
Automatic Frame Field Guided Hexahedral Mesh Generation
Technique Report

Jin Huang, Tengfei Jiang, Yuanzhen Wang, Yiying Tong, Hujun Bao

State Key Lab of CAD&CG Zhejiang University, Michigan State University

Abstract

We present a hexahedralization method based on a systematic treat-
ment that eradicates the singularities that would lead to degenera-
tion in the volumetric parameterization. Such singularities could be
abundant in automatically generated frame fields guiding the inte-
rior and boundary layouts of the hexahedra in a purely hexahedral
mesh. We first give the mathematical definitions of different types
of surface singularities, which are involved in making the surface
of the output hexahedral mesh conform to the input model while
optimizing mesh quality. We then give a practical framework for
adjusting singularity graphs by automatically modifying the rota-
tional transition of frames between charts (cells of a tetrahedral
mesh for the volume) to resolve the issues detected in the inter-
nal and boundary singularity graph. After applying an additional
re-smoothing of the frame field with the modified transition condi-
tions, we cut the volume into a domain with a sphere-like topology
automatically, by combining the tetrahedra. Finally, we efficiently
solve a mixed integer problem on this domain for a global param-
eterization, which follows the frame field and respects the transi-
tions across the chart boundaries, and creates a properly connected
hexahedral mesh using integer grids of the parameterization.

1 Introduction

Automatic high quality hexahedral mesh generation has sometimes
been dubbed the “holy grail” in the meshing community, as such
meshes benefit finite element methods due to their tensor product
nature, leading to improvement both in speed and in accuracy. Re-
cent development in quadrangulation in computer graphics and ge-
ometric modeling has stirred new research effort in this direction
based on meshing methods guided by the cross-frame fields, fields
of equivalence classes of local frames under the chiral cubic sym-
metry group (the set of 24 rotations that keep a cube centered at
origin invariant without changing the right-handed frame to a left-
handed one).

Such methods first create a parameterization of the volume for
3D charts intersecting at common interfaces, followed by extract-
ing the vertices of the hex mesh from the integral points in the
parameter domain. The edges of the hexahedra in the mesh would
then follow the gradient lines of the parameterization. For compu-
tational purposes, the boundary of the resulting mesh must conform
to the original boundary and create patches sharing the same inte-
ger parameter value over smooth regions, and creating sharp edges
and corners near the original features of the mesh. Thus, feature
alignment and angle distortion reduction are both linked to a high-
quality frame field with one of the axes aligned to the boundary
normal on all surface points.

In theory, CubeCover method [Nieser et al., 2011] extending
QuadCover method [Kälberer et al., 2007] formulated necessary
conditions for the volumetric parameterization, and laid down the
foundation for automatic hexahedralization methods based on such
parameterizations. They formulated the basic requirements of ro-
tational and translational transitions on each interface between dif-
ferent charts or different parts of the same chart serving as the do-
mains for parameterizations. The nontrivial transitions (cuts) of the
domain are necessary to provide flexibility of creating a mesh with
high-quality element shape. Otherwise, a polycube-like topology
would be enforced, leading to huge angle distortion, undesirable
for engineering or scientific computing purposes.

Combining the global volumetric parameterization with compat-
ible rotational and translational transitions as specified in the Cube-
Cover method with automatically computed guidance field, one
would imagine that an automatic hexahedral meshing tool would
be straightforward to construct. However, unless manually con-
structed or adjusted, frame fields do not usually satisfy these com-
patibility conditions for non-degenerate clean volumetric parame-
terization. There can in fact be a multitude of different types of
problems if one computes rotational transitions from automatically
generated frame fields that are continuous up to a rotation in the
cube symmetry group. The simplest example of the difficulty in
such volume parameterization would probably be the case when
two edges of a triangle are both along the border of two boundary
patches each restricting one parameter to an integer. Thus the tri-
angle will share the same set of two variables, rendering its image
in the parameter domain degenerate (collinear). Some other exam-
ples include internal line singularities of degenerate types, bound-
ary edges that are required to fold the pairs of triangles adjacent to
them onto one another, and nearby singularities forcing the param-
eters to jump from one integer to another across a short distance.

