
www.vr-ih.com

Virtual Reality & Intelligent Hardware 2019 Vol 1 Issue 4：386—410

Survey and evaluation of monocular visual-inertial SLAM
algorithms for augmented reality

Jinyu LI1, Bangbang YANG1, Danpeng CHEN2, Nan WANG2, Guofeng ZHANG1*,

Hujun BAO1*

1. State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, China

2. SenseTime Research, Hangzhou 311215, China

* Corresponding author, bao@cad.zju.edu.cn; zhangguofeng@cad.zju.edu.cn
Received: 15 December 2018 Accepted: 1 February 2019

Supported by the National Key Research and Development Program of China (2016YFB1001501); NSF of China (61672457);
the Fundamental Research Funds for the Central Universities (2018FZA5011); Zhejiang University-SenseTime Joint Lab of 3D
Vision.
Citation: Jinyu LI, Bangbang YANG, Danpeng CHEN, Nan WANG, Guofeng ZHANG, Hujun BAO. Survey and evaluation

of monocular visual-inertial SLAM algorithms for augmented reality. Virtual Reality & Intelligent Hardware,

2019, 1(4): 386—410

DOI: 10.1016/j.vrih.2019.07.002

Abstract Although VSLAM/VISLAM has achieved great success, it is still difficult to quantitatively

evaluate the localization results of different kinds of SLAM systems from the aspect of augmented reality

due to the lack of an appropriate benchmark. For AR applications in practice, a variety of challenging

situations (e.g., fast motion, strong rotation, serious motion blur, dynamic interference) may be easily

encountered since a home user may not carefully move the AR device, and the real environment may be

quite complex. In addition, the frequency of camera lost should be minimized and the recovery from the

failure status should be fast and accurate for good AR experience. Existing SLAM datasets/benchmarks

generally only provide the evaluation of pose accuracy and their camera motions are somehow simple and

do not fit well the common cases in the mobile AR applications. With the above motivation, we build a

new visual-inertial dataset as well as a series of evaluation criteria for AR. We also review the existing

monocular VSLAM/VISLAM approaches with detailed analyses and comparisons. Especially, we select 8

representative monocular VSLAM/VISLAM approaches/systems and quantitatively evaluate them on our

benchmark. Our dataset, sample code and corresponding evaluation tools are available at the benchmark

website http://www.zjucvg.net/eval-vislam/.

Keywords Visual-inertial SLAM; Odometry; Tracking; Localization; Mapping; Augmented reality

1 Introduction

In recent years, AR (Augmented Reality) technology has developed rapidly and become more and more

mature. International IT giants Apple, Google and Microsoft launched the mobile AR software

development platforms (i.e., ARKit and ARCore), as well as AR helmet display HoloLens, respectively. In

particular, with the popularization of mobile communications and intelligent terminals, AR technology has

gradually expanded from high-end applications such as industrial production, medical rehabilitation, and

urban management to electronic commerce, cultural education, digital entertainment and other popular

·Review·

mailto:bao@cad.zju.edu.cn
mailto:zhangguofeng@cad.zju.edu.cn
http://www.zjucvg.net/eval-vislam/
https://doi.org/10.1016/j.vrih.2019.07.002
www.vr-ih.com

Jinyu LI et al: Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality
applications, and has become a basic tool for people to recognize and transform the world.

AR is a kind of technique which can seamlessly fuse virtual objects or information with real physical

environment together and present the compositing effect to the user. 3D registration (i.e., accurate pose

registration/localization) is the key fundamental technique for achieving immersive AR effects. Early AR

solutions like ARToolkit1 use fiducial markers for pose registration, which limits AR objects to specific

places. Later on, some camera tracking methods based on natural features are developed. The most

important 3D registration technique is SLAM (Simultaneous Localization and Mapping), which can real-

time recover the device pose in an unknown environment. According to the use of different sensors, SLAM

techniques can be divided into VSLAM (visual SLAM), VISLAM (visual-inertial SLAM), RGB-D SLAM

and so on. There are already some general reviews about them[1−5]. In this paper, we mainly review the

publicly available VSLAM and VISLAM approaches with quantitative evaluation.

SLAM technology originates from the field of robotics. Over the past few decades, many researchers

have studied its modeling, optimization, and engineering but with simplified assumptions. In AR, new

challenges arise: applications require rapid initialization with an accurate scale. Accidental jittering and

pure rotational motion often occur. The measurements of consumer-level sensors are easily polluted by

noise and drift. Hardware synchronization is not easy to achieve. Unfortunately, there is no prior evaluation

sufficiently addressing these problems, making it hard to quantitatively compare the performance of

different VISLAM systems for AR applications.

Mobile devices (i.e., smartphones), generally have cameras and IMU (inertial measurement unit) sensors,

which are ideal for localization with VISLAM technology. For example, Apple's ARKit and Google's

ARCore both use VISLAM for 3D pose registration. Although there are already some datasets like

EuRoC[6] and KITTI[7], they do not aim at evaluating AR effects. Different from other applications, good

AR experience requires that the SLAM system can handle kinds of complex camera motion, allowing easy

use for a novice home user. For example, many AR applications need rapid initialization with an accurate

scale. The user may freely move the AR device and encounter a variety of unexpected situations, such as

occasional camera jittering, camera lost, rapid camera motion with severe motion blur, and dynamic

interference. Unfortunately, none of the existing benchmarks specifically address these issues and establish

corresponding evaluation criteria.

In this paper, we publish a new monocular VSLAM/VISLAM benchmark for evaluating SLAM

performance in AR applications. Specifically, we implemented a full pipeline for visual-inertial data

acquisition on mobile phones. We define a series of evaluation criteria for SLAM in AR. In addition, we

review the existing mainstream monocular VSLAM/VISLAM approaches, with detailed analysis and

comparisons. We perform a quantitative evaluation of public monocular VSLAM/VISLAM systems on our

benchmark2.

2 Basic theory of VSLAM and VISLAM

VISLAM is a technology which uses visual and inertial sensors to infer the device's pose and scene map in

an unknown environment. In contrast, VSLAM uses only visual sensor (i.e., monocular or multiple

cameras) to estimate the camera pose and scene structure according to multi-view geometry theory[8,9].

Inertial information (i.e., linear acceleration and rotational velocity measured by the IMU sensor) is

modeled by inertial navigation and can make up for the defects of visual information. So by fusing visual

1 https://github.com/artoolkit
2 The benchmark website is at http://www.zjucvg.net/eval-vislam/

387

https://github.com/artoolkit
http://www.zjucvg.net/eval-vislam/

Virtual Reality & Intelligent Hardware 2019 Vol 1 Issue 4：386—410

and inertial information, a VISLAM system generally can be more robust than a VSLAM system in the

same situations.

VSLAM can be regarded as the online version of structure-from-motion (SfM), which is also a key

problem in computer vision. Given the input multiple images or video sequences, SfM can automatically

recover the camera poses and the 3D points of matched features. The camera motion state of image i can

be denoted as Ci = (Ri,pi), where Ri and pi are the rotation matrix and camera position of image i

respectively. As illustrated in Figure 1, a 3D point X j can be projected to image i as:

x ij = h (C i,X j) = π(KR⊤
i (X j - p i)), (1)

where K is the camera intrinsic matrix, and π(x,y,z) = (x/z,y/z)⊤ is the projection function. Eq. (1) relates

the 3D point X j in the world coordinate to a 2D point xij on the image I i. In reality, the matching is not

perfect. Let x͂ij be the actual keypoint on the image, the reprojection error of X j on image i can be computed

as ϵij ≡ xij - x͂ij. For m images and n 3D points, we can simultaneously solve the camera poses and 3D

points by minimizing the following energy function:

arg min
C1⋯Cm, X1⋯Xn

∑
i = 1

m∑
j = 1

n ‖h (C i, X j) - x ij‖2 (2)

This optimization is called bundle adjustment (BA) [10], which is

the core component of SfM and VSLAM.

