform a Poisson
reconstruction step to compute an initial parametrization so that its
deformation gradient field aligns with the smooth frame field got
from Section 3.1; Second, the initial parametrization is further op-
timized to achieve an axis-aligned polycube using an ℓ1-based for-
mulation similar to [Huang et al. 2014]; Finally, the integer con-
straints are enforced upon the axis-aligned polycube result for the
final all-hex mesh extraction. The transition constraints are active
in all the steps so that the extracted all-hex mesh can be seamlessly
stitched at cutting boundaries.

4.1 Poisson reconstruction

Given a frame field R without internal singularities but with transi-
tion conditions at cut faces, an initial parametrization without satis-
fying axis alignment of boundary normals can be obtained through
the following minimization:

min
X

∫

M

‖∇X −R‖2dV. (7)



For mesh M with non-zero genus, transition conditions extracted
from the optimized frame field are considered as:

Πa,bX a(e) = X b(e), ∀e ∈ ta ∩ tb ∈ C, (8)

where Πa,b is the extracted transition about the cut face ta ∩ tb.
ta and tb are two adjacent tetrahedra, and their edge vectors after
Poisson reconstruction are denoted by X a(e) and X b(e).

In Poisson reconstruction, the energy function in Equation (7) is a
linear least-square problem, and the transition condition constraints
are linear. Therefore, the minimization problem can be easily
solved by the package Ipopt [Wächter and Biegler 2005]. Figure 5
illustrates the results for genus-zero models, of the Chinese-lion
and the Asian-dragon. A genus-one example can be found in Fig-
ure 3. It is worthwhile to note that the boundary normal alignment
conditions have been approximated through the smooth frame field
alignment. More details are given in Section 5 and Figure 2. After
this step, the deformed shape implies the desired closed forms for
the subsequent polycube generation.

Figure 5: Via Poisson reconstruction, the step of polycube gener-
ation gets good initial values through the closed forms implied by
the deformed shapes (middle). The righmost are the corresponding
polycube results.

4.2 ℓ1-based polycube generation

We follow the ℓ1-based formulation of boundary surface normal
alignment constraints in [Huang et al. 2014] for polycube genera-
tion, while enforcing transition conditions at cut faces to facilitate
the extraction of a seamless all-hex mesh. The objective energy is
defined similar to [Huang et al. 2014] as follows:

min
X

Earap + walignEalign + wdiffEdiff

s.t. A(X (M)) = A∂M

Πa,bX a(e) = X b(e), ∀e ∈ ta ∩ tb ∈ C.

(9)

The term Ealign is the normal alignment term, and it is defined
using the ℓ1 norm:

Ealign =
∑

f∈∂M

1

2A∂M

∥∥∥(xf
j − xf

i )× (xf
k − xf

i )
∥∥∥
1

, (10)

where (xi, xj , xk) are three vertices of a triangle in the boundary.

We also use as-rigid-as-possible energy term Earap to control the
non-rigid distortion of tetrahedra:

Earap =
∑

t∈M

Vt

VM

∥∥∇X t − polar(∇X t)
∥∥2

, (11)

where polar(∇X t) is the rotation part of deformation gradient. It
is computed at the beginning of each iteration using the current
parametric vertices X . The normal difference term Ediff is used

to control the details of the generated polycube:

Ediff =
∑

fi∩fj=e∈∂M\∂C

Afi +Afj

3A∂M
‖ni − nj‖

2

+
∑

fi∩fj=e∈∂C

Afi +Afj

3A∂M
‖Πijni − nj‖

2,

(12)

where ni, nj are mapped normals calculated by three parametric
vertices:

ni =
(xfi

j − xfi
i )× (xfi

k − xfi
i )

‖(xfi
j − xfi

i )× (xfi
k − xfi

i )‖2
. (13)

At the boundary of the cuts, the normals are also transformed by
the transition Πij , which is the transition from fi to fj .

In order to prevent degeneration, boundary area preserving should
be added, i.e. A(X (M)) = A∂M. It is used together with Ealign

so that mapped boundary normals are axis-aligned, which has been
verified in ℓ1-based polycube parametrization algorithm [Huang
et al. 2014]. The transition conditions at cut faces are formulated
as hard constraints in our optimization problem, which is critical to
the extraction of a seamless all-hex mesh.