In this paper, we aim at formulating these problematic cases
mathematically and systematically, providing a framework to de-
tect them and treat them in a consistent way, and finally generat-
ing pure hexahedral mesh by solving a mixed integer programming
problem after automatically cutting the volume into a topologically
trivial parameter domain. Our main contributions include:

• We give definitions and condition for checking surface singu-
larities admissible for hexahedral meshing in addition to those
for internal singularities.

• We provide a procedure for treatment of the defects in the
singularity graph, which if left alone would lead to degenerate
parameterization.

• We demonstrate a practical tool for automatical pure hexahe-
dral mesh generation guided by automatically generated guid-
ance cross-frame input fields.

1



Figure 1: Automatically generated pure hexahedral meshes. Our method is able to handle models ranging from basic primitives to complex
ones.

2 Related Work

As mesh generation has been an active research topic for a long
period of time, a huge number of methods have been proposed
to generate high quality triangular, tetrahedral meshes automat-
ically [Liu et al., 2009, Mullen et al., 2011]. Most of them rely
on Delaunay tessellation (dual of Voronoi diagrams), which en-
sures the connectivity and element quality. However, quadrangu-
lar, hexahedral remeshing is substantially more difficult because
there is no such dual structure for non-simplicial elements. In 2D
manifold quadrangulation, some recent works [Dong et al., 2006,
Huang et al., 2008, Zhang et al., 2010] use Morse-Smale Com-
plexes (MSC) [Edelsbrunner et al., 2001] to guarantee a pure quad-
rangulation based on a scalar function with periodical prop-
erty. However, 3D MSCs do not necessarily lead to Hexahe-
dral structure. As a consequence, many hexahedral remesh-
ing methods, such as sweeping [Shih and Sakurai, 1996] and
paving [Staten et al., 2006] rely heavily on manual input to de-
fine the proper topological structure by decomposing the vol-
ume into simple parts. Such challenges make grid-based
methods [Su et al., 2004] or hex-dominant mesh-based meth-
ods [Yamakawa and Shimada, 2003, Lévy and Liu, 2010] often the
practical choice for computation performed on automatically gen-
erated domains in spite of their inferior quality to hex meshes.

Recent progress shows that global parameterization has achieved
great success in surface quadrangulation [Kälberer et al., 2007,
Bommes et al., 2009] with the help of a smooth frame field defined
on a manifold surface and compatible transition functions between
charts. From such a non-degenerate parameterization, a pure quad-
rangular mesh can be extracted by tracing the iso-lines. To extend
such a scheme to hexahedral remeshing, [Nieser et al., 2011] has
proposed a global parameterization method for hexahedral remesh-
ing, and [Huang et al., 2011] gives a method to automatically con-
struct a desired frame field. These two works are most relevant
to our method. Roughly speaking, we attempt to apply a param-
eterization method in CubeCover to the automatically generated
frame field. However, the task is extremely challenging as the
original frame field optimization does not take into account the
conditions on admissible singularity types (both inside the volume
and on the boundary). In addition, without a coarse meta-mesh
manually specified or generated from a manually specified frame

field, the generation of a topologically sound partitioning of the
volume for a global parameterization is not so straightforward as
one might expect. [Gregson et al., 2011] also proposed a method
for pure hexahedral remeshing with the topological restriction of
no internal singularity, thus leaving few freedom to optimize the
shape of hexahedra. As noted in [Nieser et al., 2011], it is often
necessary to move the right angle transition line in the parameter
domain on smooth regions of the surface into singular edges inside
the volume to have better element quality, as the former turns the
dihedral angle between a hexahedron’s two faces into nearly 180
degrees, while the latter only turns the sum of three such dihedral
angles around the internal edge to 360 degrees.

Singularity plays a critical role in detecting and remedying
this issue. [Shepherd, 2007] lists many topological restrictions
that arise in hexahedral meshing, and uses them in a frame-field-
independent remeshing algorithm. The topological constraints in
this work apply to the primal elements of a hexahedral mesh,
such as node, edge and face etc. Some methods have been pro-
posed to analyze the global topological structure of a quadran-
gular mesh or a 2D symmetry vector field by singularity graphs
[Tong et al., 2006, Palacios and Zhang, 2007]. In 2D quadrangula-
tion, noisy singularity points lead to problematic parameterization
results. Thus, some remedies have been proposed for denoising or
adjusting the singularities in the frame field [Kälberer et al., 2007].
For hexahedral remeshing, [Nieser et al., 2011] provides a defini-
tion on internal singularity types and proved some of its properties.
However, there is no existing work on automatic surface singu-
larity and internal singularity adjustment for frame fields used in
hexahedral meshing.

