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Abstract—In this paper, we introduce an interactive approach to generate physically-based shape interpolation between poses. We
extend linear modal analysis to offer an efficient and robust numerical technique to generate physically-plausible dynamics even for
very large deformation. Our method also provides a rich set of intuitive editing tools with real-time feedback, including control over
vibration frequencies, amplitudes, and damping of the resulting interpolation sequence. We demonstrate the versatility of our approach

through a series of complex dynamic shape interpolations.
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1 INTRODUCTION

In computer animation of characters or deformable ob-
jects, interpolating between two given poses (key frames)
of a same mesh is a ubiquitous task. One must not only
produce visually-pleasing deformations between shapes,
but also create complex dynamic idiosyncracies along
the way to increase realism and visual impact. Offering
an easy-to-use, interactive framework for a dynamic
shape interpolation is currently, however, considered
difficult.

1.1 Problem Statement

In this paper, we will deal with 3D objects, each rep-
resented as a simplicial complex (z,C), where C en-
codes the connectivity of the tetrahedral mesh and = =
(zt,---,at)t € R3" denotes the shape, ie., the set of
positions of the mesh vertices. We assume that an object
(r,C), where r is its rest shape, is provided by the user,
along with two poses x4,z p of this 3D object. We wish
to evaluate a physically-based shape deformation z(¢)
with ¢ € [0,T], such that z(0) = z4 and z=(T) = zp
while offering intuitive and interactive control over the
dynamics throughout the interpolation sequence.

To address this problem, we will introduce a method
that converts the deformation gradient between a shape
and its rest position into local rotations and strains,
and performs spectral analysis to efficiently interpolate
two shapes with a complete control over the motion.
Working in the space of rotations and strains will prove
to handle extremely large deformation correctly, making
our approach very robust, yet interactive.
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1.2 Previous Work

Pose interpolation has been investigated in a number of
contexts. We briefly review the main approaches next.

Purely Geometric Interpolation Shape interpolation
methods provide fast and reasonable inbetweening of
two given geometric shapes, albeit without control over
dynamical effects. For example, “as-rigid-as-possible”
shape interpolation establishes compatible triangulation
of 2D or 3D shapes, and creates per-simplex interpo-
lations of the corresponding simplices based on a ge-
ometric decomposition of the transformation matrix into a
rotation and a stretching matrix. The final vertex paths
are computed through a global best fit of these per-
simplex transformations [1]. In a more recent work,
Kircher et al. [2] achieve a wider range of geometric
interpolations through blending of differential (rotation-
and translation-invariant) representations of poses. Geo-
metric modeling in “shape space” is another purely ge-
ometric approach to shape interpolation, where a notion
of geodesics in shape space is used to provide an as-
isometric-as-possible path between two poses [3].

Physically-based Interpolation If material properties
are known, one can theoretically solve for the optimal
deformation between two given poses of an elastic
object through space-time constraints and/or optimal
control methods [4], [5]. However, nonlinearities induced
by the laws of physics render these approaches dra-
matically slower than purely geometric methods for
complex objects (if not intractable). More recently, an
approach based on coarse and meshless modeling [6] of
deformable shapes was introduced to produce smooth
interpolations at interactive frame rates through a min-
imization of rigidity and volume-preservation energies.
However, the results are visually similar to purely geo-
metric methods, producing little to no vibrations due to
the choice of mostly geometrically-motivated energies.
Optimal control was also explored lately to adjust a
motion to a desired trajectory in real-time [7], but it did



Fig. 1. Our shape interpolation method can interactively provide a dynamic motion between poses as demonstrated
in this 4-keyframe interpolation on a raptor model (rest shape, top left). While smooth interpolation can be obtained
automatically (shadow shapes, yellow), the user has control over the dynamics in realtime, allowing easy and
interactive editing of frequency, amplitude, and damping of vibration modes to enhance motion complexity.

not address the challenging problem of getting the initial
trajectory connecting the input key frames at interac-
tive rates. A reduced optimal control was also recently
proposed to give plausible dynamical interpolation [8].
However, this approach requires significant computa-
tions each time a new keyframe is chosen, preventing
realtime user interaction.

