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Abstract 

We conszder the problem of robustly estzmatzng op- 
tical flow f rom a paw of zinages uszng a new frame-  
work based on robust estimation whzch addresses 
iizolatzons of the brzghtness constancy and spatzal 
smoothness asbuinptzons. We also show the rrla- 
tzonshzp between the robust estimation framework 
and he-process approaches for  copzng wzth spatzal 
dascontznuities. In doang so, we generalaze the no- 
tzon of a lane proce.ss to that of an outlier process 
that can account for vzolatzons zn both the brzght- 
ness and smoothness assumption>. We develop 
a Graduated A’on-(’onvexzty algorzthm f o r  recov- 
crzng oplzcal flow and motzon dzscontznuztzes and 
demonstrate the performance of the robust formu- 
latzon on both synthetzc data and natural zrnages. 

1 Introduction 
.4lgorithms for recovering optical flow cmbody a set of 
assumptions about the world which, by necessity, are 
simplifications and hence may be vio’lated in practice. 
For example, the assumption of brightness constancy 
is violated when motion boundaries, shadows, or spec- 
ular reflections are present. Motion boundaries also 
violate the common assumption that the optical flow 
varies smoothly. Violations such as these result in gross 
measurement errors which we refer to as outliers. To 
compute optical flow robustly we must reduce the sen- 
sitivity of the recovered optical flow to violations of the 
assumptions by detect irig and rejtacting outliers. 

Many cornmon solutions to the optical flow proh- 
Iem are formulated in t,errns of least-squares estimation 
which is well known to lack robustness in the presence 
of outliers. We show how a robust statistical formula- 
t ion of these estimation problems makes the recovered 
flow field less sensitive to assumption violations. This 
robust formulation, combined with a deterministic op- 
timization scheme, provides a framework for robustly 
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estimating optical flow and allows assumption viola- 
tions to be detected. We have applied the approach to 
three standard techniques for recovering optical flow 
[ 11: area-based regression, correlation, and regulariza- 
tion techniques. 

Previous work in optical flow estimation has fo- 
cused on the violation of spatial smoothness a t  motion 
boundaries while ignoring violations of the brightness 
constancy assumption. Within the robust estimation 
framework, violations of both constraints are treated 
in a unifo’rm manner and we will demonstrate that the 
“robustification” of the brightness constancy assump- 
tion greatly improves the flow estimates. The robust 
estimation framework is also closely related to “line- 
process” approaches for coping with spatial disconti- 
nuities [4:]. We generalize the notion of a line process 
to that of an outlier process which can account for vio- 
lations of both the brightness and smoothness assump- 
tions. 

2 Estimating Optical Flow 
Most current techniques for recovering optical flow ex- 
ploit two constraints on image motion: d a t a  conser- 
vatzon and spatial coherence. The data conservation 
constraint, is derived from the observation that sur- 
faces generally persist in time and, hence, the intensity 
structure of a small region in one image remains con- 
stant over time, although its position may change. The 
spatial coherence constraint embodies the assumption 
that surfalces have spatial extent and hence neighbor- 
ing pixels in an image are likely to belong to the same 
surface. Since the motion of neighboring points on a 
smooth rigid surface changes gradually, we can enforce 
an implicit or explicit smoothness constraznt on the mo- 
tion of neighboring points in the image plane. 

2.1 Data Conservation Constraint 

Let I(z,y,t) be the image intensity’ a t  a point (z,y) 
at time t .  The data conservation constraint can be 
expressed in terms of the standard intensity constancy 

* I  may be a filtered version of the intensity image at time t .  
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assumptzon 3s follows 

I ( z , y , t )  = J ( z + u b t , y + v b t , t + 6 t ) ,  (1)  

where ( 7 1 ,  v )  is thr horizontal and vertical image veloc- 
ity a t  a point and 6t is small. 