3 Overview

Our paper focuses on generating pure hexahedral meshes
from input cross-frame fields generated automatically, such as
[Huang et al., 2011].

Given a tetrahedral mesh Ω, which is composed of a set of
tetrahedra, such that each tetrahedron is associated with a frame
F = {U, V,W}, one member of a cross-frame (an equiv-
alent class of 24 orthonormal frames with axes chosen from
{U,−U, V,−V,W,−W}). To generate a pure hexahedral mesh

2



with edges following such an input, we compute a parameterization
with a method similar to the one proposed in [Nieser et al., 2011].
We loosely follow their notations below.

We denote the parameterization f = (u, v, w)T ∈ R3, which
can be expressed in different charts (tetrahedra). In tetrahedron t,
we denote its expression by ft. For two adjacent tetrahedra s and
t, the transition from fs to ft for a parameterization whose integer
grid points can be used in hexahedralization must satisfy

ft = Πstfs + gst, (1)

where g∗ ∈ Z3 and Π∗ is one of the 24 permutation matrices for
the cross frame containing the standard identity frame (denoted as
[I], and we have

Πst = Π−1
ts , gst = −gts. (2)

This requirement is due to the fact that if we use integral lines of
the gradients of the parameterization for edges, they must connect
to each other across the tetrahedron boundaries. We call any face
with a non-identity rotational transition or non-zero translational
transition a jump face.

For a surface triangle associated with tetrahedron t, there is a
transition Πt that makes the parameterization coordinates of a sur-
face point p satisfy

Πtft(p)[0] = gt, (3)

where gt ∈ Z and Πt ∈ [I]. Here, we must have one of the param-
eters being an integer to avoid cutting the corresponding hexes by
the boundary surface.

The translational part gst can be resolved during the parameter-
ization process if the hex edge size can be adjusted, but the ro-
tational part Πst must be properly prescribed so as not to lead to
fold-overs and degeneracy in parameterization while following the
given frame field.

A natural restriction on the rotational transition is that it should
make the angles between the corresponding axes in Ft and FsΠst

respectively as small as possible to create a smooth parameteriza-
tion. If the angle becomes greater than π/2, the images of the two
tetrahedra are highly possible to interfere in the parameterization
domain. In addition, more constraints are required to avoid the
defects caused by singularities as shown in the next section.

4 Rotational Transition and Singularity

A straight forward method to evaluate the rotational transition is to
find the best matching matrix that minimizes the following “align-
ment error”:

‖Ft − FsΠst‖,

‖(FtΠta)(1, 0, 0)T − na‖
(4)

where na stands for the normal of the surface triangle a in t (there
can be more than one boundary face for one boundary tetrahe-
dron). The matrix norm we use in this paper is the Frobenius
norm. The rotation for Πta can be made unique by choosing the
rotation fixing one of the axes. Such a setup is necessary for the
rotational transition of the gradient fields of the parameterization
to be smooth while remaining consistent with the rotational transi-
tion of the guidance frame fields [Nieser et al., 2011]. However, it
does not guarantee degeneracy-free parameterization results in the
presence of certain types of singularities.

4.1 Internal Singularities

If the valence (number of adjacent hexahedral cell) of an inter-
nal edge is not 4, it is an internal singularity. As formulated in
[Nieser et al., 2011], for an oriented edge e inside of the tetrahedral
mesh, which is surrounded by a small counter-clockwisely oriented
loop which passes through (t0, t1, · · · , tk, t0), define the type of
the edge respect to t0 as:

type(e, t0) = Πtkt0Πtk−1tk · · ·Πt0t1 . (5)

If type(e, t0) 6= I , the edge is a singularity edge. If the type is a
rotation around an axis, e.g., X , the parameterization coordinates
on the other two axes should be constant integers, i.e. the edge
will map to a straight line along the X direction in the (local) pa-
rameterization domain. For any other types of singularity type, the
edge will be mapped to a point, as there are no eigenvectors of
I−type(e, t0) producing integer jumps.