Modal Analysis Although not directly applicable to
the problem of pose interpolation per se, a particularly
efficient and natural way to model physical behavior is
through modal analysis [9], [10], which decomposes the
space of deformations into a set of vibration modes. Note
that linear modal analysis is only physically valid for
small perturbation around the pose over which spectral
analysis of the stiffness and mass matrices is performed.
However, a corotational method (“Modal Warping”) was
proposed to gracefully extend the original approach to
large deformations [11], at the price of an approximate
time integration to compute positions. Unfortunately,
modal analysis has been used primarily for forward
physical simulation instead of interpolation between
given key frames. Recent model reduction methods [12],
[13] are purely data-driven, with no explicit modeling
or control of dynamic properties, such as mass, damp-
ing, frequency etc. Closer to our concern is a recent
approach coined Wiggly Splines [14], which provides a
link between traditional animation splines and vibration
modes. With their framework, assuming that vibration
modes of an object are known (via either procedural
or example-based methods), an animator can design a
motion from one pose to another containing intentional
vibrations whose frequency, damping, and relative phase
can be tweaked as desired for cinematic effect. While this
method offers intuitive control of the deformation and
its dynamics, the linear space of deformations that the
authors restrict the approach to seems mostly amenable,
as is, to wiggly motions.

1.3 Rationale and Contributions

We depart from previous methods by proposing an
approach that draws both on physically-based (in par-
ticular, through spectral motion decomposition) and ge-
ometric methods (through a geometric decomposition

of eigenmodes). Building upon the equations of linear
elasticity that govern small deformations, our hybrid
technique treats linear deformation modes as tangent
vectors in a rotation-strain space, which describes the
deformed object through its deformation gradient field
represented as the product of a local rotation and a
material stretch tensor. Linear combinations of modes
in this new representation produce physically-plausible
very large elastic deformations, extending the domain of
validity of Modal Warping even further. As our approach
allows a simple map from the shape to the modes, we
also contribute to the problem of elastic shape defor-
mation by proposing an interactive alternative to Space-
Time Constraints as efficient as purely geometric meth-
ods, yet offering a rich set of controls over the dynamics
of interpolation: any pair of poses can be interpolated,
and the frequency, amplitude, and damping of vibration
modes can be intuitively and interactively edited.

1.4 Algorithm Overview

Our approach consists of a succession of a few sim-
ple steps, some performed offline before any user-
interaction, and some performed at runtime to allow
for interactive design of a dynamic shape interpolation
between two poses.

o Pre-computation: Given a tetrahedron mesh in its
rest shape, we compute the vibration modes W
through classical Modal Analysis. Then we convert
them into a basis W in rotation-strain space (Sec-
tion 2.2), capable of representing extremely large
deformation.

o Runtime computation: Key frames x(0),z(T)
are also converted into rotation-strain space as

Z(0),Z(T) (Section 2.1). Their modal coordinates
z(0),2(T) are then computed through the relation
Wz(t) = z(t). With (optional) user controls, we

interpolate z(0) and z(T) according to the free
vibration motion equation with optimal frequency
and damping parameters (Section 2.3), and finally
reconstruct each shape of the interpolation through
Poisson reconstruction (Section 2.1).



2 DYNAMIC SHAPE INTERPOLATION

We now elaborate on each individual component of
our approach, the overall algorithm being given in Sec-
tion 2.4.

2.1

To help us deal with very large deformation, we intro-
duce rotation-strain coordinates based on polar decompo-
sition of the deformation gradient of a pose. Given a
shape vector z, its deformation gradient with respect
to the rest shape r is computed as m = Gz (one 3x3
matrix per tet), where G is the commonly-used discrete
gradient operator corresponding to the continuous gra-
dient operator V with respect to r through linear finite
elements [15]. For each tet T;, we further decompose
m;=(Gz); using polar decomposition [16] into the prod-
uct of a rotation R; and a symmetric tensor Id+.S; (where
Id is the identity matrix, and S; is the Biot strain ten-
sor [16]). Similarly to [17], we finally apply the logarithm
function to the rotation matrix, thus decomposing the
deformation gradient m; per tet into a pair [log(R;), S;]-
The array 7 := {{log(R;)}:,{Si}:} (where the index 14
goes through every tet) thus encodes the deformation
gradient for the whole shape z, and forms what we will
refer to as rotation-strain coordinates. We will denote by
T () the map between the Euclidean coordinates of shape
2 and the rotation-strain coordinates Z:=7 (z). Note that
this map is non-linear, but trivial to compute through
local polar decomposition of the deformation gradient.
Note also that by definition, the rest shape r has null
rotation-strain coordinates: 7 = 0.