For monocular VSLAM, the absolute scale cannot be solved

by minimizing reprojection error. Fortunately, IMU sensor can

give metric measurements, so we can recover the absolute scale

by integrating and optimizing IMU data. Typically, the IMU

sensor measures the rotational velocity ω(t) and the linear

acceleration a (t) with respect to its local frame. Its common

model[11] is as follows:

ì

í

î

ï
ïï
ï

ï
ïï
ï

ω(t) = ῶ (t) + bω + nω
a (t) = R⊤

t (a͂W (t) - g) + ba + na
ḃω = ηω
ḃa = ηa

(3)

where ῶ (t) denotes the true rotational velocity in the IMU's frame, a͂W (t) denotes the true acceleration in

the world frame, and Rt is the rotation matrix of IMU at time t. nω~N (0,Σω) and na~N (0,Σa) are the

measurement noises of gyroscope and accelerometer, respectively. bω and ba are random walk

contaminations in the measurements, called drift error. Their random walk noises are ηω~N (0,Σbω) and

ηa~N (0,Σba). Obviously, direct integration of ω(t) and a (t) will lead to significant accumulation error. In

VSLAM, the accumulation error can be eliminated by loop closure detection and global optimization like

bundle adjustment. VISLAM combines visual and inertial measurements, and can be regarded as the direct

extension of VSLAM. So the BA function in VISLAM can be defined as follows:

arg min
C1,⋯,Cm,X1,⋯,Xn

{ }∑
i = 1

m∑
j = 1

n

 h ()Ci,X j - xij 2

Σ-1h
+∑

i = 1

m - 1
 s ()Ci|ω,a ⊖ Ci + 1

2

Σ-1m
(4)

The new term s (Ci|ω,a) in Eq. (4) represents the pose prediction of Ci + 1 based on Ci and the

measurements of ω(t) and a (t). This is usually achieved by iteratively integrating the IMU measurements

into the current pose prediction. Another method for fusing the inertial measurements into VSLAM is to

summarize a group of sequential IMU readings into one single pre-integrated IMU measurements, making

it convenient to incorporate the bias updates during optimization, such as [12, 13]. The binary operator

Figure 1 Multiple view geometry.

388388

Jinyu LI et al: Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality
gives the error between the prediction and the real value, typically via lie-algebra. Σh,Σm are covariance

matrices modeling the uncertainty of each error. In this way, it can give the best estimation for camera

poses which fuses camera and IMU. Because velocity and biases are also involved in the prediction s, we

need to solve camera poses, velocities, and IMU biases together in Eq. (4).

3 Representative monocular VSLAM/VISLAM approaches

As we know, SLAM systems can solve the states by filtering or optimization. Based on this, the SLAM

methods can be divided into filtering-based methods and optimization-based methods. The visual

information used for tracking may also be quite different. Some methods use keypoint matching and

optimize the reprojection error. Some other methods use image pixels directly and minimize the

photometric error. In this section, we introduce some of representative monocular VSLAM/VISLAM

approaches.

3.1 Filtering-based SLAM

MonoSLAM[14] is one of the earliest monocular VSLAM systems. Since it solves the camera pose using the

extended Kalman filter, it is a filtering-based SLAM system. For the Kalman update step, the observation

used is the reprojection from the standard pinhole model.

The EKF in MonoSLAM gives the maximum-a-posteriori estimation to all 3D points and the latest

camera pose. From a modern perspective, it repeatedly marginalizes out old camera states. In this way, the

number of states can be limited to O (N) size, where N is the number of landmarks. Therefore, the total

computation cost is bounded. It also reveals one of the main drawbacks of filtering-based methods: EKF

usually cannot give the global optimum estimation to the camera state. Premature marginalization of this

sub-optimal state will introduce permanent error to the system, resulting in large drift. In MonoSLAM, its

marginalization scheme also builds a dense covariance matrix. Each EKF iteration needs to take O (N 3)
time, making it intractable for processing lots of map points.

As another early Kalman filter based SLAM method, MSCKF[15] used a different way to estimate camera

states. They kept a sliding window of M frames. The state vector of MSCKF contains the poses of M
frames and the latest IMU states. To avoid including 3D points in state vector, MSCKF triangulates points

from current camera states for updating the filter estimation, and then marginalize them out immediately.

Different from MonoSLAM, MSCKF uses IMU to estimate the pose of the new frame. However, since

there are no relocalization or loop-closure modules, it is actually visual-inertial odometry (VIO). By using

the sliding window, the camera states in MSCKF will be refined many times before they are marginalized

out. Also, the size of the state only depends on the size of the sliding window, so each update in MSCKF

takes only O (M3) time. Hence, MSCKF can track in a wide area in real-time, while having relatively small

drift. In its later extension, MSCKF 2.0[16] investigated the observability of the system. They found 4

dimensions in camera states that are unobservable. Noise in these dimensions can introduce additional

error. So they used first-estimate-Jacobians[17] to avoid leaking errors into these extra dimensions. There are

other works addressing the problem of observability and consistency[18-21]. For example in [21], the

linearization points used to calculating Jacobians are selected under observability constraints, then a

variant of the EKF is used to remedy the consistency. MSCKF 2.0 has been used in mobile AR products,

due to its limited computation demand.

3.2 Optimization-based SLAM

Filtering-based SLAM systems are inevitably suffering from accumulation error. As investigated,

389

Virtual Reality & Intelligent Hardware 2019 Vol 1 Issue 4：386—410

optimization-based methods can have superior accuracy over filtering-based ones[22]. When there are visual-

loops, additional constraints can be made in the optimization to connect the non-consecutive overlapping

frames, thus eliminating the accumulation error. However, the computational cost of the global

optimization will grow rapidly along with the increasing frames. Existing literature focus on improving the

efficiency of the optimization, most of which aims at utilizing the sparsity of the relationship between

variables and the locality of the SLAM problem. Early works[23], already proposed to interpret the

factorization of information matrix or measurement Jacobian as the elimination progress of the factor

graph[24]. And the use of variable reordering heuristics like CHOLMOD[25] and COLAMD[26] dramatically

reduces the fill-in during the elimination, thus maintaining the sparsity. Based on these theories, iSAM[27]

was proposed which further took advantages of the locality and updated the factorization of the

measurement Jacobian incrementally. In order to better combine the variable reordering progress and the

incremental factorization, iSAM2[28], furthermore, presented Bayes tree structure to help to analyze the

causality. Other methods, like SLAM++[29,30] and ICE-BA[31], for example, employ incremental Schur

complement algorithm, which always eliminates the landmark variables before the camera/IMU variables

to minimize fill-in.

PTAM[32] is a ground-breaking VSLAM system which uses keyframe-based optimization. It puts local

tracking and global mapping in two parallel threads. In the camera tracking thread, they used a decaying

velocity model to predict the camera pose. The pose prediction also helps to project the 3D map points

onto the new image. So new keypoints are searched in the neighborhood region of the projections. Given

the matching result, they minimize the reprojection error to update the camera pose. Since only the pose is

solved, this can be done in real-time. In the other thread, the global mapping is done through bundle

adjustment. When camera tracking nominates a good keyframe, it will be added for bundle adjustment. If

sparsity is not considered, the computational complexity of bundle-adjustment with M keyframes is O (M3),
which grows over time. Its processing will become very expensive as the map expands. Running as a

separate thread can prevent mapping from blocking camera tracking, hence achieving real-time

performance. Despite that, the complexity of this global bundle adjustment still imposes limitations on

PTAM. In their original paper, the map can contain up to only hundreds of keyframes.

There is another caveat in the original PTAM system: its initialization requires user interaction. During

the start-up, the user must select two initial keyframes. Nevertheless, PTAM's parallel tracking and

mapping framework has inspired a lot of SLAM systems. Nowadays, almost all keyframe-optimization

based SLAM systems use a similar framework.

ORB-SLAM[33,34] is a state-of-the-art SLAM system, which used ORB features throughout its whole

system to improve the system robustness. Following PTAM, it puts camera tracking, local mapping and

loop closing in three threads.

In PTAM, there is no explicit handling of loop closure or relocalization, and the global map is a soup of

keyframes connected by keypoint matches. ORB-SLAM takes steps further. They separated the

optimization process into a local-window bundle adjustment and a loop-closing optimization. The local-

window bundle adjustment optimizes the latest keyframe and all keyframes that share observations with

the latest one. Since it only involves limited frames, the computational cost is bounded. The loop-closing

optimization is based on an Essential Graph as:

arg min
{ }Si
∑
i,j
 logSim(3) ()Si ⋅ ΔSij ⋅ S-1j 2

(5)

where Si, Sj are the nodes, representing keyframe poses. ΔSij is the edge between node i and j, representing

similarity transformation between the corresponding keyframes. Using similarity transforms can help

390390

Jinyu LI et al: Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality
reduce scale drift, which is a common problem in visual only SLAM. Also, since 3D points are not

involved in Eq. (5), the number of variables is reduced, so the overall performance is improved.

