
Improving the Agility of Keyframe-Based SLAM

Georg Klein and David Murray

Active Vision Laboratory, University of Oxford, UK

{gk,dwm}@robots.ox.ac.uk

Abstract. The ability to localise a camera moving in a previously unknown en-

vironment is desirable for a wide range of applications. In computer vision this

problem is studied as monocular SLAM. Recent years have seen improvements

to the usability and scalability of monocular SLAM systems to the point that they

may soon find uses outside of laboratory conditions. However, the robustness of

these systems to rapid camera motions (we refer to this quality as agility) still lags

behind that of tracking systems which use known object models. In this paper we

attempt to remedy this. We present two approaches to improving the agility of

a keyframe-based SLAM system: Firstly, we add edge features to the map and

exploit their resilience to motion blur to improve tracking under fast motion. Sec-

ondly, we implement a very simple inter-frame rotation estimator to aid tracking

when the camera is rapidly panning – and demonstrate that this method also en-

ables a trivially simple yet effective relocalisation method. Results show that a

SLAM system combining points, edge features and motion initialisation allows

highly agile tracking at a moderate increase in processing time.

1 Introduction

Real-time camera tracking or ego-motion recovery in known scenes is a well-studied

problem in computer vision with immediate applications in robotics and augmented

reality. Recent years have also seen an interest in the problem of tracking in unknown or

only partially known scenes. This is a more difficult problem because the computer must

not only estimate camera pose but also calculate a map of its environment. The prevalent

approach is that of SLAM (Simultaneous Localisation and Mapping) which differs from

recursive Structure-from-Motion (SfM) in that greater care is taken properly to correlate

the emergent structure and camera pose.

A real-time, monocular SLAM implementation was demonstrated by Davison in

2003 ([1] is an up-to-date version). Davison’s implementation is based on an Extended

Kalman Filter which is updated every frame at O(N2) cost relative to map size, and this

mandates the use of sparse and relatively small maps; further, tracking is based on small

texture patches which are destroyed by motion blur; finally, the fact that every frame’s

measurements are integrated into the map requires a conservative approach to data asso-

ciation (i.e. small modelled accelerations and search ellipses). Consequently and sub-

sequently there have been attempts to improve both the scalability and robustness of

monocular SLAM. Chekhlov et al [2] improve the reliability of data association by em-

ploying the SIFT [3] descriptor, which allows for far bigger search ellipses and hence

more agile tracking. Williams et al [4] also attach descriptors to map points, but do not

2

use these during tracking, but instead to re-localise the camera in the event of a tracking

failure. Eade and Drummond [5] employ a different statistical framework which allows

denser maps, which improves tracking quality. Here, we start with our previous work

[6] which de-couples the map-making process from frame-to-frame tracking, perform-

ing classical batch structure-from-motion estimation on a small number of keyframes

as one process while tracking the camera relative to the map as another. This approach

allows for more aggressive tracking, since data association errors are not automatically

integrated into the map, and it is briefly described in Section 3.

Despite the advances made in monocular SLAM, we still find that rapid camera mo-

tions are generally not tracked. While the emergence of relocalisation methods has re-

moved the need completely to re-start a SLAM system every time the camera is moved

too quickly, it would be preferable if tracking did not fail in the first place. The problem

with tracking rapid camera motions is that it produces large and unpredictable motion

in the captured image: this large motion makes it difficult reliably to track individual

features (data association) and it also produces motion blur. We use small commodity

cameras with integration times approaching 30ms in indoor scenes, and so the extent

of motion blur in the image can be very large (at times over 100 pixels). Most current

monocular SLAM implementations use some form of interest point detector to achieve

frame-rate operation (often Rosten and Drummond’s FAST detector [7]), but even small

amounts of motion blur will wipe the image clean of corner responses. Even if the inter-

est point detector did fire, substantial motion blur will render useless the small texture

templates typically used for feature matching. The problem can be somewhat allevi-

ated by using features at multiple pyramid levels (as done in [6]) but high-level features

are relatively sparse and even these are unreliable with heavy blur: Ultimately, tracking

texture patches in the presence of blur is difficult.