Finally, one can recover the shape x from the rotation-
strain coordinates 7 = {{log(R;)}:,{S:};} through a
pseudo-inverse map 7 ~!(Z), defined through exponen-
tials of matrices (or simpler group difference maps) and
a linear solve:

Rotation-Strain Coordinates
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where the position constraint is used to remove the
translation invariance of our representation, || - || denotes
the Frobenius norm of matrices, |T;| is the volume of
tetrahedron T3, and |Vi| = > (4., emy |T5]/4 denotes
the volume associated with node z;. The position ¢
can, e.g., be set to the linear interpolation of the two
barycenters of boundary shapes, or set to follow a
parabola if the object is supposed to be free-falling.
Note that this shape recovery from our coordinates is
essentially a 3D Poisson reconstruction, as  derives
from the deformation gradient field. By turning the
constraints into (weighted) penalty terms added to the
target function, this least-square system can be solved
with a typical symmetric sparse linear system solver (we
use UMFPACK [18] in our implementation), for which
Cholesky factorization can further improve efficiency,

since the coefficient matrix is determined only by the rest
shape and the constraints and will not change during the
interpolation.

2.2 Non-linear Vibration Modes

As we now detail, the rotation-strain space we defined
is a particularly convenient way to extend linear modal
analysis (that we review briefly first) and produce ana-
lytical expressions of very large vibrations.

2.2.1 Modal Analysis Overview

When considering small deformations around the rest
shape, linear elasticity is a good alternative to the full
treatment of nonlinear dynamics. Equations of motion
are written in terms of the displacement field v =2 —r
between a current shape = and the rest state r through:

@)

where K is the classical linear finite element stiffness ma-
trix (the Hessian of the quadratic potential energy of the
deformable body), while M is the lumped mass matrix
(see [15] for details). Matrix D describes the commonly-
used Rayleigh damping, defined as D = axg K+ ap M,
where ax and aj; are damping parameters.

Further simplifications can be exploited through Modal
Analysis [9][19], an approach that makes use of the
solutions of the generalized eigenproblem:

Ku+Du+ Miu=0

Ky = XMy, @)

which are vibration (eigen)modes W; of (eigen)frequency
A; representing the natural characteristic displacements
that the elastic object can undergo. After assem-
bling the modes in a modal displacement matrix W =
(W1 Wy ... W,) and the eigenvalues in a diagonal modal
frequency matrix A = diag(X3, X%, ..., ), one can verify
that the modal displacement matrix W diagonalizes both
stiffness and mass matrices:

WKW =A  W'MW =Id. 4)

Consequently, if we decompose a time-varying deforma-
tion u(t) into its modal components through

u(t) = Wz(t) ®)

where z(t) stores the modal coordinates (representing the
“magnitudes” of all the eigenmodes), then Eq. (2) can be
written as:

(6)

Notice that the dynamics of each eigenmode can now
be computed independently since A is diagonal. Finally,
the shape trajectory z(¢) can be recombined simply by
linear superposition of each modal magnitude through
z(t) =r+Wz(t) to get the resulting elastic motion. For
efficiency, one may only keep the modes corresponding
to low frequencies as this drastically reduces the amount
of computations necessary to generate a realistic motion.
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2.2.2 Non-linear Geometric Extension of Linear Modes

Modal analysis is particularly attractive as there is a
linear shape reconstruction map between the modal mag-
nitudes z and the current shape x as we just showed.
Alas, this linearity is also its biggest limitation: such
a fully linear treatment lacks rotation invariance (i.e.,
a finite rotation induces a non-zero strain), leading to
dramatic visual artifacts for large deformation. A simple
remedy resides in the use of a corotational method
in computational mechanics [20]: one can rewrite the
displacement field per tet in a different, rotated frame
(traditionally called “corotated (CR) frame”) to obtain a
smaller corotated displacement field ucr. Modal warp-
ing [11] exploits a similar factoring out of the local
rotation to obtain a linear relation between wucr and
z. Unfortunately, this treatment still requires finding
a displacement u coherent with ucgr, and a history-
dependent integration is then needed to account for the
rotations in time. To circumvent this path-dependency
issue, the actual history z(7) for 7 €0, ] is replaced by a
quasi-static ramping of z(¢) to get a plausible u(¢). While
only very approximative for arbitrary deformation, this
method convincingly outperforms the fully linear modal
analysis without dramatically increasing computational
time [21]—but it is not directly applicable in our case
since there is no straightforward map from the displace-
ment field u to the modal coordinates z (See Section 2.5).