From this we derive the data conservation constraint 

As the size of the region R tends t,o zero this error mea.- 
sure becomes the more familiar gradient-based con- 
straint used in the Horn and Schunck algorithm [6] and 
the solution for ( U ,  w) is underconstrained. A large re- 
gion R is needed to sufficiently constrain the solution 
and provide some insensitivity to noise. The larger the 
region however, the less likely our  assumptions about 
the mot,ion will be valid over the entire region. For 
example, tht: constant velocity assumption used in ED 
above will be violated by affine flow, transparency, mo- 
tion boundaries, etc. The dilemma surrounding the 
appropriate size of 72 is referred to as the generalized 
aperture problem. 

2.2 Spatial Coherence Constraint 
When TL is small, the solution for U = (U, w) may need 
to be further constrained by the addition of a spa- 
tial coherence assumption in the form of a regularizing 
term Es;  the objective function becomes: 

where X controls the relative importance of t,he data 
conservation and spatial coherence terms. The most 
common formulation of Es  is the first-order, or mcnt- 
bran e ,  rriodrl : 

where the subscripts indicate partial derivatives of the 
flow in the 2 or y direction. 

With this approach the local flow vector us is forced 
to be close to the average of its neighbors. When a 
motion discontinuity is present this results in smooth- 
ing across the boundary which reduces the accuracy of 
the flow field and obscures important structural infor- 
mation about the presence of an object boundary. 

3 Robust Estimation 
While muc+ of the work in computer vision has focused 
on developing optimal strategies for exact parametric 
models, there is a growing realization that we must he 
able to cope with situations for which our models were 
not designed. This h a s  resulted in a growing interest 
in the use of robust statistics in computer vision (see 
[7] for a discussion). 

As identified by Hampel [5, page 111 the main goals 

Figure 1: Example Estimators. Quadratic (top). 
Truncated quadratic (middle). Lorentzian (bottom). 

of robust statistics are: 

(i)  To describe the structure best fitting the bulk of 
the d a t a .  

(ii) To identify dewiatzng da ta  points (outliers) or  
deviating substructures f o r  further treatment, zf 
desired. 

Specifically, robust est,imation addresses the prob- 
lem of finding the values for the parameters, a = 
[uo, . .  .,a,], that best fit a model, u(s;a), to a set 
of data measurements, d = {do, d l ,  . . . , d s } ,  s E S, 
in cases where the data differs statistically from the 
model assumptions. In fitting a model, the goal is to 
find the values for the parameters, a, that minimize 
the size of the reszdual errors ( d ,  - u(s; a)): 

min a C p ( d J  - u(s; a>, U , ) ,  (5) 
sts  

where 6, i s  a scale parameter, and p is our estimator. 
When the errors in the measurements are normally dis- 
tributed, the optimal estimator is the quadratic: 

which gives rise to the standard least-squares estima- 
tion problem. The function p is called an M-estzmator 
since it corresponds to the Maxzmum-lzkelzhood esti- 
mate. The robustness of a particular estimator refers 
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t,o its insensitivity to outliers, or deviations, froin the 
assumt:d statistical rnodel. 

The problem with the least-squares solution is that 
thc outlying points are assigned a high weight by the 
quadratic estimator (Figure 1, top left). One way to 
see this is by considering the influence function associ- 
ated with a particular estimator. This function char- 
acterizes the bias that a particular measurement has 
on the solution and IS determined by the derivative, 
I/). of the estimat.or [5]. In the least--squares case, the 
influence of data points increases linearly and without 
bound (Figure 1,  top right). 

‘To increase robustness we will consider estimators 
for which the influence of outliers tends to zero. Many 
3f t.hese redescending M-estimators have been studied 
in robust statistics, hut one of the most common in 
cornputer vision is the truncated quadratic [2] (Figure 
I ,  middle). !Jp to a fixed threshold, errors are weighted 
8:luadratically, but beyond that, errors receive a con- 
:stant value. By examining the $-function we see that 
,the influence of outliers goes to  zero beyond the thresh- 
o l d  For the remainder of the paper we will consider 
I;he Lorentzian estimator (Figure 1, bottom), but the 
treatment here could equally be applied to a wide va- 
yiety of the other estimators. A discussion of various 
(&mators can be found in [I]. 