The requirement on the inner singularity vertex (Thm 2.2 in
[Nieser et al., 2011]) through counting valences would automati-
cally be satisfied when the rotational transitions are computed as
the minimization of the frame field transitions.

4.2 Surface Singularities

If the valence of a surface edge is other than 2, it is a boundary
singularity edge. Similar to the internal case, for an oriented sur-
face edge e, we also create a small counter-clockwise oriented loop
around it, which passes through (b, x, a, t0, · · · , tk, b), where the
faces sharing e, a and b, are the triangles adjacent to tetrahedron t0
and tk, respectively, and x stands for a point outside of the tetrahe-
dral mesh. We then define the type of the edge as:

type(e, a) = ΠbaΠtkbΠtk−1tk · · ·Πt0t1Πat0 , (6)

where Πba is a rotation around axis U aligning the V,W -axes on
triangles a and b when U -axis on each triangle is aligned to the
normal. More precisely, it minimizes

‖Re(na, nb)Ft0Πt0aΠab − FtkΠtkb‖,

where Re(na, nb) is the rotation around e that aligns na to nb,
which flattens the hinge formed by the two boundary triangles. If
type(e, a) is a rotation around an axis by ±π/2, it creates a sharp
edge on the surface in the parameter domain. If Πab differs from
identity, there is a rotational transition on V,W -axes on the surface.
The product of Πab’s along a loop around a surface vertex can be
used to detect singularity vertices on the surface, which forms a
sharp corner in the parameter domain with a discrete Gaussian cur-
vature (angle defect) of multiples of π/2. If the angle defect be-
comes π, the parameterization will try to wrap two squares around
a corner, leading to degeneracy.

The types allowed for boundary edges should be further reduced
to 7 admissible cases, excluding the rotations of π around the axes,
or there can be extreme angle distortion in the parameterization.
Furthermore, a singularity vertex on surface must correspond to a
discrete Gaussian curvature (angle defect) ±π/2 in the parameter
domain.

3



4.3 Inadmissible Singularities

The following issues will lead to degenerate tetrahedra in the pa-
rameterization domain:

• Compound singularity: If the type of a singularity edge is not
a rotation around a single axis, we name it a compound sin-
gularity. Such compound singularity edges will be mapped to
a single point in the parameter domain, thus inducing degen-
erate tetrahedra. For surface singularities, a rotation around a
single axis by π is also treated as a compound singularity.

• Zigzag: If two consecutive singularity edges e0 and e1 with
the same orientation in a tetrahedron t share the same type, i.e.
type(e0, t) = type(e1, t), these two edges will be mapped to a
straight line in the parameter domain, thus making the image
of the tetrahedron degenerate.

Thus, we need to schematically adjust the the initial rotational tran-
sition set evaluated according to Equation 4 to address the above
issues.

In practice, additional care may be necessary to avoid angle dis-
tortion. For internal singularity edges, the valences are in most
cases less than 6 when the singularity types are generated from the
automatically generated guidance frame field. For boundary singu-
larity edges, one may want to make sure that the dihedral angles do
not deviate far from the dihedral angles specified by the singularity
type in the parameter domain. Similarly, the boundary singularity
vertex should have compatible Gaussian curvature in the parameter
domain and on the mesh to avoid extreme angle distortion.

4.4 Adjust the Singularities

For an internal face shared by tetrahedra s, t, modifying the rota-
tional transition Πst into ΠstΠ by a matching matrix Π on a face
will affect the types of its three edges. The type of an edge which
is positively oriented to the direction of s→ t will changes to:

type(e, s,Π) = type(e, s)Π. (7)

In other word, the types of all these edges change by a same ro-
tation. Based on this equation, we use the following operations to
remedy the issues in the singularity graph one by one. It can be
applied the same way for surface singularities.