We propose instead another extension of linear modal
analysis, based on geometric extrapolation. We keep the
modal analysis setup as is and we only modify the final
shape reconstruction. That is, we still consider Eq. (6) as
the set of ODEs that the mode coordinates z satisfy;
however, we change the reconstruction map from z to
x to incorporate some geometric nonlinearity. To un-
derstand our approach, consider a small deformation z
around the rest shape r, ie, x = r+u with u being
small. Remembering that we refer to V as the spatial
gradient with respect to r, we know from conventional
linear elasticity that:

B B Vu+(Vu)t  Vu—(Vu)t
Ve=Ild+Vu=1d+ 5 + 5 )

=1d + e(u) + w*(u)

where e(u) is the symmetric strain tensor and w*(u) is
an antisymmetric tensor representing a small rotation,
similar to the local angular velocity of each element
when u is regarded as velocity. We exploit this physical
interpretation of the deformation gradient to derive a
shape X from u through our rotation-strain coordinates:

1 |w(u)
X =T [e(u)} 8
This last equation defines our shape reconstruction map
from u and the final shape X which obviously differs
from the linear-elastic shape z. Notice that when u is
small, linear elasticity, modal warping, and our approach
all coincide, and X = z. However, for very large de-
formation when the linear elasticity treatment breaks

down, we employ our nonlinear shape reconstruction to
get physically-plausible results. We stress that for large
deformation, neither modal warping nor our rotation-
strain extrapolation are physically “correct”, but they
both extend modal analysis with visually pleasing re-
sults. As we show next, our method has the advantage
to provide a direct map between modal coordinates z
and shape X, and visually more pleasing output when
the deformation is large.

2.2.3 Linear Relationship in Rotation-Strain Space

Following the conventional modal analysis treatment,
we can decompose the time-varying displacement u(t)
into time-varying modal components z(t) through u(t)=
W z(t). Noticing here that w*(W;) and e(W;) are in fact
the rate of change of the rotation-strain coordinates for a
change in the displacement along WW;, we can assemble a
matrix W={Wy,Was,... W, }, with W, :={w*(W;),e(W;)},
that will satisfy:

o) — (@)
0= (i ) ©
With this linear relationship established, we can write

our shape reconstruction map as a linear map in rotation-
strain space:

X(t) = Wz(). (10)

This expression, equivalent to Eq. (8) (with 7 applied
to both sides), provides another geometric interpretation
of our approximation: we in fact extrapolate modes
to large displacements through an approach similar to
“as-rigid-as-possible” shape interpolation which linearly
interpolates the rotation and stretch parts as well, where
the modal coordinate z; plays the role of time ¢ in [1].
Indeed, we take the infinitesimal rotation w*(W;) dz; and
stretch Id+€(W);) dz; induced by each mode i around the
rest position, and extrapolate these deformations for a
larger modal coordinate z; using exp(w*(W;) z;) as the
local rotation and Id+€(W;) z; as the stretch. While this
extension from linear modal analysis does not guarantee
exact physical behavior, it gives plausible shapes and
motions at interactive rates (see Fig. 2). Importantly,
because we now have a simple, time independent map
between modal coordinates z and shape X, we can find
a closed-form expression for the time evolution of the
shape in rotation-strain space as we show next.

2.3 Analytical Vibration Magnitudes

Since the time evolution of modal coordinates z satis-
fies Eq. (6), closed-form solutions are easily derived. For

each mode ¢, the modal coordinate z; follows
Zi 4 (g X+ an)ii + Xz = 0, (11)

an ODE that can be integrated analytically: each mode 4
vibrates exactly as a damped harmonic oscillator:

2 (t) = (P; cos(wit) + Q; sin(w;t))e™ %,

(12)
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Fig. 2. Vibration of a rectangular box: 7" mode (left two
columns) and 9** mode (right two columns). Compared
with linear vibration mode (blue), our nonlinear extension
(yellow) achieves significantly better visual results, espe-
cially under large deformation.

where the (angular) frequency is defined as w; =
VX —ai, the decay rate as «; = (axg X + an)/2, and
P; and Q; are two arbitrary scalar values depicting the
initial amplitude and phase of mode i. (Note that we
ignore the over- and critically-damped cases, as they
rarely produce the vibration effects that we seek).