To avoid user interaction, ORB-SLAM simultaneously estimates a homography model and an epipolar

model and chooses the best one for initializing the first two keyframes. So the system automatically

initializes when there is sufficient movement. ORB-SLAM open-sourced its implementation, and has

inspired many new works, including a visual-inertial version of ORB-SLAM[35].

OKVIS[36] is another VISLAM system designed to fuse inertial measurements. The core optimization of

OKVIS is a sliding-window optimization with both reprojection errors and IMU motion errors. And it uses

marginalization to preserve information that goes out of the window. This sliding-window plus

marginalization strategy gives good accuracy with bounded computational cost.

VINS-Mono[37] is a robust visual-inertial SLAM system. It is also open-sourced. It has many new

highlights comparing to ORB-SLAM and uses marginalization techniques like OKVIS to improve

accuracy. It has a robust initialization with scale estimation. The odometry tracking used a two-way

marginalization for the local sliding window. And the global pose-graph[38] has only 4DoF for each frame.

The resulting system gives a very good estimation to camera and IMU states, as well as the physical scale.

A mobile version[39] is also publicly available, which can run smoothly on iPhone 6s.

VINS-Mono initializes in a loosely-coupled way. First, a SfM-based reconstruction is built on several

keyframes. Then the poses recovered by SfM are aligned with IMU measurements. This visual-inertial

alignment estimates the gyroscope bias, the gravity direction, a rough scale, and all the velocities of the

keyframes. These estimations are then used to initialize the system.

The tracking of VINS-Mono consists of a local visual-inertial odometry thread, a relocalization thread,

and a global pose-graph optimization thread. For initialization and local odometry tracking, VINS-Mono

tracks KLT features with optical flow.

The local visual-inertial odometry thread manages a sliding window of M recent keyframes. Upon the

arrival of a new frame, it predicts the frame pose by fusing the keypoint matching and IMU measurements.

Then the frame is added into the sliding window for a tightly-coupled bundle-adjustment where the errors

being minimized are reprojection error and motion preintegration error. To bound the computational cost,

VINS-Mono uses a two-way marginalization strategy: if the second-latest frame inside the window is not a

keyframe, its states are marginalized out, and the frame is removed from the window. Otherwise, the oldest

frame inside the window is marginalized and removed. By doing this, the information of the removed

frame turns into a prior term, and the total number of frames in the window is fixed. Removed keyframes

are added to the global pose-graph optimization as a node, and will also be used for relocalization.

The relocalization thread first detects loop closure with DBoW2[40]. When a loop-closing frame is

detected, BRIEF feature matching is computed. The feature-matching usually contains outliers, which are

filtered based on geometric criteria. Once the feature matching is reliable, the loop-closing frame is added

to the local visual-inertial odometry as a constraint. When there are more loop-closing frames, all of them

are used as constraints to improve relocalization accuracy.

The global pose-graph optimization thread keeps the historical keyframes. They add sequential edges

and loop closure edges between frames. The edge they used captures 3D relative position and 1D relative

rotation in the yaw direction, so the optimization is 4DoF for each keyframe. This is reasonable because

the other two rotational directions are observable from IMU measurements, and can be estimated during

the local-visual-inertial odometry.

3.3 SLAM with direct tracking

The systems introduced before use feature points to provide visual measurements. More specifically, in

391

Virtual Reality & Intelligent Hardware 2019 Vol 1 Issue 4：386—410

their optimization, visual factors are reprojection errors. And they are usually called "feature-based" or

"indirect" method. Some other SLAM systems try to minimize measurements based on image appearance

like the photometric error. These systems are known as direct methods. Unlike the indirect ones, these

systems skip the pre-computation step (e.g., forming visual measurements from feature matching), and

directly use the light intensity from the camera as measurements.

Both direct and indirect methods have their advantages and disadvantages. In most cases, indirect

methods are more robust to geometric noise, like lens distortions or rolling shutter effects, while direct

methods can be sensitive to them. On the other hand, direct methods are more robust to photometric noise

because all image regions having intensity gradient are utilized (edges, featureless walls).

Direct Sparse Odometry (DSO) [41] is a state-of-the-art visual odometry algorithm based on direct

tracking. DSO uses a sparse and direct formulation proposed by [42], whereas previous works are mostly

dense[43,44]. Moreover, DSO uses a fully direct probabilistic model to jointly optimize all model parameters,

including geometric structure and camera motion, making it convenient to incorporate other kinds of

sensors. Another difference between DSO and other direct method systems is the visual measurement

model. DSO proposed a novel visual measurement model that integrates the standard light intensity with

exposure time, lens vignetting, and a non-linear response function in order to improve accuracy and

robustness.

Like OKVIS, the optimization in DSO is performed in a sliding window of up to N keyframes. When the

active set of frames exceeds N, the old camera poses as well as points becoming invisible are removed by

marginalization. DSO uses a heuristically designed scoring function to determine which keyframes to

remove, in order to keep active keyframes well-distributed in 3D space. Once a keyframe is chosen, all

points represented in it are marginalized first, then the frame itself. To keep the sparsity of the problem,

DSO employs a suboptimal marginalization strategy where only a part of the residual terms is

marginalized. All observations that will affect the sparsity pattern are dropped directly. This is also inspired

by OKVIS.

Besides the systems introduced above, there are also other types of SLAM methods like RGB-D

based[45,46] or event-based methods[47]. Also, some systems use lines and planes for better regularization[48,49].

The recent development of deep learning also gives birth to some learning-based systems[50−52]. However,

only cameras and IMUs are commonly available on mobile phones, while the detection and tracking of

lines and planes are relatively expensive. Learning based methods are still not quite ready for being applied

in mobile AR applications. So we will only focus on evaluating the feature-based and direct-based

monocular VSLAM/VISLAM systems.

4 Visual-inertial dataset

There are already a few datasets and benchmarks[6−7,53−55]. For example, the EuRoC MAV dataset[6] is a

hexacopter-based dataset which has 11 sequences captured from 3 scenarios: two rooms and a machine

hall. There are stereo images captured at 752×480×20Hz and IMU sensor data captured at 200Hz. Ground-

truth poses are obtained from VICON and Leica MS50, with accuracy around 1mm. All the data are

hardware synchronized to a common clock. The dataset uses global shutter cameras. It also has good

synchronization and high-accuracy ground truth. These characteristics make it very popular among recent

VISLAM research. More datasets for VISLAM include the TUM VI benchmark dataset[53], the KITTI

Vision benchmark suite[7] and the PennCOSYVIO dataset[54]. However, these datasets are still too ideal for

evaluating VISLAM in real applications, especially for mobile AR applications. ADVIO dataset[55] is

392392

Jinyu LI et al: Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality
perhaps the only dataset so far, which captures data from real mobile phones. Although the dataset comes

with ground truth, its accuracy is around a few cm/m according to their paper.

Despite the abundance of datasets and benchmarks, none have been dedicated to test the performance of

VISLAM systems for AR applications. In order to fill this gap, we propose to build a new visual-inertial

dataset for evaluating SLAM in AR applications. Figure 2 illustrates the scheme of dataset processing. Our

visual-inertial dataset is collected with two mobile phones and a VICON motion capture system3. Firstly,

we gather raw data from devices, as shown in blue blocks. The raw data will be fed into the

synchronization/calibration process for spatial/temporal alignment. The ground truth data will be produced

utilizing the synchronization and calibration. The calibration data and ground truth data, as shown in red

and green blocks, together with raw data, will be presented in the final dataset. In the following

subsections, we will introduce the details of our hardware setup, conventions, calibration process, and the

dataset organization. Table 1 lists the characteristics of our dataset and some commonly used datasets for

comparison.

4.1 Hardware setup

We used two different mobile phones (i.e., an iPhone X and a Xiaomi Mi 8) to collect visual-inertial data.

3 https://www.vicon.com/

Figure 2 The scheme of dataset processing.