3 . 1  Robust Estimation Framework 
”We make thn simple observation that may common ap- 
proaches to recovering optical flow are formulated as 
least-squares estimation (including: correlation, reg- 
nlarization, and area-base techniques). Because each 
approach involves pooling information over a spatial 
neighborhood these least-squares formulations are in- 
appropriate a t  motion boundaries. By treating the 
problems in terms of robust estimation, we alleviate the 
problems of oversmoothing and noise sensitivity typi- 
cally associated with t8he least-squares formulations. 

To improve the robustness, we reformulate our min- 
imization problems to account for outliers by using the 
robust estimators described above. We illustrate by 
considering a simple gradient-based formulation of op- 
tical flow [6] .  For an image of size ;vi x m pixels we 
define a grid of sites: 

,S = {s1,.s2, .  . . , s m 2  I V u )  0 5 i(st,,),-j(s,,,) 5 rn - I}, 

where ( i ( s ) ,  j ( s ) )  denotes the pixel coordinates of site 
S. ‘The objective function, E(u), for the regularization 
approach, becomes: 

where Gs represents the set of north, south, east, west 
neighbors of s in the grid, where 8 1  and 6 2  are scale 
parameters and where pi and p2 may be different esti- 
mators. Rather than choosing pi(.)  = x2, which gives 
the familiar least-squares formulation, we take the pi  

to be robust estimators. 

4 Relationship to Line Processes 
We now examine how the robust estimation approach 
relates to line-process approaches in which first-order 
discontinuities in the flow are modeled by binary val- 
ued line processes ls,n which represent the presence, or 
absence, of a discontinuity between sites s and n [2, 4].2 
The new objective function, E(u, 1) ,  is then: 

E[( [db + 19 u s  + It  )2  

S E S  

+A C [ms(l - I s , n ) l l u s  - un112 + P~ls,nIl, (8) 
n € P ,  

where as  a.nd PS are constant factors controlling the 
weighting, of the smoothness term and the “penalty 
term” respectively. Such a formulation allows viola- 
tions of tlhe spatial smoothness term, but does not ac- 
count for violations of the data  term. This prompts us 
to generalize the notion of a “line process’) to that of 
an “outlirx process” that can be applied to both data 
and spatial tjerms to perform outlier rejection in the 
same spirit as the robust estimators do. The objective 
function, E ( u ,  1, d) ,  is then reformulated as: 

C [ ~ D (  1 - d,)( l ,us  + 1 y ~ s  + I t ) 2  + BDd, 
S€S 

SA [‘YS(l - ~ s , n ) I I U s  - Un/l2 + PS1S,fLlI, (9) 
nEGs 

where we have simply introduced a new process d, and 
constant scaling factors (ID and Bo. 

From Outlier Process to Robust Estimation: 
Blake and Zisserman [a] showed that line processes can 
be eliminated from the objective function by first min- 
imizing over them, resulting in an objective function 
which is solely a function p of the actual variables un- 
der consideration. Exactly the same treatment can be 
applied to the outlier-proc,ess formulation to derive [ 11 : 

n ~ i 1 1 ~ [ p ( ( ~ z ~ s  U + l y v s  + I t ) , O D , P D )  
JES 

+A P(llUS - Unl l r  as1 Ps)1, (10) 
n€G,  - 

’For illustration, we consider a gradient-based formulation 
w i t h  a first order smoothness temi applied to the norm of the 
local flow difference. 
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where, in the case of binary line processes, p is the 
truncated quadratic shown in Figure l . 3  Notice that 
this is identical to a robust estimation formulation with 
the truncated quadratic as the estimator. 

From Robust Estimators to Line Processes: 
For certain choices of robust estimators, we can convert 
a robust estimation problem into an equivalent prob- 
lem involving binary or analog outlier processes (for a 
detailed treatment see [I, $1). This allows spatial inter- 
actions between line processes to be explicitly modeled. 
Take, for example, a robust formulation of optical flow, 
E ( u ,  v ) ,  where p is the Lorentzian estimator: 

S E S  n E B .  