To remove a compound singularity (left of Figure 2), we split
it into multiple admissible singularities connected to it. First, for
an end node x of the compound singularity, we pick two adjacent
nodes. One node p is on the correct singularity, and another one q
is on the compound singularity. Then, we find a path which con-
nects p, q by non-singularity edges in the one-ring neighborhood
of x. These edges and x forms a fan of triangles (in a same orien-
tation). Then we adjust the rotational transitions on these triangles
by the same matching matrix to transform the edge xq into a reg-
ular edge, and at the same time, change the edges in the path into
proper singularities. Such an operation can be viewed as moving
the singularities pxq to the path. The same operation is also used to
snap near surface singularities (in the one-ring neighborhood of the
surface node) to the surface edges for simpler topological structure.

For a zigzag defect on edges px, xq (right of Figure 2), we
change the rotational transition on the face pxq to turn them into
regular edges.

x

p

q

=⇒ x

p

q

=⇒ x

p

q
=⇒ x

p

q
=⇒

Figure 2: Singularity adjustment. The colored edges are singular-
ity, and the edges in gray are all non-singularity edges. The thick
line indicates the edges changed the type in the operation.

In Figure 3, we demonstrate several typical cases in singularity
adjustment on a real data. To clearly show the details, we zoom in
on parts of the singularities shadowed by colored circles into the
right insets surrounded by the same colors respectively. The purple
region shows a zigzag on pxq, and a compound singularity pq is
highlighted in the blue. The pink region contains more than one
issues: pq is a compound singularity, we resolve it first by splitting
it into two regular singularities pq and py, then the zigzag at xpq
is shortened into xq.

These operations can be repeatedly performed until all the de-
fects are solved. In our experiments, any order provides enough
flexibility to ensure in the end a correct topology in most cases.
In the implementation, we fix the compound singularity first, then
surface snapping, and finally zigzag. Because adjusting the sur-
face singularity by Πta never affects the internal singularities, but
not vice versa, we clean up all the internal issues before surface
ones. The zigzag removing operations are performed last so as to
make the surface singularities aligned with the sharp features. In
rare cases, not all the defects can be resolved, especially when the
tetrahedral mesh is rather coarse.

The adjustment on rotational transition will increase the align-
ment error, and thus lead to possible difficulties in the following
parameterization step. By minimizing the alignment error with re-
spect to F , we can update the frame field according to the new
rotational transition. First, we lift the constraints for F ∈ SO(3),
i.e. F is treated as an arbitrary 3 by 3 matrix. Then, using the so-
lution of the linear least square problem in the previous step as the
initial value, we include a non-linear penalty of w‖FF − I‖2 (w is
set to 100 in all our results), and solve it again with Gauss-Newton
method. The solution will be converted to the best ZYZ Euler angle
representation, and serve as the initial value to minimize the align-
ment error with respect to such a rotation representation, and then
transform the solution back to the 3 by 3 matrix representation as
the updated frame field. In most cases, the largest angle between
the corresponding axes between two adjacent tetrahedra is about
30◦ when measured with the initial rotational transition, which in-
creases to about 120◦ after adjusting the rotational translation to
resolve compound singularity, and finally decreases to about 75◦

after updating the frame field.

4



p

p

q

p

q
qx

x

x

q
p

x

y

p

q
x

y

p
q

x

(a) (b)

(c)(d)

Figure 3: Example on removing inadmissible singularities. (a) is the input frame field visualized by streamline. (b) The initial singularities
extracted from it contains many inadmissible singularities (shown in red). After adjusting the singularities into (c), a pure hexahedral mesh
(d) can be extracted from the parameterization result.

5 Parameterization

We follow essentially the same procedure in CubeCover method,
i.e. finding the minimizer of the following energy∫

V

‖∇f − F‖2 d V ol,

which mean that the gradient of the parameterization should follow
the axes of the given frame field F as much as possible.

5.1 Topological Simplification

To increase efficiency, instead of simply creating a minimal span-
ning tree to remove a minimum set of jump variables g across
faces between tetrahedra adjacent in the tree. We create a 3D cell
with trivial internal topology that fills the inside of the volume to
create a proper domain for the global parameterization while re-
moving as many variables associated with faces as possible. Note
that the original possibly nontrivial topology is encoded by the
self-intersection of the cell’s boundary. We use the approach of
traversing the volume while maintaining the ball-like topology of
a slowly growing cell that eventually take over the whole inside of
the boundary surface.