Our algorithm uses the result from Poisson reconstruction as the
initial solution. After using Gaussian elimination to remove the lin-
ear transition condition constraints, we apply the numerical method
introduced by [Huang et al. 2014] to minimize the energy function.
The step of polycube cleanup is applied to fix the possible small
topology errors.

4.3 Integer constraints for all-hex meshing

For all-hex meshing, integer constraints at boundary and cuts
should be considered. Besides the coordinates of the corners, the
translational transitions at cuts should be integers as well. Thus, for
each ck ⊂ C we add another three integer variables to represent the
gap. After adding all such integer constraints into Equation (9), a
mixed-integer programming [Bommes et al. 2009] is used to solve
the problem again to get the final parametrization for hexahedral
mesh extraction.

5 Results and Discussions

Our method is robust to handle various complex models. Figure 12
shows a gallery of our results, and the statistics about the results are
listed in Table 1.

5.1 Comparisons

We compare our results mainly with polycube-based methods, ℓ1-
based Polycube [Huang et al. 2014] and Polycut [Livesu et al.
2013], since they are robust for all-hex mesh generation. Re-
sults show that our method can achieve lower distortion hexahedral
meshes compared with these state-of-the-art methods.

ℓ1-based Polycube. Indeed, ℓ1-
based polycube method can be
viewed as a special case of our
method by using a globally uni-
form frame field as an initial closed
form to start the optimization. As a
consequence, it has strong restriction on the topological structure
(see Figure 1 and the right result of the inset). For genus-zero mod-
els, our method also can produce better results than the ℓ1-based
polycube method, which usually leads to more stairs because of
lacking good enough initial axis alignment, and cannot even align
the feature lines well (see Figure 2). More comparisons can be
found in Figure 6, and their detailed hexahedral quality statistics,



Figure 6: Comparing to the results from the ℓ1-based polycube method [Huang et al. 2014] (bottom), our results (top) have fewer corners
(see Table 1) and better scaled Jacobian distributions (see Figure 7).

measured in scaled Jacobian, are shown in Figure 7. Our method
generates a larger number of high-quality elements and a smaller
number of distorted elements. For the fertility model, the result of
our method has 75.3% hexahedra with scaled Jacobian in (0.9, 1.0],
and it is only 66.1% for the ℓ1-based polycube method. Our method
also reduces the number of corners (see Table 1).
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Figure 7: Comparisons on scaled Jacobian distribution between
our method and ℓ1-based polycube method. The horizontal axis
indicates scaled Jacobian, and the vertical one is the proportion of
hexahedra in the corresponding scaled Jacobian interval.

Polycut. In Figure 8, we compare our result with [Livesu et al.
2013] on the carter model. It is obvious that our result has a smaller
number of corners (84 vs. 128), and the surface quadrilateral mesh
follows the curvature tensor better.

The two features, frame-field based axis alignment and topology
cuts, make our method robust to handle the complex spiral and
knot models shown in Figure 14. The two high-quality hexahedral
meshes without any corner are automatically generated using our
method, which is impossible for the previous polycube methods.

5.2 Effect of initial frame field

The quality of the all-hex meshing result is influenced by the ini-
tial frame field in solving Equation (1). In the left of Figure 9, we
first use a smaller weight value, 100, on the boundary normal align-
ment during the initial frame field generation. Thus the resulting

Figure 8: Top row: Hexahedral meshing results using our method,
Bottom row: Results using Polycut [Livesu et al. 2013].

vector field is more straight and closer to a globally uniform one.
As a consequence, the final hexahedral mesh is more like the one
generated by the ℓ1-based polycube method [Huang et al. 2014].
In the right of Figure 9, a larger weight value, 1000, is applied to
make the initial frame field tightly aligned with the boundary nor-
mal. Comparing to the left one, the result is better in the sense of
fewer unnecessary corners, which also demonstrates the advantage
of using a non-uniform closed form to guide the all-hex meshing.

5.3 Model with multiple boundaries

In Figure 10, we demonstrate a model with a complex topological
structure that has two disconnected boundaries, i.e. there is a void
inside. Our method is able to reliably find the cuts, and generate
a high-quality hexahedral mesh with a small number of corners.
For the shell-like model, meshing one of its boundary surface into
quadrilateral mesh and then extruding it towards another one will



Figure 9: Results from different initial frame fields.

generate a hexahedral mesh with internal singularities if there are
singularities in the quadrilateral mesh.