In contrast to corner points, edges in the image are more resilient to motion blur. For

a start, they are one-dimensional, and so locally is motion blur: One would therefore ex-

pect that even in a heavily blurred image, some edge features (those parallel to the local

direction of blur) may remain intact. Further, even edges which are affected by blur can

be tracked: Klein and Drummond [8] demonstrated that blurred edges can be used for

tracking in real-time if an estimate for the magnitude of motion blur is known a priori.

This motivates us to include intensity edges into the SLAM map. Monocular SLAM

with edges has already been demonstrated by Smith et al [9] and Eade and Drummond

[10], but neither of these systems attempted to exploit edges for agile tracking, as we

do here. We adopt Eade and Drummond’s concept of an edgelet – a very short, locally

straight segment of what may be a longer, possibly curved, line – as our representation

of intensity edges in the world. Section 4 describes the edgelet representation and our

method for adding and optimising edgelets to our keyframe-based SLAM implementa-

tion, and Section 5 describes how these edgelets can be tracked robustly.

While one might expect the addition of edges to a SLAM system to improve track-

ing performance at high camera velocities, the same is not true for high acceleration.

Rapid unmodelled accelerations cause problems for data association and can further

lead to the use of an incorrect blur estimate for edge tracking – for example, when the

camera rotates suddenly from rest. In [8] Klein and Drummond employed inertial sen-

sors to provide a rotation prediction for each frame to work around this problem. Here

3

we propose an alternative: In Section 6 we describe a procedure to estimate inter-frame

rotation by full-frame direct minimisation. Finally, we show that this same method – to-

gether with the map’s stored keyframes – allow a trivial relocalisation method to recover

from tracking failure, and this is described in Section 7.

2 Related Work

A body of related work exists in the SfM literature for calibrated cameras. Viéville

and Faugeras [11] developed an EKF that estimates the scene structure and the camera

position using the measurements obtained from a system that tracked the positions of

point and line features in the images. Faugeras et al [12] solved for camera motion and

scene structure from three perspective images using an EKF to minimize an objective

function based on the epipolar constraint. Related is Taylor and Kriegman’s work [13]

which proposed minimizing a cost function measuring the least squares distance be-

tween observed edge segments and the projection of reconstructed lines, and Bartoli

and Sturm [14] discuss optimal line parametrisations for the the minimisation proce-

dure. SfM using lines with uncalibrated cameras has also been demonstrated, leading

to the exposition of Shashua [15] on projective tri-focal constraints.

As mentioned in the introduction, there have been previous demonstrations of mono-

cular SLAM using edge features. The approaches of Smith et al [9] and Eade and Drum-

mond [10] are very different, and this is in part due to differences in their underlying

SLAM mechanisms: [9] employs an EKF which scales poorly with map size, and so

this approach attempts to add large straight lines with two well-defined end-points to

the map. By contrast [10] uses FastSLAM 2.0 and so can afford to insert large numbers

of features into the map, and this is exploited by splitting large lines (straight or slightly

curved) into small segments called edgelets, which are added to the map as indepen-

dent units. Since the decoupled SLAM system used here scales easily to thousands of

features we adopt a variant of the latter approach here.

3 Keyframe-based SLAM framework

This section provides a brief overview of the SLAM and maths framework [6] which is

also used here. The SLAM system is split into two separate processing threads, which

run simultaneously on a dual-core computer. One thread processes the 30Hz, 640×480

pixel, 8bpp grey-scale video input from an attached fire-i camera with a 2.1mm wide-

angle lens: This is the tracking thread, which tracks the pose of the camera relative to

the map, assuming that the map is fixed and certain. The second thread creates, expands

and maintains the map from a small subset of these frames which are called keyframes.

Features are added upon triangulation between two keyframes, and feature positions

and keyframe poses are jointly optimised using bundle adjustment.

The map consists of a set of keyframes and 3D feature points. We define a world

coordinate frame W , a moving camera-centered coordinate frame C, and each keyframe

i also has an associated camera-centered coordinate frame Ki. The jth point’s position

is stored as a 4-vector pjW = (xjW yjW zjW 1)T in the world coordinate frame. The

ith keyframe stores its world-from-keyframe coordinate frame transformation EWKi
, a

4

three-octave image pyramid from the full 640×480-pixel image down to a 80×60-pixel

scaled version, and a record of all point features measured in this keyframe.