We mark the tetrahedra already inside the cell with a flag.
Any non-rotational-jump-face (faces with rotational transition be-
ing identity) is a candidate for removal. If such a face is adja-
cent to tetrahedra both with the flag on, it can only be removed
if there is a non-singularity edge adjacent only to this unremoved
face. An arbitrary order of traversing such face candidates can
leave more faces than necessary. We follow the order of removing
the faces around a boundary edge of the growing cell simultane-
ously to make sure that we remove all non-rotational-jump-faces
except for those on at most g membranes necessary to separate the
inside of surface with genus-g. This procedure will leave few jump

face patches with potentially additional patches representing the
translational jumps necessary to cut high-genus models open for a
proper global parameterization.

5.2 Parameterization as a Mixed Integer Programming
Problem

We can cluster the faces left easily into patches. Each uses only
three integer jumps. It is fine to treat each face as an individual face
in theory, and use Gauss elimination to reduce the number of vari-
ables, or simply leave these variable in the final linear system and
increase the number of equations. However, this may turn these
constraints into soft constraints as we have to use penalty meth-
ods in the minimization process, which will in the end create less
smooth transition of the gradient lines. With the patches clearly
identified, we can put integer constraints on the internal singularity
lines and the boundary patches, and use three floating point values
per patch. The approach can greatly reduce the degrees of freedom
of the system, and expedite the process of the Gauss elimination if
we enforce the hard constraints as in QuadCover method.

The final system normally contains less than few tens of integer
variables for a given input frame field. We successively snap one
integer variable from the floating point value obtained in the pre-
vious solve in a greedy fashion. The linear system is assembled
through first removing redundant hard constraints, and then elim-
inating them from the variables by substitution. This can be done
on the gradient operator. After that, the transpose of the reduce
gradient operator and the gradient operator can be assembled to
get the reduced Laplacian operator for the optimization step. The
construction process can take long if the model contains a large
number of vertices, but the subsequent linear systems turned out to
take little time for each solve when we call the sparse linear solver
of Matlab.

5



We use a simple approach to produce the final mesh. First, we
generate the integer points within each tetrahedron, snapping them
together through a spatial indexing structure to avoid duplicates.
Second, we generate half-integer grid points corresponding to cen-
ters of hexes, again snapping them to avoid the case when the cen-
ters are located on a face between two tetrahedra. Last, we follow
the U,V,W directions to find the corresponding 8 corner vertices for
each center. During this process, we keep track of how far it needs
to go, and the change of directions when we go across a jump-face.

6 Results

We tested the proposed method on several models. The statistics
on the models are given in Table 1 and Table 2. The timing is
measured on a PC with an I7 940 CPU at 2.8 GHz and 12 GB
RAM. To evaluate the dihedral angles of an edge in a hexahedron,
the normal of each adjacent quad face is evaluated by averaging
the four triangle normals in two different tessellations of the quad
face. As shown in the table below, nearly all the elements are with
decent shape quality measures.

model tet compound zigzag snap time
prism 91k 0 4 0 0.454s

cylinder 48k 0 16 0 0.388s
nut 65k 0 0 75 0.391s

sphere 80k 3 28 0 3.299s
Pretzel 169k 5 0 711 14.311s

sculpture 105k 0 0 0 0.709s
hinge 434k 0 0 71 2.544s
CAD 530k 0 0 220 6.270s

Table 1: Statistics of the results. The number of input tetrahedra,
inadmissible singularity edge, and time used for fixing them are in
columns tetrahedron, compound, zigzag and time.

model time hex angle length scaled jac
prism 0.75m 8960 90/3.749 1.321/0.147 0.993/0.017

cylinder 0.58m 5120 89.999/7.164 1.644/0.334 0.976/0.047
nut 1m 6640 89.984/5.749 1.256/0.160 0.985/0.033

sphere 1.5m 7776 89.962/7.531 1.534/0.446 0.974/0.070
Pretzel 1.17m 18997 89.998/12.10 1.549/0.284 0.936/0.101

sculpture 1.3m 10003 89.989/5.736 1.419/0.299 0.984/0.026
hinge 7.1m 41496 89.999/5.119 1.201/0.257 0.988/0.049
CAD 81.5m 57748 89.998/5.912 1.202/0.281 0.984/0.049

Table 2: Statistics of the results. The time used in
parametrization is listed in the second column. The fol-
lowing columns list mean/standard deviation of dihedral an-
gles, edge lengths and scaled Jacobian of the parameterization
[Shepherd and Tuttle, 2006] for measuring the quality of the out-
put hexahedral mesh.