Figure 10: The hexahedral mesh is generated on a model with two
boundaries. The leftmost is the cuts.

Since our method iteratively cuts the tetrahedral mesh, the handle
loop generated by [Dey et al. 2013] may pass previous cuts through
interior edges of the original mesh M as shown in the left of Fig-
ure 11. If such edges do not match each other on both sides of
the cuts (the intersections of yellow and cyan regions in the middle
top of Figure 11), the multiplication of transition matrices around
those edges may be not identity since each cut has only one transi-
tion function. As a consequence, such edges may become internal
singularities. To fix this, we find a contractible loop containing
the mis-matched edges on the previous cut and adjust the handle
according to the loop to get a new homotopic one without the mis-
match problem (see the right of Figure 11).

Figure 11: The two boundary surfaces of the hollow-eight model
M are connected after the first cut (indicated by the cyan trian-
gular mesh). The second handle generated by [Dey et al. 2013]
is shown as the blue lines in the left image, which contains mis-
matched interior edges in M. After handle adjustment (right), the
interior edges match each other, and lead to a valid cut.

6 Conclusion

We propose a method to generate high-quality hexahedral meshes
without internal singularities. The method inherits the robustness

of polycube-based methods by getting rid of internal singularities.
However, sharply different from the existing techniques, it signif-
icantly extends the topological structure of the 3D frame fields
implied by hexahedral meshes from exact forms to closed forms,
which increases the degrees of freedom by the first Betti number of
a 3d-manifold. Therefore, our method is able to obtain all the topo-
logical structures of hexahedral meshes without internal singulari-
ties, and find high-quality results in a much larger space. Besides,
the closed forms progressively constructed in our method provide
better initial axis alignment for the polycube construction, which re-
duces unnecessary stairs, corners, and preserves the mesh features
more accurately.

One of the major limitations of our method is the high computa-
tional cost in the extended ℓ1-based polycube generation because
the current numerical method is not specially designed. For such
tasks, using Gaussian elimination to handle the constraints in-
creases the density of Hessian matrix significantly, and introduces
large costs. Improving the method of cut generation should be very
helpful to reduce the number of constraints.

In our experiments, if the initial frame field contains singularities
far from the boundaries, such singularities are difficult to be re-
moved by our optimization, and introduce large distortion in Pois-
son reconstruction (see the left of Figure 13). Another failure case
with inappropriate initial frame field is shown in the right of Fig-
ure 13. Under such circumstances, we choose smaller boundary
alignment weight during initial frame field generation [Huang et al.
2011] to make the singularities close to the boundaries, which leads
to similar results to the ℓ1-based polycube method. In addition, our
method inherits one of the limitation of ℓ1-based polycube method,
which may produce degener-
ate parametrization for slim
wedges. As shown in the inset,
our method can handle a wedge
with an angle of 25 degrees, but
will fail for a slim one with an
angle of 10 degrees.

Although our cut generation method works well in our experiments,
it cannot theoretically guarantee to obtain cuts. There exist extreme
cases that the property (b), defined in Section 2, cannot be satisfied
because ∂B − ∂Mc,k might be split into more than two discon-
nected patches.

Although our method is able to generate high-quality hexahedral
meshes for many complex models, there are plenty of interesting
future works. One obvious work is to take the feature alignment,
density and orientation control into account [Panozzo et al. 2014;
Jiang et al. 2015]. Simplifying the topological structure of the
closed-form induced polycube to get coarse meta meshes [Nieser
et al. 2011] is also a valuable direction to explore.
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Figure 12: Gallery of the results automatically generated by our method.

Figure 13: (a) Sphere. Since the singularity lines of the given ini-
tial frame field (top left) are deeply inside the volume, our method
cannot remove them and the singularities of the optimized frame
field (bottom left) are far from the boundary. Top middle: The trace
lines of the optimized frame field. Bottom Middle: Its highly dis-
torted Poisson reconstruction. (b) Hollow-sphere. Given an initial
frame field with 8 singularity chains (top), the frame field has some
internal singularities after optimization (bottom).
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