We can  derive an equivalent cost function, E(u, d ,  I ) ,  
containing analog linc process, z ( z ) ,  [ I ,  81: 

C[( 1 - Z(d))(I,u + Iyv  + It)' + P ( d )  
s E s 

+ x [( 1 - Z ( l ) ) l l U S  - Un1l2 + P(~)11> 
nEE. 

where P ( z )  is a "penalty" term and d , l  2 0. In 
the case of the Lorentzian estimator the outlier process 
z(z)  is defined as: 

1 
l + x  

Z(.) = 1 - - 

5 A Robust Gradient Method 
We take as an example the robust gradient-based for- 
mulation in equation (7) with the Lorentzian as the 
estimator. Unlike the least-squares formulation, the 
robust objective function, E(u,  v ) ~  may be non-convex. 
A local minimum, however, can be found using Simul- 
taneous Over-Relaxation (SOR). The iterative updat,e 
equation for minimizing E at  step n + 1 is simply [214: 

where 0 < w < 2 is an overrelaxation parameter  that 
is used to overcorreci the estimate of a t  stage 
11 + 1. The first partial derivative of the robust flow 
equation (7) is simply: 

+ +(us - un 1  ~ 2 ) 1 1  

nEP. 

Geman and Reynolds [3] showed that this approach can be 
generalized to analog line processes that assume continuous noli- 
negative values. 

Only the equations for the horizontal component of the flow 
are show; the treatnient of the vertical component is identical. 

where $(z) = dp/dz .  

partial derivatives of E which implies: 
The term T(u,) is an upper bound on the second 

vs E s. - XZ," 4 
a: a; - a u j '  T ( u s )  = - + - > 

5.1 Graduated Non-Convexity 
We now turn to the problem of finding a globally op- 
timal solution when the function is non-convex. We 
can construct a convex objective function by choos- 
ing a1 and a2 to be sufficiently large so that the Hes- 
sian matrix of E at  each point in the image is positive 
definite. These ai determine the point a t  which mea- 
surements are considered outliers; that is, the point a t  
which the influence of the measurements begins to de- 
crease. This occurs when the derivative of $(z) equals 
zero or x = &&a. For the convex approximation we 
take ai = q/&, where ri is the largest expected out- 
lier. The minimum of this convex formulation is readily 
obtained using SOR. 

We use the Graduated Non-Convexi ty  ( G N C )  con- 
tinuation method of Blake and Zisserman [2] to track 
the minimum over a sequence of objective functions 
with decreasing values for the ai which gradually in- 
troduce discontinuities in the data  and spatial terms. 
The SOR algorithm is used to converge to the mini- 
mum for each new value of ~ i .  The minimum values 
for the ai are determined from prior expectations of 
motion discontinuities and sensor noise.5 

6 Experimental Results 
We have conducted a number of experiments using syn- 
thetic and natural image sequences to compare the per- 
formance of the least-squares and robust formulations 
of the optical flow equation (7). All experiments were 
performed using 200 iterations6 of each algorithm. The 
parameter X was empirically determined and remained 
unchanged for all the experiments: X = 10 for the 
robust-gradient approach, and X = 50 for the least- 
squares approach'. The spatial and temporal deriva- 
tives (I,, Z y  , It) were estimated using simple image dif- 
ferencing and the images were prefiltered with a Lapla- 
cian. 

6.1 Synthetic Sequence 
The first experiment involves a synthetic sequence con- 
taining two textured surfaces, one which is stationary 

5A coarse-to-fine strategy for coping with large motions is 
described in [I]. 

An iteration involves the updating of every site in the flow 
field. 