To better demonstrate the parameterization result with the ad-
justed singularity, we do not apply any postprocessing to smooth
the node position in the hexahedral mesh. Neither do we snap sur-
face node of the output hexahedral mesh to the input model surface
nodes. The colored ribbons in the figures visualize the input frame
field streamlines along its axes. [Huang et al., 2011].

For models shown in Figure 4, our method naturally capture
their symmetry. Even for high genus models, our method is able to
automatically find a proper topological structure. In Figure 5, with-
out any manual input, the models Pretzel and Hinge are remeshed

Figure 4: Topological structures of the singularities.

into a polycube-like topology, and several internal singularities are
automatically introduced on the model sculpture for better quality.

Figure 5: High genus models.

We also tested our method on a very complex CAD model. Man-
ually constructing a meta mesh for such a model can be extremely
time-consuming. This model has some small features, which even
cause problems in some surface quadrangulation techniques. By
choosing a relatively small element size, our method is able to
generate a pure hexahedral mesh and preserve important features
at the same time. The initial singularity graph extracted from the
input frame field has roughly depicted the final connectivity struc-
ture. However, the original singularities are on or near the surface,
such near misses can lead to degenerate and distorted parameteri-
zation. After automatic adjustment, all singularities are snapped to
the surface for this model. Subsequently there is no more singular-
ity inside the volume, which renders its topology polycube-like.

7 Conclusion

We present a global volumetric parameterization-based tool to au-
tomatically generate purely hexahedral mesh from a 3D frame
field, which can be of arbitrary topology as it may be automatically
constructed. To eliminate degeneracy in parameterization caused
by conflicting rotational transitions often present in an automat-
cally generated frame field, the definition and some analyses on

6



Figure 6: A complex CAD model.

inadmissible internal and surface singularity types are provided in
this paper. We also devised a framework to adjust the problematic
singularities by applying a sequence of basic operations.

We have no theoretical proof that the set of all the conflicting
geometric and topological structure can be detected by using the
definition of inadmissible singularity, and thus the method does not
provide a sufficient condition to guarantee a complete solution for
automatic purely hexahedral remeshing. Indeed, we do find that the
sequence of adjustment described in section 4.4 does not always
converge to an admissible structure that resolves all the issues in
the singularity graph. We conjecture that it may be related to the
issues in untangling the topological hex meshes.

We currently focus on the singularity structure. Thus, to get
a valid parameterization, we often use a relatively small element
size, which leads to a large number of hexahedra. As shown
in [Zhang et al., 2010], sizing is important for a more control-
lable tessellation, and proper sizing can lead to coarser hexahe-
dral mesh. Extension on some recent works [Peng et al., 2011,
Tarini et al., 2011] can potentially be employed to coarsen the re-
sult into a better mesh.

References

[Bommes et al., 2009] Bommes, D., Zimmer, H., and Kobbelt, L. (2009).
Mixed-integer quadrangulation. ACM Trans. Graph. (SIGGRAPH), 28,
3:77:1–77:10.

[Dong et al., 2006] Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and
Hart, J. C. (2006). Spectral surface quadrangulation. ACM Trans. Graph.
(SIGGRAPH), 25(3):1057–1066.

[Edelsbrunner et al., 2001] Edelsbrunner, H., Harer, J., and Zomorodian,
A. (2001). Hierarchical Morse-Smale complexes for piecewise linear
2-manifolds. Discrete and Computational Geometry (SoCG), 30(1):87–
107.

[Gregson et al., 2011] Gregson, J., Sheffer, A., and Zhang, E. (2011). All-
hex mesh generation via volumetric polycube deformation. Computer
Graphics Forum (SGP), 30:5:1407–1416.

[Huang et al., 2011] Huang, J., Tong, Y., Wei, H., and Bao, H. (2011).
Boundary aligned smooth 3d cross-frame field. ACM Trans. Graph.,
30:143:1–143:8.

