
Chapter 3

Camera model and multiple view
geometry

Before discussing how 3D information can be obtained from images it is important to know how images
are formed. First, the camera model is introduced; and then some important relationships between multiple
views of a scene are presented.

3.1 The camera model

In this work the perspective camera model is used. This corresponds to an ideal pinhole camera. The
geometric process for image formation in a pinhole camera has been nicely illustrated by Dürer (see Fig-
ure 3.1). The process is completely determined by choosing a perspective projection center and a retinal
plane. The projection of a scene point is then obtained as the intersection of a line passing through this
point and the center of projection

�
with the retinal plane � .

Most cameras are described relatively well by this model. In some cases additional effects (e.g. radial
distortion) have to be taken into account (see Section 3.1.5).

3.1.1 A simple model

In the simplest case where the projection center is placed at the origin of the world frame and the image
plane is the plane 3D& � , the projection process can be modeled as follows:

3T& � � 8 & � � (3.1)

For a world point
N + � 0 � 3 P and the corresponding image point

N 3 � 8 P . Using the homogeneous represen-
tation of the points a linear projection equation is obtained:
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(3.2)

This projection is illustrated in Figure 3.2. The optical axis passes through the center of projection
�

and is
orthogonal to the retinal plane � . It’s intersection with the retinal plane is defined as the principal point � .

3.1.2 Intrinsic calibration

With an actual camera the focal length � (i.e. the distance between the center of projection and the retinal
plane) will be different from 1, the coordinates of equation (3.2) should therefore be scaled with � to take
this into account.
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Figure 3.1: Man Drawing a Lute (The Draughtsman of the Lute), woodcut 1525, Albrecht Dürer.
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Figure 3.2: Perspective projection
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Figure 3.3: From retinal coordinates to image coordinates

In addition the coordinates in the image do not correspond to the physical coordinates in the retinal
plane. With a CCD camera the relation between both depends on the size and shape of the pixels and of the
position of the CCD chip in the camera. With a standard photo camera it depends on the scanning process
through which the images are digitized.

The transformation is illustrated in Figure 3.3. The image coordinates are obtained through the follow-
ing equations: �� 3 8

�

��
&

�
�
������

N ����� � P ��
	 � �

���	 � �

�

�
�
� �� 3�
8 


�

��

where � � and � � are the width and the height of the pixels, � & 1 � � � � � 5 S is the principal point and � the
skew angle as indicated in Figure 3.3. Since only the ratios �� � and �� 	 are of importance the simplified
notations of the following equation will be used in the remainder of this text:�� 3 8
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(3.3)

with � � and � � being the focal length measured in width and height of the pixels, and � a factor accounting
for the skew due to non-rectangular pixels. The above upper triangular matrix is called the calibration
matrix of the camera; and the notation

!
will be used for it. So, the following equation describes the

transformation from retinal coordinates to image coordinates.

� & ! � 
 � (3.4)

For most cameras the pixels are almost perfectly rectangular and thus � is very close to zero. Furthermore,
the principal point is often close to the center of the image. These assumptions can often be used, certainly
to get a suitable initialization for more complex iterative estimation procedures.

For a camera with fixed optics these parameters are identical for all the images taken with the camera.
For cameras which have zooming and focusing capabilities the focal length can obviously change, but also
the principal point can vary. An extensive discussion of this subject can for example be found in the work
of Willson [173, 171, 172, 174].

3.1.3 Camera motion

Motion of scene points can be modeled as follows

� E &
� " �
( S� � � � (3.5)

with
"

a rotation matrix and
� & 1 � �

�
�

�
� 5 S a translation vector.
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The motion of the camera is equivalent to an inverse motion of the scene and can therefore be modeled
as � E &

� " S 
 " S �
( S� � � � � (3.6)

with
"

and
�

indicating the motion of the camera.

3.1.4 The projection matrix

Combining equations (3.2), (3.3) and (3.6) the following expression is obtained for a camera with some
specific intrinsic calibration and with a specific position and orientation:
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which can be simplified to � ; ! 1 " S -
" S � 5 � (3.7)

or even � ; � � � (3.8)

The � �T� matrix
�

is called the camera projection matrix.
Using (3.8) the plane corresponding to a back-projected image line

�
can also be obtained: Since� S � ; � S � � ; � S � , � ; � S � (3.9)

The transformation equation for projection matrices can be obtained as described in paragraph 2.1.3. If the
points of a calibration grid are transformed by the same transformation as the camera, their image points
should stay the same: � ; � E � E ; � � UZW � � ; � � (3.10)

and thus � AC � E ; � � UZW (3.11)

The projection of the outline of a quadric can also be obtained. For a line in an image to be tangent to the
projection of the outline of a quadric, the corresponding plane should be on the dual quadric. Substituting
equation (3.9) in (2.17) the following constraint

� S � � 7 � S � & ( is obtained for
�

to be tangent to the
outline. Comparing this result with the definition of a conic (2.10), the following projection equation is
obtained for quadrics (this results can also be found in [65]). :

��7 ; � � 7 � S � (3.12)

Relation between projection matrices and image homographies

The homographies that will be discussed here are collineations from - , C -2, . A homography
�

de-
scribes the transformation from one plane to another. A number of special cases are of interest, since the
image is also a plane. The projection of points of a plane into an image � can be described through a ho-
mography

� � 	 . The matrix representation of this homography is dependent on the choice of the projective
basis in the plane.

As an image is obtained by perspective projection, the relation between points
� � belonging to a plane�

in 3D space and their projections � � 	 in the image is mathematically expressed by a homography
� � 	 .