Coordinate frame transformations are members of the Lie group SE(3), the set of

3D rigid-body transformations, and are expressed as 4×4 matrices with a rotation and

a translation component

EAB =

[

RAB tAB

0 0 0 1

]

. (1)

The subscript “AB” is read as “coordinate frame A from coordinate frame B”, such

that EAC = EABEBC . Changes to coordinate frame transformations are achieved via

another (small) transformation denoted M and minimally parametrised by a six-vector

µ via the exponential map

E′
AB = MEAB = exp(µ)EAB, (2)

where in this case the first and last three elements of µ denote respectively translation

and rotation about the x-, y-, and z- axes of coordinate frame A. This representation

allows for very easy differentiation of projection equations with respect to any change

in coordinate frame transformations.

4 Adding Edgelets to Keyframe-Based SLAM

This section describes the method by which edgelet landmarks can be added to the

SLAM system described above, so that both point feature and edgelets are tracked. We

use [10]’s definition of an edgelet in an image: a locally straight, short segment of a

large intensity discontinuity in the image.

4.1 Parametrisation

For each edgelet, two geometrical properties must be recorded: the position of the cen-

ter of the edgelet and the direction of the edgelet. [10] store these five degrees of free-

dom in six numbers, using a position vector and a unit vector of direction. We find it

convenient to overparametrise even further, storing each edgelet as a coordinate frame

transformation EWE , where E is an edgelet-local coordinate frame. (With 12 internal

numbers and 6 DOF this representation is far from minimal but it simplifies the 4-DOF

differentiations needed later.) In the coordinate frame E the edgelet center is located at

the origin and the edgelet direction is parallel to the z-axis, as illustrated in Fig. 1. To

set the last degree of freedom, we further align the x-axis to point in the direction from

dark to light in the frame in which it was first observed. While this information could

be used to determine edgelet visibility, we ignore it in favour of the common method of

inferring this direction from the edgelet direction, and recording visibility information

in a different way (see Sect. 5.2).

4.2 Projecting and finding edgelets in keyframes

To measure an edgelet in a keyframe, a good prior estimate of its position is first pro-

jected into the full-size image. The edgelet center is transformed to the keyframe’s

5

x

y

z

Fig. 1: The edgelet-centered 3D coordinate frame E

camera-centered coordinate frame and then projected into pixel coordinates:

pK = EKE

(

0 0 0 1
)T

(3)

c =

(

cu

cv

)

= CamProj(pK) (4)

where the CamProj(·) function performs perspective division by z followed by the ap-

plication of a calibrated camera model as in [6], which uses the radial distortion model

of [16]. The edgelet direction d is obtained by differentiating the above with respect to

motion along the z-axis in the E-frame:

d =
∂

∂µ3

CamProj
(

EKEM
(

0 0 0 1
)T

)

. (5)

where µ3 parametrises z-translation of the motion matrix M in the E-frame. This is

equivalent to projecting the rotated edgelet’s z-axis into the image as done in [10].

Once projected, edgelets are measured directly in the full-size image, in a manner

similar to most edge trackers [17,8,9]. The nearest locally-straight image edge is found

by placing an edge of length 18 pixels in the image at the hypothesised position, pop-

ulating five sample points along this edge, and then performing perpendicular searches

at each sample point to find local gradient maxima of the correct polarity to sub-pixel

accuracy. Data association is resolved by proximity (the perpendicular search range is

short at only five pixels).

A straight line is fitted to the search results and the measurement accepted as valid

only if the residual error is smaller than a tight threshold: this is to reject measurements

of edgelets which are locally curved, or blurred, or confusingly close to other edges.

The detected edgelet is parametrised as an infinite line a + λb as illustrated in Fig. 2.

4.3 Adding new edgelets to the 3D map

In both [9] and [10], new edges are added with initially unknown depth, and depth val-

ues calculated iteratively over a few frames of hopefully non-degenerate camera motion

over which data association for the new edges must be maintained. This method is in-

compatible with keyframe-based SLAM for a number of reasons: 1. We do not want

6

a

b

Expected edgelet

Detected edge

Fig. 2: Edgelet measurements in a keyframe

to impose the requirement that frame-to-frame motion should be smooth; 2. we want

large quantities of features, and tracking large numbers of partially initialised features-

in-making would place an unacceptably large computational burden on the frame-to-

frame tracker; 3. it is not clear how to use the information from frame-to-frame depth

estimation in subsequent bundle adjustments in a correct manner, short of just discard-

ing it. By contrast, in [6] points are added by epipolar search and direct triangulation

from two keyframes and we use an analogous approach here.