[Huang et al., 2008] Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L.,
and Bao, H. (2008). Spectral quadrangulation with orientation and align-
ment control. ACM Trans. Graph., 27:147:1–147:9.

[Kälberer et al., 2007] Kälberer, F., Nieser, M., and Polthier, K. (2007).
Quadcover - surface parameterization using branched coverings. Com-
puter Graphics Forum, 26(3):375–384.

[Lévy and Liu, 2010] Lévy, B. and Liu, Y. (2010). Lp centroidal Voronoi
tessellation and its applications. ACM Trans. Graph. (SIGGRAPH),
29(4):119:1–119:11.

[Liu et al., 2009] Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L.,
and Yang, C. (2009). On centroidal voronoi tessellation-energy smooth-
ness and fast computation. ACM Trans. Graph., 28:101:1–101:17.

[Mullen et al., 2011] Mullen, P., Memari, P., de Goes, F., and Desbrun,
M. (2011). Hot: Hodge-optimized triangulations. ACM Trans. Graph.,
30:103:1–103:12.

[Nieser et al., 2011] Nieser, M., Reitebuch, U., and Polthier, K. (2011).
CUBECOVER - parameterization of 3d volumes. Computer Graphics
Forum (SGP), 30:5:1397–1406.

[Palacios and Zhang, 2007] Palacios, J. and Zhang, E. (2007). Rotational
symmetry field design on surfaces. ACM Trans. Graph. (SIGGRAPH),
26:3:55.

[Peng et al., 2011] Peng, C.-H., Zhang, E., Kobayashi, Y., and Wonka, P.
(2011). Connectivity editing for quadrilateral meshes. ACM Trans.
Graph., 30:141:1–141:12.

[Shepherd, 2007] Shepherd, J. (2007). Topologic and geometric
constraint-based hexahedral mesh generation. PhD thesis, University
of Utah.

[Shepherd and Tuttle, 2006] Shepherd, J. F. and Tuttle, C. J. (2006). Qual-
ity improvement and feature capture in hexahedral meshes. Technical
Report UUSCI-2006-029, The University of Utah.

[Shih and Sakurai, 1996] Shih, B.-Y. and Sakurai, H. (1996). Automated
hexahedral mesh generation by swept volume decomposition and re-
composition. In 5th International Meshing Roundtable, pages 273–280.

[Staten et al., 2006] Staten, M. L., Kerr, R. A., Owen, S. J., and Blacker,
T. D. (2006). Unconstrained paving and plastering: Progress update.
In In Proceedings, 15th International Meshing Roundtable, pages 469–
486.

[Su et al., 2004] Su, Y., Lee, K., and Kumar, A. S. (2004). Automatic hex-
ahedral mesh generation for multi-domain composite models using a hy-
brid projective grid-based method. Computer-Aided Design, 36(3):203
– 215.

[Tarini et al., 2011] Tarini, M., Puppo, E., Panozzo, D., Pietroni, N., and
Cignoni, P. (2011). Simple quad domains for field aligned mesh
parametrization. ACM Trans. Graph., 30:142:1–142:12.

[Tong et al., 2006] Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun,
M. (2006). Designing quadrangulations with discrete harmonic forms.
In Proceedings of the fourth Eurographics symposium on Geometry pro-
cessing, SGP ’06, pages 201–210, Aire-la-Ville, Switzerland, Switzer-
land. Eurographics Association.

[Yamakawa and Shimada, 2003] Yamakawa, S. and Shimada, K. (2003).
Hex-dominant mesh generation with directionality control via packing
rectangular solid cells. In Proceedings of Geometric Modeling and Pro-
cessing 2002, pages 2099–2129.

[Zhang et al., 2010] Zhang, M., Huang, J., Liu, X., and Bao, H. (2010). A
wave-based anisotropic quadrangulation method. ACM Trans. Graph.
(SIGGRAPH), 29(4):118:1–118:8.

7


	Introduction
	Related Work
	Overview
	Rotational Transition and Singularity
	Internal Singularities
	Surface Singularities
	Inadmissible Singularities
	Adjust the Singularities

	Parameterization
	Topological Simplification
	Parameterization as a Mixed Integer Programming Problem

	Results
	Conclusion