Table 1 Comparison of some commonly used VISLAM datasets

Dataset

Hardware

Camera

IMU

Ground- truth

Environment

Total Distance

Accuracy

Sync

KITTI[7]

Car

2´1392´512

10FPS

Global Shutter

OXTS RT 3003

10Hz

OXTS RT 3003

10Hz

Outdoors

39.2 km

~10 cm

Software

EuRoC[6]

MAV

2´768´480

20FPS

Global Shutter

ADIS 16488

200Hz

VICON/Leica

200Hz

Indoors

0.9 km

~1 mm

Hardware

TUM VI[53]

Custom Handheld

2´1024´1024

20FPS

Global Shutter

BMI160

200Hz

OptiTrack

120Hz

(Partially)

In-/outdoors

20 km

~1 mm

Hardware

ADVIO[55]

iPhone 6s

1´1280´720

60FPS

RollingShutter

The IMU of iPhone 6s

100Hz

Sensor Fusion

100Hz

In-/outdoors

4.5 km

~few dm

Software

Ours

iPhone X / Xiaomi Mi 8

1´640´480

30FPS

Rolling Shutter

The IMU of iPhone X /

The IMU of Xiaomi Mi8

100Hz/400Hz

VICON

400Hz

Indoors

377 m

~1 mm

Software

393

https://www.vicon.com/

Virtual Reality & Intelligent Hardware 2019 Vol 1 Issue 4：386—410

Specifically, we capture 640×480 monochrome images at 30fps with their rear camera. IMU data are recorded

at different frequencies. For Xiaomi Mi 8, IMU data are coming at 400Hz. For iPhone X, its IMU data

frequency is capped at 100Hz due to the limitation of CoreMotion API.

Ground truth data is obtained from a VICON motion capture system. It provides 6D pose measurements

of the phone at 400Hz. The body frame of the phone is determined from a set of special markers. Figure 3

shows one of our colleagues capturing data. We will register the body frame to the camera and IMU's local

frame through calibration. Since VICON data are recorded by a PC, there is a second synchronization

problem. Since the time-offset may be different across sequences, we need to recalibrate the time-offset for

each sequence.

4.2 Convention

Before introducing our dataset and the calibration,

we first define the coordinate frame convention

used in our dataset. We use
B
AR,

B
Ap to represent the

orientation and 3D position of a coordinate frame A

with respect to coordinate B, respectively. Let
Ax

and
Bx be the coordinates of the same point with

respect to frame A and B respectively, then we

have
Bx = B

AR
Ax + B

Ap. In each data sequence, there

will be 4 coordinate frames: the phone body frame

B, the camera frame C, the VICON object frame V,

and the VICON world frame W. B is attached to the

IMU, representing the pose of the IMU as well as

the phone itself. C represents the camera pose. V is defined by the reflective marker of VICON, and W can

be chosen arbitrarily during the initialization of VICON. We glued the reflective markers on a rigid box,

and then fix the phone on the box, so V is fixed on the phone too. During data recording, VICON gives the

pose of V in W, i.e., (WVR, WVp). The ground truth pose is represented as (WBR, WBp).
Ultimately, we have to make spatial-temporal registration among the VICON object frame, camera

frame, and the body (IMU) frame. The VICON

marker is rigidly attached to the phone. Once the

clocks are synchronized, both (WVR, WVp) and (WBR, WBp)
should be constant. Figure 4 illustrates the spatial

relationship between all these coordinate frames.

4.3 Calibration

4.3.1 Camera-IMU synchronization and

calibration

We calibrate the camera intrinsic with the

MATLAB Calibration Toolbox4. The relative

rotation
B
CR and translation

B
C p between IMU and

camera, as well as the time offset
B
Ct, can be

4 http://www.vision.caltech.edu/bouguetj/calib_doc/

Figure 3 Our data capture equipment. The phone is

rigidly attached to a marker object for VICON localization.

Figure 4 The relationship among VICON tracker, IMU

and camera.

394394

http://www.vision.caltech.edu/bouguetj/calib_doc/

Jinyu LI et al: Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality
obtained using Kalibr[56]. The camera timestamp is then corrected to the IMU clock.

4.3.2 VICON-IMU synchronization

Before calibrating the extrinsics between VICON and camera, synchronization must be done. Since we

already synchronized the Camera and the IMU, we only need to synchronize IMU with VICON now. Let T

be a specific time window. For any given VICON time V t, the relative rotation between VICON pose at V t
and VICON pose at V t + T is defined by:

V (Vt + T)
V (Vt) R = V (Vt + T)

W R ⋅ V (Vt)W R⊤ (6)

Meanwhile, the same relative rotation can be found by integrating IMU measurements between the two

time-points. Let Bt = Vt + B
Vt be the IMU time corresponding to V t, where

B
Vt be the time-offset between two

sensors. The relative rotation as measured by IMU can be found by:

B(Bt + T)
B(Bt) R = B(Vt + B

Vt + T)
B(Vt + B

Vt) R =∏
t = Bt

Bt + T exp ()ω(t) Δt (7)

Here, ω(t) is the IMU measurement at time t, and Δt is the sample interval of IMU. Now, since there is a

rigid relative rotation
B
VR between VICON and IMU, these two relative rotations are related as:

V (Vt + T)
V (Vt) R = B

VR⊤ ⋅ B(Bt + T)B(Bt) R ⋅ BVR (8)

However, the relative rotation
B
VR is unknown before we calibrated the extrinsics between the VICON

and the IMU. To get rid of it, we compute the angle of the two relative rotations. Let θV (t) = log (V (t + T)V (t) R),
θB (t) = log (B(t + T)B(t) R) be their angle-axis rotations. We have:

V (Vt + T)
V (Vt) R = B

VR⊤ ⋅ B(Bt + T)B(Bt) R ⋅ BVR
exp(θV (Vt)) = B

VR⊤ ⋅ exp(θB (Bt)) ⋅ BVR = exp(BVR⊤θB (Bt))
θV (Vt) = B

VR⊤θB (Bt)
 θV (Vt) = B

VR⊤θB (Bt) = θB (Bt)
(9)

So the angle of rotation can be extracted regardless of extrinsics. In reality, V t and B t need to be

synchronized. So, we find the time-offset
B
Vt which maximizes the cross-correlation between their angle of

rotations:

arg max
B
Vt

∑ θV (Vt) θB (Vt + B
Vt)

∑ θV (Vt) 2 ∑ θB (Vt + B
Vt) 2 (10)

In practice, we set T = 1s, and solves Eq. (9) by a linear sweeping over all the time-range of the dataset. In

the following discussions, we will drop the timestamp notations by assuming a good synchronization.

4.3.3 VICON-Camera calibration

Now, with good synchronization, we can solve the relative transform (BVR, BVp) by aligning the VICON

measurements｛
W

V R͂ i ,
W

V p͂ i) with the camera measurements. We put a planar board with multiple AprilTags[57]

printed on it. Then we take several images of the AprilTag board from different viewpoints. At the same

time, we record the VICON pose. With the help of AprilTags, we can obtain reliable correspondence

between images. So we solve the following bundle-adjustment problem:

arg min
{WVR i} , { WV p i} , CVR, CVp, {X j}

∑
i

æ
è
ç log (WV R͂ i ⋅ WVR i) 2

Σθ
+ W

V p i - W
V p͂ i

2
Σp

      ö

ø
÷÷+∑

j

ρ ()

π ()C

VR
W
VR i ()X j - W

V p i + C
Vp - x ij

2

Σx

(11)

Here, the device ′ s initial poses are known from the VICON measurement and would be further optimized

395

Virtual Reality & Intelligent Hardware 2019 Vol 1 Issue 4：386—410

to achieve better accuracy. We need to solve the device ′ s poses｛
W

V R i｝,｛
W

V p｝, the VICON-Camera extrinsics

(
C

VR,
C

Vp) and the spatial location of AprilTags X j. x ij denotes the 2D point in frame i which corresponds to

X j. The Huber robust function ρ (s) is defined as: ρ (s) = ìí
î

s     for s ≤ 1
2 s - 1 for s > 1. ε 2

Σ = ε Σ-1ε is the

squared Mahalanobis distance. Σx is the covariance matrix of the reprojection error. Σθ and Σp are the prior

covariance matrices for VICON alignment. The VICON-IMU extrinsics (BVR, BVp), can be computed using

the VICON-Camera and Camera-IMU extrinsics. So, we will be able to register all three types of sensor da-

ta together, as shown in Figure 4.

4.4 Motion type

For each phone, we captured several sequences. We focus on two aspects, i.e., motion type and scene

complexity. The sequences are different combinations of these two types.

We define 5 motion types, i.e., hold, wave, aiming, inspect and patrol. "Hold" means the user keeps the

phone almost stationary by hand. "Wave" means the user turns the phone around while keeping the wrist at

an almost fixed position, so there will be strong rotation but small translation. "Aiming" will mostly appear

in First-Person Shooting-like AR gaming, where the user is holding the phone away and pointing around.