Every time a new keyframe is added to the map, a list of candidate edgelets which

might be added to the map is generated. Where [10] suggest a fast edgelet extraction

method which can be performed every frame while tracking, the map-making thread

here is less bound to frame-rate constraints: We have time to perform a full Canny

edge extraction [18] on the keyframe, with a modification to the edgel linker stage

which breaks linked chains at points of high curvature. The result is a series of long,

prominent, and reasonably straight edges in the image. (We also keep an image of all the

maximal edgels, whether or not they were suppressed by the linker.) Candidate edgelets

are formed by splitting these long edges into edgelet-length segments. Due to the use of

Gaussian blur during the Canny extraction, edgel locations are not fully reliable and so

the location of each candidates is refined by direct measurement in the keyframe as per

Sect. 4.2, and candidates which are too close in the image to edgelets already existing

in the map are rejected.

For each candidate edgelet, we perform an epipolar search in another near-by target

keyframe to attempt to triangulate the edgelet. We do not search the entire epipolar line

from zero to infinite depth, but rather restrict the search to a likely depth range based on

the depth of features already found in the keyframe. The epipolar line is projected and

rasterised into the target keyframe as a piecewise linear approximation (since the lenses

used exhibit radial distortion, the epipolar line is not straight), and any maximal edgel

encountered along the epipolar line is considered a potential match.

A single epipolar search can return a large number of matches in this way, and

matches are culled by a number of heuristics. Often half of the matches can be rejected

from light-to-dark polarity. Matches with gradients perpendicular to the epipolar line

7

are further rejected. For any remaining match, an edgelet measurement in the target

keyframe is attempted as per Sect. 4.2, and this removes matches which are curved or

too short. Any remaining match defines a viable 3D edgelet hypothesis: The source and

target keyframes’ edgelet measurements each define a plane in 3D space in which the

edgelet must lie, and these are intersected to yield an infinite 3D line. The edgelet’s

position along this is defined by its center in the source keyframe. Each hypothesis is

now checked by attempting a measurement in a third keyframe; a new edgelet is only

added to the map if exactly one hypothesis is successfully tested against this keyframe.

For any two keyframes chosen as source and target keyframes, there exists with

high likelihood a set of edgelets which cannot be successfully triangulated due to the

aperture problem (for example if the edgelets are parallel to the camera translation

between the two views). Such incompatibility is detected, and triangulation of these

edgelets is attempted again with a different, more orthogonally translated, keyframe.

4.4 Optimising the map using bundle adjustment on points and lines

Edgelets are added to the map with at least three measurements – one each from the

source, target, and check keyframes – and more measurements are attempted in all old

keyframes and all keyframes subsequently added. Whenever information is added to

the map, the position of all edgelets, points and keyframes is optimised through bun-

dle adjustment. To incorporate edgelets into the bundle adjustment requires the defini-

tion of an objective function, and the derivation of its differentials with respect to both

keyframe pose parameters and the parameters of the edgelets.

Measured line a + λb

c

d̂

n̂

s1

s2

ǫ1

ǫ2

Fig. 3: Edgelet objective function measurements

Keyframe edgelet measurements provide two degrees of freedom, which can be ex-

pressed in a variety of ways. Here we use two perpendicular distances as illustrated in

Fig. 3: Two virtual sample points p1 and p2 with projections s1 and s2 are initialised

at a 5-pixel distance from the projected edgelet center, and the perpendicular distances

from these sample points to the edge detected in the keyframe forms the error metric.

Compared to a distance-plus-angle metric, this has the advantage that errors are ex-

pressed in pixel units, which makes them compatible with the M-Estimator also used

8

for point features. The sample points are symmetrically distributed in space about the

edgelet center. Represented in the E-frame they have coordinates

p1E =
(

0 0 −5.0
|d| 1

)T

, p2E =
(

0 0 5.0
|d| 1

)T

(6)

and their projections in the image are sn = CamProj(EKEpnE). The error quantities ǫ

are the edgelet-perpendicular distances from each sample point to the measured line

ǫn = n̂ ·

(

a +
(

d̂·sn−d̂·a

d̂·b̂

)

b̂ − sn

)

(7)

where n̂ is perpendicular to d and a hat ·̂ denotes a unit-normalized vector.