Boundary Conditions If the values of the i" mode
coordinate z;(t) are known at time ¢t =0 and ¢t =1, the
values P; and @; are then fully determined:

—2;(0) cos(w;T) + 2z;(T)eT
Sin(wiT) :

Adjustments to Bound Derivatives Fixing these two
values, however, leaves no control over the time deriva-
tive Z;(0) of the coordinate at time 0:

2(0) = Qiw; — ;z;(0)

This derivative can in fact be quite large, poten-
tially resulting in strong vibrations early on in the
interpolation—note that if we control this initial deriva-
tive, the final time derivative (at time ¢t = 7') will also
be small, as we use a damped oscillator on purpose with
a; >0 to achieve physically plausible energy dissipation
over time. One can tweak w; and «; in order to make
%2;(0) as small as possible while minimizing the change
of dynamics through solving:

Pi=2(0), Q;= (13)

(14)

min 7924 (0) + (W) = wi)® +yalai —a)® (1)
where 7., V., Y are coefficients to weight the three terms
(we use v,=0.5,v,=0.25,7,= 0.25 in our implemen-
tation). A direct Levenberg-Marquart routine (Imdif in
minpack) is used to efficiently solve this minimization

for each mode.

2.4 Dynamic Shape Interpolation

We now have all the tools to define our dynamic shape
interpolation. Given a rest shape r, we first perform the
following precomputations:

o Assemble a stiffness matrix K, a lumped mass
matrix M, and a deformation gradient matrix G
using conventional linear finite elements (see, for
instance, [15]).

o Perform the eigen-analysis of Eq. (3). To increase
efficiency of further computations, keep only the

leading m modes (i.e., the eigenmodes correspond-
ing the m smallest eigenfrequencies ;).

o Convert the non-zero m eigenmodes W; to the
rotation-strain space through w*(W;) and €(W;), and
assemble them into the matrix W as explained
in Section 2.2.3.

Now, for any given poses x4 and zp sharing the
same connectivity as 7, we can compute and modify the
dynamic shape interpolation at runtime by proceeding
as follows:

« Using user-defined damping coefficients {ax, an},
evaluate the vibration frequencies w; and decay
rates a; for each mode ¢ < m as described in Sec-
tion 2.3.

e To have z(0) = z4 and z(T) = zp, decompose
both poses into their rotation-strain coordinates as
explained in Section 2.1, yielding z(0) and Z(T)
respectively. -

o Using the pseudoinverse of W, obtain the modal
coordinates at time t = 0 and t = T, ie, we
compute z(0) and z(T) such that: Wz(0) = z(0) and
Wz(T) = z(T), respectively.

o From this initial and final value of z, adjust the
vibration frequency w; and damping o«; slightly
(to w; and o}, respectively) to make sure that the
interpolation is without obvious artifacts as detailed
in Section 2.3.

« Eq. (12) then provides the analytic expression of z(t)
for every t€[0,T].

« Finally, recover the time-varying shape X (¢) defined
in Eq. (10) by performing Poisson reconstructions as
detailed in Eq. (1).

This approach is particularly efficient when the number
m of modes is not too large (we use m = 80 or m = 100 in
our examples). The only artifact we witnessed for small
values of m is in the interpolation at t=0 and ¢t=1T" as
the frequency domain is truncated for efficiency, not all
specified shapes can be reached in the subspace spanned
by the first m columns of W. Therefore, after projection
through left multiplication of the pseudoinverse of w,
there may be some non-zero residual ps =24—T (Wz(0))
and pp=xp—T(Wz(T)). We found it sufficient sim-
ply to add their linear temporal interpolation to the
reconstructed motion to remove any inaccuracies in the
matching of intial and final poses. Alternatively, smooth
splines or even Wiggly Splines could be used instead
of this simple linear interpolation of residuals if the
number of modes m used is so low that the residuals
are significant. With our residual treatment, keyframes
can be created by any algorithm or user interface: in fact,
the poses used in our examples were created by various
interactive mesh deformation algorithms such as Poisson
mesh editing.

2.5 Comparison to Modal Warping

One may notice here that Modal Warping could be used
to efficiently reconstruct the shape Z from z with the



following equation:

1
Z(z)=r+ / exp(Qz2)Wz = r 4+ R(Qz)Wz (16)
0

where 2 maps z to log(R;) for each vertex i by averaging
over all the rotational part of W in each tet adjacent to
the vertex. (More details about the form of R can be
found in [11].) Recovering z from x can be achieved
through:

Z = arg mlnz ||9€z - xz( )||2|Vi|7

i=1

17)

or

2i=arg min 3 [(Ga)i - (G ITi

tet T;

(18)

However, the Hessian of either of these two nonlinear
optimizations is a dense matrix with a dimensionality
equal to the number of modes used. Consequently,
our tests showed that examples with highly deformed
keyframes for which a small number of modes is used
either converge to a visually-displeasing local minimum
when using Eq. (17), or result in large residual (see
Fig. 3). In fact, only when we initialize the minimization
with the result that our rotation-strain space method
provides can we get satisfying results. Although slightly
more time consuming because of the Poisson recon-
struction, our approach is more appropriate to robustly
handle large meshes and very complex deformation: the
ramping used in MW generates an error that grows with
the amplitude of deformation, altering local velocities
significantly, and thus distorting the shape greatly.
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Fig. 3. Robustness compared to Modal Warping: Using
the same 50 and 100 leading modes, our method can
reconstruct the keyframe of the elephant model well with-
out large residual. However, even if we use our result
for the initialization of their optimization, Modal Warping
leads to large errors. To quantize the error, we adopt
the measurements of Eq. (17) and Eq. (18): The first
number below the image measures the error in vertex
position, and the second number measures the error in
deformation gradient.