'The different values of X are due to the different p functions 
used; that is, the quadratic for the least-squara approach, and 
the Lorentzian for the robust-gradient method. 
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U 2, 

Figure 2: Effect of robust data term, (10% uniform 
noise). (top) Least-squares. (nlzddlc.) Quadratic data 
and robust smoothness. (bottom) Robust formulation. 

and one which is translating one pixel to the left. 'The 
,second image in the sequence has been corrupted with 
10% uniform random noise. To evaluate the effect of 
the robust formulation of the data and smoothness 
terms, we compare the performance of three different 
formulations: least-squares (Horn and Schunck), a ver- 
:sion with a quadratic data term and robust smoothness 
term (eg. Blake and Zisserman), and the fully robust 
Formulation. 

'The results are illustrated in Figure 2. The left col- 
umn shows the horizontal motion and the right column 
:shows the vertical motion recovered by each of the ap- 
proaches (black = -1 pixel, white = 1 pixel, gray = 0 
pixels). Figure 2 (top) shows the noisy, but smooth, 
results obtained by least-squares. Figures 2 (middle) 
:shows the result of introducing a robust smoothness 
:term alone; the recovered flow is piecewise smooth, but 
Ithe gross errors in the data produce spurious motion 
(discontinuities. Finally, Figure 2 (bottom) shows the 

a b 
Figure 3: Outliers in the smoothness and data 
terms, (10% uniform noise). a) Flow discontinuities. 
b) Data outliers. 

improvement realized when both the data and spatial 
terms are robust. 

We can detect outliers where the final values of 
the data coherence and spatial smoothness terms are 
greater than the outlier thresholds and d o z .  
Motion discontinuities are simply outliers with respect 
to spatial smoothness (Figure 3a). A large number of 
image measurements are treated as outliers by the data 
term; especially when the motion is large (Figure 3 b ) .  

6.2 The Pepsi Sequence 

We next consider a natural image sequence in which 
a Pepsi can and textured background move approxi- 
mately 0.8 and 0.35 pixels to the left between frames 
respectively (Figure 4, top left). Figure 4 (bottom) 
shows thitt the flow recovered with the robust formu- 
lation does an excellent job of preserving sharp motion 
discontinuities. Figure 4 (top right) shows the loca- 
tions where the smoothness constraint is violated (ie. 
the change in flow across the boundary is treated as an 
outlier). The boundaries correspond well to the phys- 
ical boundaries of the can. 

6.3 The Tree Sequence 

Finally, we consider a more complex example with 
many discontinuities and motion greater than a pixel. 
The first 233 x 256 image in the SRI tree sequence 
is seen in Figure 5a .  As expected, the least-squares 
flow estimate (Figure 56) suffers from over-smoothing.8 
The robust flow, shown in Figure 5 c  exhibits sharp mo- 
tion boundaries, yet still recovers the smoothly varying 
flow of the ground plane. Figure 5 d  shows the motion 
discontinuities where the outlier threshold is exceeded 
for the snioothness constraint. 

~ ~ _ _ _  

'Only tlhe horizontal component of the flow is shown. 
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a b C d 
Figure 5: The SRI Tree Sequence. a) First intensity image. b )  Least-squares (horizontal component). c) 
Robust gradient. d) Spatial outliers. 

Figure 4: The Pepsi Sequence. Image 1 (top left); 
Robust flow field (U, U )  (bottom left and right respec- 
tively); Spatial smoothness outliers (top right). 

7 Conclusion 
This paper has consitiered the issues of robustness rp- 

lated tBo tht ,  recovery of  optical flow w i t h  motion dis- 
continuities. In this regard, it is important to recognize 
the generality of the problems posed by motion discon- 
tinuities; measurements are corrupted whenever infor- 
mation is pooled from a spatial neighborhood which 
spans a motion boundary. This applies to both the 
data conservation and spatial coherence assumptions. 
These violations of the constraints cause problems for 
the standard least-squares formulations of optical flow. 
By recasting these formulations within our robust esti- 
mation framework, erroneous measurements a t  motion 
boundaries are t r e a t d  as outliers and their influence 
is reduced. 

Finally, it  should be noted that the robust estima- 
tion framework has more general applicability than the 
recovery of optical flow. It provides a general frame- 
work for dealing with model violations which can be 
applied to a wide class of problems in early vision. 
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