Differentials of the distance metric are obtained by considering the motion of points

pn in direction n̂ due to changes in keyframe pose and edgel parameters; for keyframe

pose changes µK and edgelet motions µE they are

∂ǫn

∂µKm

= n̂ ·
∂

∂µKm

CamProj (MEKEpiE) , m = 1..6 (8)

∂ǫn

∂µEm

= n̂ ·
∂

∂µEm

CamProj (EKEMpiE) , m = 1, 2, 4, 5. (9)

Only four motion parameters are considered for edgelet motion: those that have no

influence on the reprojection error (translation along and rotation about the z-axis) are

ignored.

5 Frame-rate Tracking with Edgelets

5.1 Edgelet search

The method described in Sect. 4.2 to find edgelets in keyframes is based on the premise

that keyframes are not significantly corrupted by motion blur and a very good prior

pose estimate exists: This allows edgelets to be found with high precision and using

a very short search range. Such guarantees do not exist for frame-to-frame camera

tracking, and edgelet tracking should then be fast, have a large search range, and be

tolerant of motion blur. Further, while 2-DOF edgelet measurements are useful to de-

termine edgelet orientation when building the map, the second degree of freedom is

only marginally useful for constraining camera pose: For this task, a single-DOF mea-

surement is sufficient. We therefore use a different method for measuring edgelets in

the frame-rate tracker than we use for making the map.

Each edgelet is measured by performing a single perpendicular search from the

edgelet center, providing a perpendicular distance measure ǫ. To provide some re-

silience to motion blur, we adopt the search method of Klein and Drummond [8]: In-

stead of searching for an intensity step in the image, the motion blur expected for each

edgelet is calculated from a motion model, and the image is searched for an intensity

ramp of the same length as the expected blur. The ramp search is performed by extract-

ing a 1D intensity signal sampled along the edge normal, and cross-correlating with

9

a single cycle of a sawtooth wave of period l. l is the edge-normal component of ex-

pected motion blur and is calculated by simply multiplying the expected camera motion

γC during exposure by each edgelet’s measurement Jacobian:

l = JγC (10)

where J is the 1×6 Jacobian of an edgelet’s perpendicular displacement with respect to

changes in camera pose (with n̂ calculated as before)

Jm =
∂ǫ

∂µCm

= n̂ ·
∂

∂µCm

CamProj
(

MECE

(

0 0 0 1
)T

)

, m = 1...6. (11)

In contrast to Klein and Drummond [8] we search only for edge responses of the correct

polarity. Further, in [8] each edgel search used the same maximum search length rsearch

and edge response threshold tmin. Here, we allow these parameters to vary with each

edgelet, as described below.

5.2 Edgelet visibility table

Data association for edge tracking can be challenging because one intensity edge looks

much like the next. Many systems [10,9] use only a 1-bit descriptor (the edge polarity)

while [8] does not even use this. For SLAM systems without a pre-made CAD model

to fall back on, the problem is exacerbated by the lack of prior occlusion information:

The SLAM system will still look for an edge which has become hidden behind another,

and likely lock onto the incorrect edge. One method of avoiding data association errors

is to use a conservative motion model (and hence a small search range) but this is not

completely effective, and would anyway be counterproductive here. In [5] a RANSAC

step eliminates outliers and here we use an M-Estimator with a similar goal, but it would

be preferable not to include outlier measurements in the first place.

We attempt to make edgelet measurements more reliable by building a per-keyframe

database of visibility information. This is similar in spirit to the precomputed view-

sphere originally employed by Harris [17] but we go beyond a binary visible/invisible

flag, and our table also has an extra dimension of motion blur. For each edgelet, for

each keyframe, and for each level of motion blur, we store binary visibility, max search

length rsearch, and expected edgelet response tmin. This table is built by the map-

making thread. If an edgelet cannot be observed in a keyframe it is considered occluded

from that view. On the other hand if an edgelet has been measured in a keyframe, the

map-maker simulates the effects that various levels of motion blur would have on this

edgelet, and records edge detection results for each case.