3 USER CONTROLS

Defining initial and final shapes is enough to produce
dynamic shape interpolations through the algorithm we
introduced above. However, we can allow the user to
control many aspects of the dynamic interpolation with
realtime feedback as we now review.

Frequency and Damping Control The eigenfrequen-
cies stored in A can be edited to adjust the vibration
period of each mode during the interpolation. For ex-
ample, setting all the values of A close to zero means
that each vibration frequency is very low, and the re-
sulting interpolation will contain few vibration periods.
On the contrary, one can increase the values of A to
decrease their respective periods, rendering the inter-
polation more jiggly. Modifying the dynamic system by
non-uniform scaling of K and M is feasible, however it
would require solving a new eigenproblem—thus 1 to
10 seconds of additional computation. A global scaling
of the stiffness (or mass matrix) can be easily achieved
by rescaling all the frequencies by the square root of the
scale (or its inverse, resp.).

The user can specify different damping values a g and
aps to adjust the resulting dynamics of the interpolation.
As expected, a large damping will make the vibrations
settle down more quickly (Fig. 4)—and conversely. Fur-
ther control, at the price of deviating a bit from the
usual modal analysis framework, can be achieved by
changing the various modal damping coefficients c; this
alternative will help dissipate each modes more or less
depending on the desired cinematic effects. We found
that introducing a coefficient p; € [-1,1] per mode and
substituting the damping o; of vibration mode ¢ by
Xi(ps + 1)/2 is a particularly intuitive way to adjust
the motion. Scaling with a coefficient n; € [—1,1] was
also found to work well to adjust the frequencies X to
X exp(n;/(1—1|n;|)). Based on these control variables, we
developed a simplified interface, where a spline is used
to edit the various vibration frequencies and damping.
We found it particularly useful to edit the motion (see
Fig. 5 and Fig. 6).

To achieve direct (vibration-free) shape interpolation,
we can simply set both 7; and u; close to —1 for
all modes, thus eliminating oscillations as shown in
Fig. 12(a). Conversely, to enhance vibration effects, we
can increase the frequencies of low frequency modes,
which will result in noticeably more jiggly behavior
(Fig. 4). High frequency modes can also provide subtle
motion details as demonstrated in Fig. 7.

Position and Orientation Constraints Position and
orientation constraints can be added during Poisson
reconstruction. They can be interpolated through shape
matching technique or based on keyframes, and then
applied to the Poisson reconstruction for each frame.
For instance, Fig. 8 shows an example where position
constraints are used to fix the legs of the elephant
throughout shape interpolation. Better result for position
constraints could be achieved by modifying K and M to



Fig. 4. Various damping effects: we set a non-zero
damping coefficient 11 to make the animation settle down
(bottom row; only the last three frames are shown here).
Compared with the damping-free motion (top row), and
similar initial velocities, the energy decay differs widely.

Fig. 5. User interface: by editing the curves (green for
damping control u, red for frequency control n, and the
rest for ~’s) in the parameter window (bottom left), the
user can intuitively specify u,n and ~ for each mode, and
monitor z(t) of the selected mode in the other window (top
left). Optimization of the parameters for each mode can
be done efficiently, aiding design through visual feedback
at interactive rate.

make low frequency modes correspond to low frequency
modes of the constrained vibration, however the compu-
tational cost would render the process non-interactive.

Removing Self-Intersections and Adding Keyframes
Our results can contain self-intersections if shapes x4
and zp are quite different. Moreover, the user may not
be satisfied with what she obtained using a direct ap-
plication of our technique. To deal with these two issues
and allow for greater editing capabilities, we let the user
provide keyframes to alter the interpolation interactively.
Given a set of k keyframes {X(¢;),i=1,2,...,k} where
the ¢;’s represent the times at which the keyframes
need to be reached, we first evaluate the adjustments in
rotation and strain needed for our interpolation to meet
the i'" keyframe through

~

A =T(X () — T(X()). (19)

damp. freq.
K n
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Fig. 6. Examples of various vibrating curves with different
damping and frequency parameters, all satisfying the
same boundary constraints.