In this case, the rotation is moderate but the translational movement may be relatively fast. "Inspect"

means the phone is moving around while looking at a particular place. This is a usual movement pattern

when the user is inspecting some virtual objects. At last, for "patrol" motion type, the phone is firstly

looking forward and then circling around. There may be fast rotation in this movement pattern, which is

challenging for SLAM systems to work robustly.

We set up the VICON capture room with random messing-around objects, featureless or repetitive walls,

PC desktop and glossing wooden floor. They are named "mess", "clean", "desktop" and "floor"

correspondingly.

All sequences are composed of 3 segments: the static segment, initialization segment, and main

segment. The static segment has at least 5s for some SLAM algorithms like MSCKF being able to

accurately initialize the IMU biases. For the initialization segment, the mobile phone moves slowly and the

captured content has sufficient texture so that most VSLAM/VISLAM approaches are able to initialize

accurately. The main segment is designed for testing the tracking ability under kinds of camera motion that

easily appear in mobile AR applications.

We recorded 16 sequences in total. Table 2 lists all the sequences and describes their properties, and

Figure 5 presents some of the ground truth trajectories. In A0 and A1, the mobile phone is walking around

the room and having strong rotational movements. A0 mainly contains glossy wooden floor, while A1

contains a white board and repetitive textured carpets. These are the two most difficult datasets. A2-A4

simulate different motions from daily use cases, and having more objects in the room. A5 also has many

objects in the room, but we slowly wave the hand while holding the phone. A6-A7 are the easiest

sequences where the phone fixates at a small desk with rich objects. B0-B7 are captured for evaluating

dedicated criteria, they all circulate around a small desktop, plus some additional movements like fast

rotations. These sequences will be introduced in section 5.

5 Evaluation criteria

To evaluate the SLAM systems for mobile AR, we define four criteria: the tracking accuracy, initialization

quality, tracking robustness, and relocalization quality. We will first introduce these criteria in detail, and

396396

Jinyu LI et al: Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality

then present our quantitative evaluation of 8 representative monocular VSLAM/VISLAM approaches/

systems.

5.1 Tracking accuracy

Tracking accuracy, including absolute error, relative error, and completeness, is crucial to AR application.

The absolute error measures how good a SLAM system localizes itself in the world. The absolute

positional error, APE for brevity, is defined as:

ϵAPE = 1
m∑i = 1

m ‖PSLAM []i - PGT []i‖2 (12)

where pSLAM [i] and pGT [i] are the estimated camera position and ground truth position for frame i

respectively.

The absolute rotational error or ARE, is defined as:

ϵARE = 1
m∑i = 1

m ‖ log (R-1SLAM [i] ⋅ RGT [i])‖2 (13)

Here, RSLAM [i] and RGT [i] are the estimated camera orientation and ground truth orientation for frame i,

respectively. log (R)maps a rotation matrix R ∈ SO(3) to its Lie algebra.

Since there is gauge ambiguity in the world coordinate, we must align the result with the ground truth

first. The optimal alignment transformation can be found using Umeyama's method[58]. For the poses from

t1 to t2, we use U(t1,t2) to denote the best similarity transform by minimizing the following energy function:

U(t1,t2) = arg min
s,R,T
∑
t = t1

t2 ‖(RpSLAM [t] + T) - spGT [t]‖2 (14)

The estimated camera trajectory from VSLAM will be transformed with the result of Eq. (14) before

evaluating ϵAPE and ϵRPE. For VISLAM result, the scale should be estimated by the algorithm. So we force

s = 1 while aligning the camera trajectory with the ground truth. We will also use US (t1,t2) to denote only

the scale component inU(t1,t2).
The relative positional error (RPE) and relative rotational error (RRE) are defined as follows:

Table 2 The motion and scene types of the captured sequences

Sequence

Xiaomi

iPhone

A0

A1

A2

A3

A4

A5

A6

A7

B0

B1

B2

B3

B4

B5

B6

B7

Motion

inspect+patrol

inspect+patrol

inspect+patrol

aiming+inspect

aiming+inspect

wave+inspect

hold+inspect

inspect+aiming

rapid-rotation

rapid-translation

rapid-shaking

inspect

inspect

inspect

inspect

inspect

Scene

floor

clean

mess

mess+floor

desktop+clean

desktop+mess

desktop

desktop

desktop

desktop

desktop

moving people

covering camera

desktop

desktop

desktop

Description

Walking and looking around the glossy floor.

Walking around some texture-less areas.

Walking around some random objects.

Random objects first, and then glossy floor.

From a small scene to a texture-less area.

From a small scene to a texture-rich area.

Looking at a small desktop scene.

Looking at a small desktop scene.

Rotating the phone rapidly at some time.

Moving the phone rapidly at some time.

Shaking the phone violently at some time.

A person walks in and out.

An object occasionally occluding the camera.

Similar to A6 but with black frames.

Similar to A6 but with black frames.

Similar to A6 but with black frames.

397

Virtual Reality & Intelligent Hardware 2019 Vol 1 Issue 4：386—410

ϵRPE = 1
m - 1∑i = 1

m - 1
()‖pSLAM [i + 1] - pSLAM [i]‖ - ‖pGT [i + 1] - pGT [i]‖ 2

(15)

ϵRRE = 1
m - 1∑i = 1

m - 1
()‖log (R-1SLAM [i + 1] ⋅ RSLAM [i])‖ - ‖log (R-1GT [i + 1] ⋅ RGT [i])‖ 2

(16)

Since the SLAM systems may get lost in some time, the evaluation of APE/RPE/ARE/RRE are conducted

on all valid poses, excluding the poses that are not initialized or in the lost status.

Figure 5 The ground truth trajectories of all 16 sequences in our dataset. We also show the representative images

from A0, A1, B0, and B1.

398398

Jinyu LI et al: Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality
Besides position and rotation error, the completeness of the recovered camera trajectory is also

important. The completeness is defined by the ratio between the number of good poses and the total

number of all poses (the poses before the first initialization are not included). In our setting, we think the

recovered pose is good only when its absolute position error is not larger than 0.1m. In addition, we

exclude the frames before the first initialization.

5.2 Initialization quality

For mobile AR, a fast and accurate initialization is important for good user experience. Yet, different

SLAM systems may use quite different initialization strategies. The original PTAM algorithm requires user-

interaction, and filtering-based MSCKF requires the device to keep static for a while. ORB-SLAM can

automatically select two frames for initialization. If we treat the first valid pose returned by the SLAM

system as initialization, the underlying motion state may not fully converge to a good result. Hence, we

take a different approach to evaluate the initialization.

We define the scale of the cumulative moving window scmw (t) as the scale estimated from frames until

time t:

scmw (t) = US (0, t) (17)

where US (0,t) denotes the scale component of U(0,t). The full initialization of a SLAM system needs to

reach a stable scale. The full initialization of a SLAM system needs to reach a stable scale.

In order to identify the convergence of scmw (t), we measure the maximum relative change of scmw in the

following local window [t,t + tw], We compute the maximum relative scale change as follows:

rcmw (t) = maxτ ∈ [t, t + tw{| scmw (τ) - }|scmw (t)
scmw (t) (18)

If rcmw (t) is not larger than a small threshold r init, we consider scmw(t) is almost converged and the

initialization is finished. Therefore, we define initialization time as t init: = min{t | rcmw (t) ≤ r init}, which is

illustrated in Figure 6. In our benchmark, we set r init=3% and tw = 5s. In order to make some algorithms like

MSCKF to accurately initialize the IMU bias, in our captured sequences, the camera always keeps

stationary for 5s in the beginning. So we subtract tinit by 5s as the final initialization time.

Besides the initialization time, the accuracy of the estimated scale during initialization is also very

important. So we compute the following symmetric relative scale error at tinit:

ϵscale = 12 (| scmw (t init)sg
- 1 | + | sg

scmw (t init) - 1 |) × 100% (19)

Figure 6 The convergence of scale.

399

Virtual Reality & Intelligent Hardware 2019 Vol 1 Issue 4：386—410

where sg represents the global scale of each trajectory. For VSLAM systems, we solve sg by aligning all the

results with the ground-truth. For VISLAM systems, we set sg = 1, because it is important for VISLAM

systems to initialize with accurate scale.