For each measured edgelet, the one-dimensional signal along the edgelet normal is

extracted. To simulate motion blur, this is signal is convolved with box kernels of odd

lengths from 3 to 65 pixels. For each blurred signal, the response to a cross-convolution

with the appropriate sawtooth kernel is calculated. Each response is initially checked

for presence of a maximum at the correct (edgelet-centered) location. Edges which are

close to other edges will exhibit an off-center maximum with increasing blur length,

and therefore the maximum level of blur under which such edgelets may be measured

is recorded. Next, the edge response level tmax at the maximum is recorded, and we

10

set tmin = 0.5 tmax. Finally, the distance rnear to the nearest local maximum with

response greater than tmin is recorded, and we set rsearch = 0.5 rnear.

6 Image-based motion initialisation

This section describes a rapid method of estimating camera rotation between two frames.

The method we use makes some simplifying assumptions that 1. the camera is purely

rotating between frames, 2. either a telephoto lens is used or a spherical projection, 3.

the exposure setting does not change much between frames and 4. there is no mov-

ing clutter. (None of these assumptions is valid in our application, but in practice only

moving clutter becomes a problem.)

To estimate inter-frame rotation, we directly compare subsampled and blurred im-

ages of the two frames. Each incoming frame is already subsampled down to 80×60

pixels for tracking large-scale point features. We subsample this one octave further to

40×30 pixels and apply a Gaussian blur of σ = 0.75 pixels. The image thus formed for

each new frame is next aligned to that of the previous frame so as to minimise the sum-

squared-difference over the whole image. This is done by direct second-order minimi-

sation [19]. We minimise over the three-parameter group SE(2) in image (pixel) space,

allowing ten iterations for convergence. Finally, the resulting 3-DOF image-space trans-

formation is converted to a best-fit 3D camera rotation by considering the motion of a

few virtual sample points placed about the image, in a procedure similar to the un-

scented transform.

The blur parameter σ is a tuning variable: We find that increasing blur extends the

convergence range, but also makes the method more susceptible to moving clutter.

7 Keyframe-based relocalisation

A failure-recovery system of some sort can be considered an essential requirement for

any tracking system to be used outside of lab conditions. The underlying SLAM im-

plementation described in [6] incorporates the recovery system of Williams et al [4],

which performs relocalisation by training a fast classifier with map feature points. These

map points can then quickly be detected when the system is lost, allowing pose recov-

ery through the three-point-pose algorithm. Williams et al reported on an EKF-based

SLAM system whose maps rarely exceeded 150 features, with a classifier storage re-

quirement of 1.3 megabytes per map point. Here we operate with a map size of up to

15,000; scaling the classifier to this map size is clearly not practical. Even using only a

fraction of the map points for relocalisation, the processing and memory requirements

of the randomised list classifier become a concern.

Instead we exploit the fact that the SLAM system stores full keyframes, and relo-

calise directly from these. Instead of extracting some form of interest points and de-

scriptors from keyframes and then matching a novel view against them, we find that

keyframes are sufficiently densely distributed that the full image can be used as a de-

scriptor: for each keyframe added to the map, we generate a sub-sampled 40×30 pixel

image, apply a Gaussian blur of σ = 2.5 pixels, and finally subtract the mean image

intensity. This zero-mean, heavily blurred image forms the keyframe’s descriptor.

11

Fig. 4: A 3D map of an office scene with 9400 point features, 1800 edgelets and 250

keyframes. Some structure is clearly visible, including a door-frame, cabinet, resting

researcher and a desk with some computer screens

When tracking is lost, each incoming video frame is similarly subsampled, blurred,

and mean-normalised. Next, the sum-squared-difference of this incoming image is com-

pared to all keyframes. The camera pose is then set to the position of the keyframe with

the lowest image difference. Finally, a camera rotation is estimated using the same

procedure as in Sect. 6, but with extra degree of freedom to account for illumination

variation: Minimisation is over the three SE(2) parameters and a mean intensity offset.

Camera pose is rotated by the result of this alignment and normal tracking is re-started.

8 Implementation Notes

The motion initialisation algorithm is run at the beginning of every frame, and com-

pletely replaces the SLAM system’s previous motion model. After this, points and

edgelets are tracked jointly in two stages. In an initial coarse stage, only the highest-

level point features and edgelets with a large (20+ pixels) expected search range are

measured. After a pose update from these measurements further point features and

edgelets are also measured in a fine stage. We currently employ no accurate estimate of

measurement uncertainty: For points and edgelets in both tracking and bundle adjust-

ment, measurements are assumed to have an independent single-pixel variance.