We then smoothly blend the keyframes to the shape
interpolation using a modified shape X* defined as

i=k
X*(t) = X(t) + > ¢i(bA, (20)

i=1
where ¢;(t) is a cubic spline with support in [t;_1,t;41].
To ensure smoothness of the modified interpolation,
we set the spline derivatives at ¢;,_;,¢; and ¢,11 to 0.
This simple procedure offers additional control over the
results as Fig. 9 demonstrates. As shown in Fig. 10,
interpolating multiple key frames with Wiggly Splines
is also straightforward. After converting key frames into
modal coordinates, we specify internal nodes for the
vibration curve of each mode through Wiggly Splines,
which makes the interpolation curve “as physical as pos-
sible” for that mode. Note that velocity constraints could
also be incorporated through conversion of velocity into
the rotation-strain space. Thus, our approach provides
a simple computation of nonlinear modes a la Wiggly
Splines, instead of going through linear PCA of large
deformation simulations.

Quasi-Statics vs. Dynamics While our method pro-
vides an intuitive way to design dynamic interpola-
tion between shapes, the user may want to start from
an existing, quasi-static shape interpolation X(t) (obtained
through [22], [23], [3], or [6] for instance) and add elastic
oscillations to this prescribed shape interpolation. This is
achieved by computing the transform X(¢):=7 (X(t)) of
the input shape sequence (we will write its coordinates
as: X = {log R(X);,S(X);}). Now the only change in

Fig. 7. Only exciting high frequency modes can make the
geometric details (e.g., horn and whiskers) quiver while
keeping the low frequencies (global motion) smooth.



Fig. 10. Our rotation-strain formulation allows us to use Wiggly Splines to interpolate between four key frames (given
at time 0,0.25,0.75 and 1 s.), where both the first and the last pose are the rest state.
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Fig. 8. The feet of the elephant will not stay on the
ground if we only use a barycenter constraint in Poisson
reconstruction (top row). Position constraints (red dots)
can instead be added to control placement of the feet.

our dynamic interpolation procedure is to use X(t) =
(1—7) X+ yWz(t) instead of just Wz(t). With these
minor modifications, the main motion (given as a quasi-
static motion that interpolates x4 and zp) is enriched
with secondary deformations (based on our extended

Fig. 9. Self-intersections (top row) can be resolved by
adjusting a frame (top, center) to be intersection free
(bottom), and inserting this adjusted shape as a key
frame along the interpolation. Self-intersections in nearby
frames will then be avoided, while the vibration effects in
the whole interpolation are kept nearly intact.

modal analysis) that can be controlled with intuitive
parameters.

Other Vibration Modes We used the vibration modes
resulting from modal analysis in our exposition, but
any other process can be used as long as a series of
“characteristic” displacements {;} are produced. While
the eigenmodes we use can be tweaked by changing
the Lamé coefficients of the elastic potential (or even
by using spatially-varying material coefficients), we also
tried using thin-shell elastic model [24] as shown in
Fig. 11. After calculating the linear vibration modes and
corresponding frequency of the triangle mesh, we evalu-
ate the deformation gradient by adding a fourth node for
each triangle as proposed in [22]. As expected, the modes
visually correspond to whatever model we selected, and
the nonlinear extension presented in Section 2.2.2 can
be performed as is independently of what was used to
generate the basic eigenmodes.

(a) (b) (0) (d)

Fig. 11. We can interpolate between triangle meshes as
well, using a deformation model governed by thin-shell
elastic energy. The rest shape is (a). The key frames in
this example are (a) and (d). (b) and (c) are intermedi-
ate frames in the animation sequence obtained by our
method.

4 IMPLEMENTATION AND PERFORMANCES
4.1 Handling Excessive Twists

When the start or end shape is extremely twisted, the
log(R) of adjacent elements computed according to Sec-
tion 2.1 may have opposite signs. During the inter-
polation, such elements will rotate in almost opposite
directions, leading to visual artifacts. To address this
issue and project such poses to their correct rotation-
strain coordinates, we traverse the elements in the mesh
with a breadth-first search starting from a seed tetrahe-
dral element after extracting the unit rotation axis from
log(R) with a positive angle in the interval of [0, ]).
When we find an element with its unit rotation axis
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Fig. 12. Our shape interpolation can interactively provide a dynamic motion between two poses. Here, the interpolation
is demonstrated on an elephant model, the first pose being with the trunk down (leftmost) and the final pose (the rest
state) being with the trunk up in the air (rightmost). Although many dynamical coefficients can be interactively edited,
we show a direct vibration-free interpolation (top row, n = —1 and n = —1), to compare it to the effect of adding low
frequencies to the motion (bottom row): the trunk and ears now dynamically deform throughout the pose interpolation.