By combining the initialization time and the error of initially estimated scale, the initialization quality is

finally defined as:

ϵinit = t init (ϵscale + β)α (20)

where α = 0.5 and β = 1% in our experiments.

5.3 Tracking robustness

In extreme cases, visual tracking may be lost. A robust system should recover from the lost status as soon

as possible, and accurately register the new pose with the past trajectory. For the next discussion, we

assume there is one lost event during tracking. Let [t1,t2] and [t3,t4] be the trajectory before and after this

lost event, we can register the two sub-trajectories as:
{ s12, R12, T12} = U(t1, t2)
{ s34, R34, T34} = U(t3, t4) (21)

For a good recovery, the sub-trajectory [t3,t4] must be aligned well with [t1, t2], hence { s34 , R34, T34} should

be close to { s12, R12, T12}. Otherwise, the new sub-trajectory can have a much different transformation, and

the global consistency may be broken, as illustrated in Figure 7.

Given the whole tracking result, there can have

multiple lost events. We first segment the

trajectory according to these lost events. Then we

register each trajectory with the ground truth. Let

ξ i = (si,Ri,Ti) be the similarity transformation of

sub-trajectory i, we compute the relocalization

error by comparing two neighboring transfor-

mations and add them together:

ϵRL = ∑
i = 1
n - 1‖logSim(3) (ξ-1i ξ i + 1)‖ (22)

Here, summation is used instead of averaging. The more an algorithm is getting lost, the more

relocalization error it is accumulating.

Beside the relocalization error, the lost time is also crucial to user experience since AR would be

impossible when lost. Hence, we also count the ratio of lost time to the total tracking time αlost. The lost

status is defined by each system itself. In order to get clear indication of tracking lost, we force all systems

to output poses for all frames, and if the tracking is lost, the systems output a pose with invalid rotation.

Thus, we can compute αlost with the output poses. Also, the positional error ϵAPE is directly related to the

quality of augmentation effect. As a final score, the lost time ratio αlost, the relocalization error ϵRL, and the

positional errorϵAPE are summarized into one robustness error as:

ϵR = (α lost + η lost) (ϵRL + ηAPEϵAPE) (23)

Here, ηlost is used as a damping factor to prevent αlost = 0 from canceling out other two errors. ηAPE is

another weighting factor to balance between ϵRL and ϵAPE. In our experiments, we set ηlost = 5% and ηAPE =
0.1.

In our experiments, we consider three common ill-scenarios when using AR: rapid motion, moving

people and camera occlusion. The algorithm should be resilient to rapid motion since such motion can be

common on mobile phones. Also, it should allow moving people or moving objects to appear in the image.

Figure 7 Different relocalization quality.

400400

Jinyu LI et al: Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality
In either case, SLAM tracking may become unreliable and easily lost. In this situation, the system should

be able to recover from the lost status and get back to the correct location. The total time of lost should be

as short as possible, the relocalization error should be as small as possible, and of course, the result

positions should be as accurate as possible.

To simulate these scenarios, 5 dedicated sequences were captured. They are sequences B0−B4 listed in

Table 2. We introduce rapid rotation／translation and random shake in sequence B0−B2. These three

sequences are used for quantitative evaluation of the robustness of rapid motion. In sequence B3, we had a

person walking in and out of the room to create a dynamic scene. The tracking may get distracted from the

moving people. In sequence B4, we deliberately covered the camera for some time, making it even more

challenging for tracking. Upon test, the pose estimation may diverge, which could be corrected by

relocalization, thus resulting in pose jumping.

5.4 Relocalization time

The tracking robustness is designed to reflect AR quality. From a technical perspective, we would like to

know how much time the algorithms spent to accomplish relocalization. To get relocalization time, three

additional sequences were designed. The sequences are B5−B7 in Table 2. In these sequences, we looped

around a textured desk for several rounds. And the movement taken was as steady as possible. After the

first round of loop, we black-out some frames. In sequence B5, each black-out takes 1s. Similarly, 2s and

3s black-outs are used for sequence B6 and B7, respectively. A SLAM system will have the chance to

create their visual database in the first 30s, then forced to enter relocalization state when black frames

come. After black frames are passed, there are 10s of original frames. The SLAM systems should re-

localize themselves in this period. By manually adding black-frames, we can precisely measure the time

used for relocalization as the time-difference between the end of black-frames and the begin of the re-

localized results. Some VISLAM systems like VINS-Mono do not have a clear "lost" indication. Upon

visual information is lost, they just keep tracking with IMU integration. We detect the "jump" in the

estimated poses, as these jumps correspond to the underlying relocalization event.

Formally, let tK [i] be the end time of i-th black-out, tSLAM [i] be the time of the first valid pose immediately

after the black-out. Assuming there are N black-outs, we can compute the average relocalization time as

tRL = 1N∑i = 1
N

()tSLAM [i] - tK [i] . For VISLAM systems, we define tSLAM [i] by detecting the pose jump:

tSLAM [i] ≡ min{tk > tK [i] | pSLAM [k + 1] - pSLAM [k] > δ} (24)

i.e., the first pose after tK [i] which jumped for more than δ. In our experiments, we set δ = 5 cm.

6 Experimental results

We selected 8 monocular VSLAM/VISLAM systems to perform the quantitative evaluation with our

benchmark. PTAM and ORB-SLAM2[34] are the most famous VSLAM systems. LSD-SLAM and DSO are

representative direct methods. MSCKF is a representative filtering-based VISLAM method. OKVIS and

VINS-Mono are two representative optimization-based VISLAM methods which both use sliding window

optimization and marginalization technique. Specifically, VINS-Mono has global optimization and

relocalization modules. We also selected a commercial VISLAM system SenseSLAM5 which is developed

by us in cooperation with SenseTime Group Limited. For other commercial AR systems like ARCore and

5 The binary executable of SenseSLAM v1.0 we tested in this paper can be downloaded from the website at http://www.zjucvg.net/senseslam/

401

https://www.vicon.com/

Virtual Reality & Intelligent Hardware 2019 Vol 1 Issue 4：386—410

ARKit, since they cannot run in the mode of loading sequences, we cannot quantitatively evaluate them on

our benchmark.

We used a modified PTAM which is provided as a ROS package6. This version improved the overall

robustness. It also has an automatic initialization process[59]. Since the original implementation of MSCKF

is not publicly available, we also used a third-party implementation7 instead, whose validity is

demonstrated[60]. For other SLAM systems, we used the public implementations provided by the authors.

All the experiments are conducted on a desktop PC with an Intel i7-7700 3.6GHz CPU and 8GB of

memory. The operating system is Ubuntu 16.04 with ROS Kinetic.

We run all 8 SLAM systems on all sequences. All these systems can perform in real-time. It is worth

mentioning that although all the systems run on a PC at over 30fps, some of them may not be capable of

running on mobile devices at real-time. These systems run in different manners. Some systems like ORB-

SLAM2 will sleep the system to keep tracking pace at 30fps, while VINS-Mono is synchronized to ROS

messages. Due to different internal implementation, there lacks a common definition for processing time

per frame, so we will not report the detailed timings for these systems. Due to the randomness in these

SLAM systems, they may not always produce the same results. So, we run each benchmark 10 times to

take the average of the results. Some algorithms, when run on some sequences, may produce inconsistent

results. For example, the DSO algorithm failed to converge on sequence A1 for 6 out of 10 times, and

OKVIS also failed several times on some sequences (e.g., 6 times on sequence A5). If we directly compute

the average, the computed tracking accuracy may be unusually large. Therefore, we remove these failure

cases (i.e., APEs were unusually large) by inspection, and then compute the average of the remaining ones.

The number of failures for each sequence is reported in our benchmark website. It is worth mentioning that

sequence A1 appeared to be the most difficult one during our benchmark. All VSLAM systems failed

several times on sequence A1. We ran MSCKF 10 times on sequence A1, and found that the recovered

trajectories were abnormal (the corresponding APEs were larger than 0.5m) for 3 times. In contrast, VINS-

Mono and SenseSLAM are rather robust. They can successfully run all sequences and produce consistent

results. For VINS-Mono, we enable the temporal calibration[61] and rolling shutter support, which can

slightly improve the tracking accuracy in some sequences. We also found that the tracking accuracy of

VINS-Mono with loop closure was better than that without loop-closure. The results of VINS-Mono

without loop-closure are included in our benchmark website.