An important part of a relocalisation system is a mechanism to detect tracking fail-

ure. Such a mechanism must strike a balance between promptly detecting failure when

it occurs and being lenient enough to permit tracking through difficult motions. Here

we employ the same heuristic check as [6] – this is based on the ratio of point features

expected to point features actually measured – however we suspend failure detection

during rapid camera motion.

12

9 Results

9.1 Edgelets in the SLAM map

Figure 4 shows a map of a desk generated by the system described above. The distri-

bution of points to edgelets is fairly typical: Points outnumber edgelets by a factor of 5

to 1. This is partially explained by the fact that point features can exist at many scales,

and also that our method for adding edgelets to the map is comparatively conservative

(for example, points are not checked against a third keyframe).

A slight change in user behaviour is required to properly populate the map with

edges: due to the aperture problem, a baseline in two orientations must be provided to

map all edges. In practice this means that exploration is now best performed with a

sinusoidal or zig-zag camera motion, rather than a linear one.

9.2 Timings

On a 2.6 GHz dual-core computer, frame-to-frame processing for the illustrated map re-

quires 12ms per frame when tracking only point features and 18ms when tracking points

and edgelets. The frame-to-frame rotation initialisation is fast and adds only 0.5ms of

processing time per frame. When adding a new keyframe to the map, performing edge

extraction and adding edgelets can require up to 20ms per keyframe. This is twice as

long as it takes to add points, but anyway pales compared to the cost of bundle ad-

justment, to which edgelets add a 25% extra processing burden. Edgelets are therefore

individually more expensive than point features.

9.3 Agility

It is difficult to convey the behaviour of a real-time tracking system on paper, so we

encourage the reader to refer to the attached results video which demonstrates the oper-

ation of the system. Subjectively, we note three changes in system behaviour: The first

is an increased robustness to short and sharp camera pans, similar to a saccade of the

eyes. Where the unmodified system would fail to track this and relocalise, the motion

initialisation stage is able to track these sharp rotations with sufficient accuracy for the

point tracker to converge at the end of the saccade. The addition of edge features is not

necessary to support these motions. The second change is an improved ability to track

fast linear translations perpendicular to the camera axis. For these motions, continual

tracking is necessary and the addition of edge features beneficial. The final change in

behaviour is negative: The motion initialisation method is susceptible to moving clutter

in the image, such as a hand moved rapidly before the camera. Such moving clutter can

cause tracking to fail, or (worse) shift tracking to a local minimum if observing repeated

texture. These behaviours are illustrated in the accompanying video file.

Figure 5 illustrates the effect of rapid camera motion on tracking ability, sampled

from 3500 frames. When the camera is moved slowly, point feature measurements out-

number edgelet measurements (as expected, since point features outnumber edgelets).

As the camera is moved with increasing speed, causing motion blur, the number of point

features measured drops rapidly below the number of available edgelet measurements.

13

0 20 40 60 80 100 120
0

100

200

300

400

500

Average pixel motion

F
ea

tu
re

s
tr

ac
k
ed

Edgelets

Points

Fig. 5: The effect of image motion of number of features trackable. Left, average plots

from 3500 frames. Center, in a stationary frame, 503 points and 307 edgelets are

tracked. Right, with ∼54 pixels of motion, 18 points and 151 edgelets are tracked.

9.4 Keyframe-based relocalisation

For a map with 250 keyframes, the new relocalisation method requires 1ms to find the

best-match keyframe, and a further 0.5ms to calculate a rotation in this keyframe. This

compares favourably with our previously used relocalisation method [4], which when

used with 256 feature classes required up to 20ms for classification alone.

The methods differ in that our keyframe-based approach is not invariant to large ro-

tation: While relocalisation is possible with a camera tilted up to circa 35◦, full upside-

down relocalisation from a novel view is not (but the utility of such a capability may

be questioned). A further difference is that the keyframe-based method is more pre-

dictable in operation: Both methods occasionally fail to relocalise, and when this hap-

pens the new method guarantees relocalisation if the user simply moves the camera

back to a ‘known-good’ location. By contrast the method of [4] may require a more

random search pattern.