differing greatly from those of its (traversed) neighbors
(dot product of the unit rotation axes <—0.5), we adjust
the rotation angle by adding or subtracting the smallest
times of 27 to solve this problem. With this added
treatment, our method can successfully handle severely
deformed shapes involving local rotations larger than 27.

4.2

We set the initial value to w], = w;,a; = «; for the
Levenberg-Marquart routine which is used for the op-
timization problem introduced in Section 2.3. Although
the routine may be trapped in local minima, in most
cases, the results turn out satisfactory. In rare cases, it
fails to converge or produces very poor result (with un-
reasonably large initial velocity). Simply trying several
(less than 5 in our experience) different random initial
values around w; and «; solves this problem.

Initializing Levenberg-Marquart Optimization

4.3

If the first frame x4 is very close to the rest shape and
the end frame xp is highly deformed, a large gain of
potential energy needs to happen during the process.
Under such circumstances, large damping often leads
to unnatural behavior because of the unavoidably large
initial velocity. To avoid high initial kinetic energy, we
can choose a shape z, between x4 and zp as the
“rest shape” without doing any additional offline pre-
computations by simply offsetting the rotation-strain
coordinates through z, = (1 — 8)Za + 8Z5.

Initial Velocity Reduction

4.4 Performance

Our approach, along with the various user controls
described above, was implemented on a PC with 2.0GHz
Intel Xeon CPU and an NVidia GeForce 8600GT graphics

card. Performance statistics for the various examples
shown in our paper can be found in Table 1. To maintain
interactive performance even for huge meshes, we can
also embed the detailed triangle mesh into a simplified
tetrahedron mesh. To generate such a tetrahedron mesh,
we first simplify the triangle mesh (e.g., the gargoyle
model is simplified to 2000 vertices), then offset the
vertices of the simplified mesh along the normal to
enclose the input mesh. Finally, we use NETGEN [25] to
tetrahedralize the simplified surface mesh. The triangle
meshes used as key frames and outputs are easily inter-
polated from the deformed tetrahedron mesh. A dense
tessellation may be required to capture high frequency
vibration modes; thankfully, we can deal with 20K tet
meshes still interactively, which proved sufficient for the
design of all the dynamical effects in this paper (see
Fig. 1).

5 CONCLUSION

We presented a shape interpolation algorithm built on
decoupled vibration modes extrapolated in a rotation-
strain space to generate artifact-free large deformation.
A simple mapping between shape space and modal
coordinates enables dynamic morphing between a pair
of shapes, while offering interactive control over the
various parameters of the motion. Moreover, our method
can compute the rotation-strain space coordinates of
added key frames efficiently, leading to truly interactive
design of motion.

Limitations of our method include the sacrifice of
physical accuracy for speed and the absence of check for
plausibility of the user’s choice of parameters, which can
lead to visual results far from resembling the behavior
of any existing material. For fast-moving skeleton-driven
animation, inertial forces may need to be taken into
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model mesh vertices tet nodes tet elements modes eigen. opt. X(t)=Wz() T YX) fps
box 440 440 1337 50 1s 6ms 2ms 8ms 70
hat 1607 4771 3164 50 7s 6ms 9ms 25ms 23
elephant 9k 1636 5442 50 6s 6ms 6ms 33ms 20
armadillo 17k 1628 5249 100 7s 12ms 12ms 30ms 18
dragon 10k 2678 9237 100 11s 12ms 22ms 55ms 10
gargoyle 10k 2957 11054 100 12s 12ms 24ms 62ms 9
raptor 20k 1251 3677 50 4s 6ms 5ms 24ms 23
TABLE 1

Performance statistics for the models presented in this paper; eigen. indicates the time it took to perform
eigenanalysis using Matlab, while opt. gives timings of the Levenberg-Markart optimization.
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Fig. 13. The motion of a rubber stick (straight at rest)
thrown into a jar can be interactively edited to achieve
various cinematic effects. In this example, the bottom row
uses a larger damping coefficient for the mode leading to
a twist-like deformation.

account in the form of modal forces. It would also
be interesting to explore the extension of the motion
subspace through modal derivatives [26].
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