Tables 3 and 4 summarize the tracking accuracy of different SLAM systems on sequences A0−A7. For

VSLAM systems, ORB-SLAM2 clearly has the best accuracy on most sequences. Comparing with the

patch-based feature tracking used by PTAM, ORB feature-based tracking method is more robust especially

in the cases of fast camera motion. In addition, ORB-SLAM2 has more advanced global mapping and loop

closure modules. In combination with ORB features, it can reliably reconstruct a globally consistent map,

hence having better accuracy. Although PTAM is also optimizing a global map, its localization strategy is

relatively simple, so the tracking gets lost more easily. This is directly reflected in the completeness results,

as reported in Table 3.

The errors for LSD-SLAM and DSO are also quite large compared to PTAM and ORB-SLAM2.

Typically, direct methods are easily influenced by the factors of calibration, synchronization, varying

illumination, rolling-shutter, ill movements, etc. These problems might limit the direct methods from being

directly used in mobile AR since it is challenging to calibrate all these factors for mobile phones and the

6 http://wiki.ros.org/ethzasl_ptam
7 https://github.com/daniilidis-group/msckf_mono

402402

http://wiki.ros.org/ethzasl_ptam
https://github.com/daniilidis-group/msckf_mono

Jinyu LI et al: Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality

computation cost is generally large. Since DSO does not have relocalization module, the camera pose

could not be re-localized once the tracking is lost. This leads to the result that the tracking completeness of

DSO is quite small on challenging sequences.

In the results of VISLAM systems, SenseSLAM is generally better than the other three. The possible rea-

son is that SenseSLAM makes many refinements and uses a more complex framework with the modules of

local/global optimization and relocalization. We noticed that, for APE errors, SenseSLAM is much better

than VINS-Mono on challenging sequences like A1-A2. In terms of APE, OKVIS is also good on many se-

quences but still significantly worse than VINS-Mono and SenseSLAM on most sequences. In addition,

the recovered trajectories of OKVIS are somehow jaggy, which are reflected in its high RPE/RRE results.

Overall, SenseSLAM achieves the best accuracy among the four VISLAM systems on our benchmark. It

should be noted that our APE/RPE/ARE/RRE are computed using the poses output in real-time, and the

poses refined later by local/global optimization are not taken into account. So even if the poses of key-

frames are refined after the loop closure, the previous output poses are not affected. Therefore, if a loop

closure occurs in the end, the calculated tracking accuracy does not improve much compared to the result

without loop closure.

The completeness results reveal more about the tracking quality. Due to their high positional error, many

poses from LSD-SLAM and DSO are considered bad on sequences A0-A3. Especially, the harsh texture

and motion condition of sequence A1 almost disabled DSO. Similar situation happened on the sequence

A5. PTAM and ORB-SLAM2 also suffered from difficulties on these challenging sequences, but

Table 3 The tracking accuracy of VSLAM systems

Sequence

APE/RPE (mm)

ARE/RRE (deg)

Completeness (%)

A0

A1

A2

A3

A4

A5

A6

A7

A0

A1

A2

A3

A4

A5

A6

A7

A0

A1

A2

A3

A4

A5

A6

A7

PTAM

75.442

113.406

67.099

10.913

21.007

40.403

19.483

13.503

12.051

53.954

8.789

6.225

6.295

14.030

2.348

1.218

79.386

60.893

85.348

71.635

95.418

87.399

97.399

100.000

6.696

16.344

6.833

4.627

4.773

8.926

3.051

2.462

0.257

0.291

0.301

0.293

0.255

0.452

0.217

0.153

ORB-SLAM2

96.777

95.379

69.486

15.310

10.061

29.653

12.145

5.832

5.119

8.534

5.550

1.431

1.015

1.963

0.892

0.569

65.175

68.303

79.263

98.497

100.000

97.785

99.786

100.000

5.965

10.285

5.706

7.386

2.995

11.717

6.741

1.557

0.342

0.242

0.255

0.264

0.157

0.546

0.169

0.115

LSD-SLAM

105.963

221.643

310.963

199.445

155.692

249.644

49.805

38.673

20.589

51.122

30.282

31.370

9.592

36.789

5.012

3.052

49.513

11.511

21.804

27.112

64.283

25.033

94.883

98.663

11.761

23.833

8.156

10.872

10.756

12.302

3.018

2.662

0.371

0.288

0.296

0.475

0.498

0.810

0.207

0.147

DSO

231.860

431.929

216.893

188.989

115.477

323.482

14.864

27.142

9.983

39.007

10.584

20.580

5.217

40.939

1.435

2.239

14.476

0.869

22.878

43.493

80.371

2.059

100.000

100.000

10.456

12.555

5.337

4.294

4.595

7.978

2.561

2.213

0.401

0.524

0.253

0.241

0.180

0.324

0.189

0.135

403

Virtual Reality & Intelligent Hardware 2019 Vol 1 Issue 4：386—410

performed much better than direct methods. On VISLAM systems, sequence A1 is also quite challenging.

MSCKF cannot track well on sequence A1, hence having low completeness. Except occasional failures,

OKVIS achieved quite good completeness results on all sequences A0-A7. On sequence A1, it has the best

completeness. The completeness results of VINS-Mono are also quite good in most sequences. For

SenseSLAM, its overall tracking quality is quite good, and can produce good poses for most of the time.

Overall, ORB-SLAM has the best completeness among these VSLAM systems, while SenseSLAM is the

best among four VISLAM systems.

Figure 8 lists the initialization times and initialization scale errors of different SLAM systems. Table 5

lists the finally computed initialization quality for kinds of SLAM systems according to Eq. (20). We found

that the initialization scale errors of VSLAM systems (except ORB-SLAM2) were somehow large on some

sequences. Different to VISLAM systems which can use IMU measurements to achieve accurate and

consistent scale estimation, VSLAM systems actually cannot recover true scale and easily encounter scale

drift problem. In our experiments, we found that the scale of different sub-trajectories recovered by

VSLAM systems might be quite different in some challenging sequences. Therefore, for VSLAM systems,

the calculated initialization scale error actually reflects the inconsistency between the initialized scale and

the global scale. So if scale drift occurs, the calculated initialization scale error may be large. The

initialization times of the four VSLAM systems are quite comparable, but ORB-SLAM2 has smaller

initialization scale errors compared to the other three VSLAM systems on most sequences.

Table 4 The tracking accuracy of VISLAM systems

APE/RPE(mm)

ARE/RRE(deg)

Completeness(%)

Sequence

A0

A1

A2

A3

A4

A5

A6

A7

A0

A1

A2

A3

A4

A5

A6

A7

A0

A1

A2

A3

A4

A5

A6

A7

MSCKF

156.018

294.091

102.657

44.493

114.845

82.885

66.001

105.492

6.584

8.703

3.324

6.952

4.031

4.928

2.625

6.810

40.186

1.646

61.423

97.814

76.629

76.738

94.128

68.341

7.436

14.580

10.151

3.780

8.338

8.388

6.761

4.576

0.203

0.135

0.195

0.186

0.104

0.167

0.170

0.120

OKVIS

71.677

87.730

68.381

22.949

146.890

77.924

63.895

47.465

3.637

5.140

2.493

2.459

3.765

8.843

2.275

3.536

94.255

98.235

94.959

95.972

97.429

98.162

97.805

96.690

7.064

4.283

5.412

8.739

12.460

7.588

6.860

6.352

0.741

1.098

0.869

0.825

0.603

0.360

0.629

0.602

VINS-Mono

63.395

80.687

74.842

19.964

18.691

42.451

26.240

18.226

3.441

1.518

1.775

2.121

1.185

3.000

1.478

1.248

92.546

86.508

88.301

100.000

100.000

98.795

100.000

100.000

3.510

3.472

8.605

1.234

1.091

2.964

1.167

1.465

0.205

0.088

0.201

0.176

0.063

0.040

0.131

0.073

SenseSLAM

58.995

55.097

36.370

17.792

15.558

34.810

20.467

10.777

3.660

2.676

1.674

1.642

1.129

2.041

1.656

0.502

97.317

95.072

99.707

100.000

100.000

99.143

100.000

100.000

2.525

2.876

1.560

0.779

0.930

1.954

0.569

0.831

0.197

0.092

0.181

0.182

0.071

0.089

0.134

0.082

404404

Jinyu LI et al: Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality

In VISLAM systems, VINS-Mono and SenseSLAM again show their good initialization quality. In

contrast, MSCKF and OKVIS usually take more time to converge the scale and the initialization scale

errors are not very stable on some sequences. It should be noted that MSCKF has the limitation of

requiring the device to keep static for a while in the beginning. It is not fair to make a direct comparison

between VSLAM and VISLAM since their scale errors are evaluated in different settings. But we can see

the estimated initialization scales by VISLAM systems are generally more stable, thanks to the additional

scale information from the IMU.