10 Conclusions and Further Work

This paper has demonstrated how the tracking agility of a monocular SLAM system can

be improved. By combining and enhancing techniques from monocular SLAM, model-

based 3D tracking and direct image-based tracking, we achieve an unprecedented level

of robustness towards rapid camera motions. It is however important to distinguish be-

tween tracking agility and mapping agility: While we can track the camera during rapid

motions exhibiting blur, such frames are not used for map-building. If anything, the

rate at which a user can expand the map has slowed. The need for orthogonal baselines

and three keyframes makes addition of edgelets to the map slower than that of points –

incremental systems such as [10] can (given benign conditions) add new features more

quickly. A combination of techniques may be an interesting area of future work.

Finally, the system makes no attempt to use edgelets beyond tracking (and bundle

adjustment): No attempt is made to link them into longer constructs or use them to

obtain occlusion information for points. While the addition of edgelets to the map makes

this more visually useful to a human operator, future work should investigate how a

computer can better exploit the rich geometric information available.

14

Acknowledgements

This work was supported by EPSRC grant GR/S97774/01.

References

1. Davison, A., Reid, I., Molton, N.D., Stasse, O.: MonoSLAM: Real-time single camera

SLAM. IEEE Trans. Pattern Analysis and Machine Intelligence 29 (June 2007) 1052–1067

2. Chekhlov, D., Pupilli, M., Mayol-Cuevas, W., Calway, A.: Real-time and robust monocular

SLAM using predictive multi-resolution descriptors. In: Proc 2nd International Symposium

on Visual Computing. (November 2006)

3. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal

of Computer Vision 60(2) (2004) 91–100

4. Williams, B., Klein, G., Reid, I.: Real-time SLAM relocalisation. In: Proc 11th IEEE Inter-

national Conference on Computer Vision (ICCV’07), Rio de Janeiro (October 2007)

5. Eade, E., Drummond, T.: Scalable monocular SLAM. In: Proc IEEE Intl. Conference on

Computer Vision and Pattern Recognition (CVPR ’06), New York, NY (2006) 469–476

6. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proc

Intl. Symposium on Mixed and Augmented Reality (ISMAR’07), Nara (November 2007)

7. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Proc 9th

European Conference on Computer Vision (ECCV’06), Graz (May 2006)

8. Klein, G., Drummond, T.: Tightly integrated sensor fusion for robust visual tracking. In:

Proc British Machine Vision Conference (BMVC’02), Cardiff (September 2002) 787 –796

9. Smith, P., Reid, I., Davison, A.: Real-time monocular SLAM with straight lines. In: Proc

British Machine Vision Conference (BMVC’06), Edinburgh (September 2006)

10. Eade, E., Drummond, T.: Edge landmarks in monocular SLAM. In: Proc British Machine

Vision Conference (BMVC’06), Edinburgh (September 2006)

11. Viéville, T., Faugeras, O.D.: Feedforward recovery of motion and structure from a sequence

of 2d-lines matches. In: Proc 3rd Int Conf on Computer Vision. (1990) 517–520

12. Faugeras, O.D., Lustman, F., Toscani, G.: Motion and structure from point and line matches.

In: Proc 1st Int Conf on Computer Vision, London. (1987) 25–33

13. Taylor, C.J., Kriegman, D.J.: Structure and motion from line segments in multiple images.

IEEE Transactions on Pattern Analysis and Machine Intelligence 17(11) (1995) 1021–1032

14. Bartoli, A., Sturm, P.: Structure from motion using lines: Representation, triangulation and

bundle adjustment. Computer Vision and Image Understanding 100(3) (dec 2005) 416–441

15. Shashua, A.: Trilinearity in visual recognition by alignment. In: Proc 3rd European Conf on

Computer Vision, Stockholm, May 1994, Springer (1994) 479–484

16. Devernay, F., Faugeras, O.D.: Straight lines have to be straight. Machine Vision and Appli-

cations 13(1) (2001) 14–24

17. Harris, C.: Tracking with rigid models. In Blake, A., ed.: Active Vision. MIT Press (1992)

18. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence (PAMI) 8(6) (Nov. 1986) 679–698

19. Benhimane, S., Malis, E.: Homography-based 2d visual tracking and servoing. Special Joint

Issue on Robotics and Vision. Journal of Robotics Research 26(7) (July 2007) 661–676

	Improving the Agility of Keyframe-Based SLAM
	Georg Klein and David Murray