The matrix of this homography is found as follows. If the plane
�

is given by
� ; 1 � S � 5 S and the point

� �
of
�

is represented as
� � ; 1 � S� � 5 S , then

� � belongs to
�

if and only if (2& � S � � & � S � � . � . Hence,

� � ;
� � �
��� & � � �
 � S � � � & � \ � � �
 � S � � � � (3.13)
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Now, if the camera projection matrix is
� 	 &21 � 	�� � 	 5 , then the projection � � 	 of

� � onto the image is

� � 	 ; � 	 � � & 1 � 	 � � 	 5
� \ � � �
 � S � � �

& 1 � 	 
 � 	 � S 5 � � � (3.14)

Consequently,
� � 	 ; �T	 
 � 	 � S .

Note that for the specific plane
������� & 1 ( (/( � 5 S the homographies are simply given by

� ����� 	 ; �T	 .
It is also possible to define homographies which describe the transfer from one image to the other for

points and other geometric entities located on a specific plane. The notation
� � 	��

will be used to describe
such a homography from view � to � for a plane

�
. These homographies can be obtained through the

following relation
�
�	�� & � � � � UXW� 	 and are independent to reparameterizations of the plane (and thus also

to a change of basis in -�� ).
In the metric and Euclidean case,

� 	 & ! 	 " S	 and the plane at infinity is
�G# &21 (F( ( � 5 S . In this case,

the homographies for the plane at infinity can thus be written as:
� #	�� & ! 	 " S	�� ! UXW	 � (3.15)

where
" 	L� & " S	 " � is the rotation matrix that describes the relative orientation from the ���
	 camera with

respect top the � �
	 one.
In the projective and affine case, one can assume that

� W & 1 \ � � � � � � 5 (since in this case
! 	

is un-
known). In that case, the homographies

� � W ; \ � � � for all planes; and thus,
� �����W 	 & � ����� 	

. Therefore
� 	

can be factorized as � 	 &21 �
�����W 	 � � W 	 5 (3.16)

where � W 	 is the projection of the center of projection of the first camera (in this case, 1 (/( ( � 5 S ) in image
� . This point � W 	 is called the epipole, for reasons which will become clear in Section 3.2.1.

Note that this equation can be used to obtain
� �����W 	 and � W 	 from

� 	
, but that due to the unknown relative

scale factors
� 	

can, in general, not be obtained from
� �����W 	 and � W 	 . Observe also that, in the affine case

(where
� # &21 (F( ( � 5 S ), this yields

� 	 &21 �
# W 	 � � W 	 5 .

Combining equations (3.14) and (3.16), one obtains
� � W 	 & �

�����W 	 
 � W 	 � S (3.17)

This equation gives an important relationship between the homographies for all possible planes. Homo-
graphies can only differ by a term � W 	 1 � 
 � E 5 S . This means that in the projective case the homographies
for the plane at infinity are known up to 3 common parameters (i.e. the coefficients of � # in the projective
space).

Equation (3.16) also leads to an interesting interpretation of the camera projection matrix:

� W ; 1 \ � � � � � � 5
� �
� � & � (3.18)

� 	 ; 1 �
�����W 	 � � W 	 5

� �
� � & � �����W 	 � . � W 	 (3.19)

& A � �����W 	 � W . � W 	 & � 	 N A
� � W
( � . � � �� � P (3.20)

In other words, a point can thus be parameterized as being on the line through the optical center of the first
camera (i.e. 1 ( (F( � 5 S ) and a point in the reference plane

� �����
. This interpretation is illustrated in Figure 3.4.

3.1.5 Deviations from the camera model

The perspective camera model describes relatively well the image formation process for most cameras.
However, when high accuracy is required or when low-end cameras are used, additional effects have to be
taken into account.
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Figure 3.4: A point
�

can be parameterized as
� W . A � ����� . Its projection in another image can then be

obtained by transferring � W according to
�������

(i.e. with
� �����W 	 ) to image � and applying the same linear

combination with the projection � W 	 of
� W (i.e. � 	 ; � W 	 . A �

�����W 	 � W ).

The failures of the optical system to bring all light rays received from a point object to a single image
point or to a prescribed geometric position should then be taken into account. These deviations are called
aberrations. Many types of aberrations exist (e.g. astigmatism, chromatic aberrations, spherical aberra-
tions, coma aberrations, curvature of field aberration and distortion aberration). It is outside the scope of
this work to discuss them all. The interested reader is referred to the work of Willson [173] and to the
photogrammetry literature [137].

Many of these effects are negligible under normal acquisition circumstances. Radial distortion, how-
ever, can have a noticeable effect for shorter focal lengths. Radial distortion is a linear displacement of
image points radially to or from the center of the image, caused by the fact that objects at different angular
distance from the lens axis undergo different magnifications.

It is possible to cancel most of this effect by warping the image. The coordinates in undistorted image
plane coordinates

N 3 � 8 P can be obtained from the observed image coordinates
N 3�� � 8 � P by the following

equation:
3�& 3�� . N 3�� 
 � �

P N�� W � , . �
,
� � . ����� P8 & 8 � . N 8 � 
 � �

P N�� W � , . �
,
� � . ����� P (3.21)

where
� W and

�
, are the first and second parameters of the radial distortion and

� , & N 3�� 
 � �
P , . N 8 � 
 � �

P , �
Note that it can sometimes be necessary to allow the center of radial distortion to be different from the
principal point [174].

When the focal length of the camera changes (through zoom or focus) the parameters
� W and

�
, will

also vary. In a first approximation this can be modeled as follows:

3�& 3�� . N 3�� 
 � �
P N��

� W�� �� � . �
� , �	�� � . �����

P
8 & 8 � . N 8 � 
 � �

P N��
� W�� �� � . �

� , �	�� � . �����
P (3.22)

Due to the changes in the lens system this is only an approximation, except for digital zooms where (3.22)
should be exactly satisfied.