Table 6 lists ϵR for sequences B0-B4. Both MSCKF and DSO fail in some challenging cases and are

completely lost. In contrast, SenseSLAM can handle these ill tracking conditions. Since SenseSLAM uses

IMU information, its accelerometer measurements under rapid translation/shaking can be quite noisy,

hence having a much larger error. While the gyroscope is generally reliable for short-time orientation

estimation. This might explain why SenseSLAM gets relatively poor results on sequences B1 and B2.

ORB-SLAM2, on the other hand, does not depend on IMU measurements, so can achieve a good

Figure 8 The initialization times and initialzation scale errors of different SLAM systems. Scale errors that are too

large are trimmed here.

Table 5 The initialization quality ϵinit for different VSLAM/VISLAM systems

Sequence

A0

A1

A2

A3

A4

A5

A6

A7

Average

Max

VSLAM

PTAM

13.914

18.334

3.087

1.667

12.059

18.743

2.415

1.037

8.907

18.743

ORB-SLAM2

2.040

6.930

1.945

0.974

2.777

4.062

2.794

0.772

2.787

6.930

LSD-SLAM

1.615

25.578

4.980

0.810

6.404

12.934

5.655

1.624

7.450

25.578

DSO

3.783

15.598

1.321

0.683

1.793

17.815

2.699

0.671

5.545

17.815

VISLAM

MSCKF

1.154

5.182

3.820

3.730

2.872

4.366

6.712

9.532

4.671

9.532

OKVIS

1.067

2.892

1.155

0.690

10.997

2.119

6.696

1.413

3.379

10.997

VINS-Mono

0.895

3.220

0.584

1.254

1.751

1.866

2.246

1.164

1.622

3.220

SenseSLAM

1.840

3.674

2.154

0.764

2.967

1.183

1.484

0.835

1.863

3.674

405

Virtual Reality & Intelligent Hardware 2019 Vol 1 Issue 4：386—410

localization quality on sequence B2. However, on sequence B3, we can see the tracking result of ORB-

SLAM2 is less robust, because the moving people in the sequence misleads ORB-SLAM2.

With sequences B5-B7, we evaluate the relocalization time. Table 7 lists the average relocalization time

of PTAM, ORB-SLAM2, LSD-SLAM, VINS-Mono and SenseSLAM. MSCKF, OKVIS and DSO simply

cannot re-localize after blacking-out the images, so we do not evaluate them in this criterion.

According to the experimental results, we found that ORB-SLAM2 always re-localized rapidly. PTAM

also re-localized fast. VISLAM systems seem to take more time, while SenseSLAM again performs very

well and is faster than VINS-Mono. LSD-SLAM, as a VSLAM system based on direct method, generally

takes more time compared to the other four systems.

7 Conclusion and discussion

As the key fundamental technique of AR, VSLAM/VISLAM has achieved significant progress in the past

decade. However, due to the lack of benchmarks for AR, it is hard to quantitatively compare the

performance of different VSLAM/VISLAM systems for AR applications. In order to address this problem,

we publish the first VISLAM benchmark for AR, including visual-inertial dataset as well as evaluation

criteria. We review the existing monocular VSLAM and VISLAM approaches, and select 8 representative

systems to perform a quantitative evaluation on our benchmark.

Although our visual-inertial data are captured by mobile phones, the evaluation is still conducted on a

PC. Since the computation power of a PC is much bigger than a mobile phone, the SLAM results could not

faithfully reflect the actual SLAM effect on a mobile phone. Actually, many SLAM systems cannot

perform in real-time on a mobile phone. The mobile versions of PTAM and VINS-Mono are already

available[62,39]. SenseSLAM is specifically developed for mobile AR and is capable of tracking in real-time

on a mobile phone. In the future, we would like to better evaluate the performance of SLAM systems on

mobile phones in two ways. On the one hand, we would like to port some algorithms into iOS or Android,

so that we can directly run SLAM and perform the quantitative evaluation on mobile phones. On the other

hand, we would like to simulate the online stream and strictly control the input rate with 60 or higher FPS

(some frames will be discarded if the tracking speed could not keep up the input rate), so that the SLAM

result on a PC can be closer to that on mobile phones. In addition, the sequences in our current dataset are

all captured in a small indoor scene. In the future, we would like to capture more diverse sequences in a

Table 6 The tracking robustness of different VSLAM/VISLAM systems

Sequence

B0 (Rapid Rotation)

B1 (Rapid Translation)

B2 (Rapid Shaking)

B3 (Moving People)

B4 (Covering Camera)

PTAM

4.730

4.971

5.475

7.455

16.033

ORB-SLAM2

0.844

0.231

0.294

0.600

2.702

LSD-SLAM

1.911

1.090

1.387

0.897

0.727

DSO

6.991

2.636

-

6.399

-

MSCKF

-

-

-

-

-

OKVIS

1.071

0.597

3.917

0.673

1.976

VINS-Mono

2.789

1.211

13.403

0.785

0.714

SenseSLAM

0.306

0.199

2.013

0.465

0.326

Table 7 The relocalization time (s) of different VSLAM/VISLAM systems

Sequence

B5 (1s black-out)

B6 (2s black-out)

B7 (3s black-out)

Average

PTAM

1.032

0.366

0.651

0.683

ORB SLAM2

0.077

0.465

0.118

0.220

LSD-SLAM

1.082

5.413

1.834

2.776

VINS-Mono

5.274

3.755

1.282

3.437

SenseSLAM

0.592

1.567

0.332

0.830

406406

Jinyu LI et al: Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality
larger outdoor environment.

Acknowledgements

We would like to thank Shuai Wang, Kai Huang, Jinle Ke, Pengpeng Jin for their kind help in capturing the

visual-inertial data, calibration and other post-processing. Thanks Ru Wang to help to organize the

bibliography.

References

1 Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid I, Leonard J J. Past, present, and future of

simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 2016, 32(6):

1309–1332

DOI:10.1109/tro.2016.2624754

2 Fuentes-Pacheco J, Ruiz-Ascencio J, Rendón-Mancha J M. Visual simultaneous localization and mapping: A survey.

Artificial Intelligence Review, 2015, 43(1): 55–81

DOI:10.1007/s10462-012-9365-8

3 Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I. IEEE Robotics & Automation Magazine,

2006, 13(2): 99–110

DOI:10.1109/mra.2006.1638022

4 Bailey T, Durrant-Whyte H. Simultaneous localization and mapping (SLAM): Part II. IEEE Robotics & Automation

Magazine, 2006, 13(3): 108–117

DOI:10.1109/mra.2006.1678144

5 Liu H M, Zhang G F, Bao H J. A survey of monocular simultaneous localization and mapping. Journal of Computer-

Aided Design & Computer Graphics, 2016, 28(6): 855−868

DOI:10.3969/j.issn.1003-9775.2016.06.001

6 Burri M, Nikolic J, Gohl P, Schneider T, Rehder J, Omari S, Achtelik M W, Siegwart R. The EuRoC micro aerial vehicle

datasets. The International Journal of Robotics Research, 2016, 35(10): 1157–1163

DOI:10.1177/0278364915620033

7 Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE

Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: 2012, 3354–3361

DOI:10.1109/CVPR.2012.6248074

8 Hartley R, Zisserman A. Three-View Geometry. Multiple View Geometry in Computer Vision. Cambridge: Cambridge

University Press, 363−364

DOI:10.1017/cbo9780511811685. 020

9 Ma Y, Soatto S, Kosecka J, Sastry S S. An Invitation to 3-D Vision: From Images to Geometric Models. Springer

Science & Business Media, 2012, 26

10 Triggs B, McLauchlan P F, Hartley R I, Fitzgibbon A W. Bundle Adjustment—A Modern Synthesis. Vision Algorithms:

Theory and Practice. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000: 298−372

DOI:10.1007/3-540-44480-7_21

11 Sola J. Quaternion kinematics for the error-state KF. Tech Rep, 2012

12 Forster C, Carlone L, Dellaert F, Scaramuzza D. On-manifold preintegration for real-time visual: Inertial odometry.

IEEE Transactions on Robotics, 2017, 33(1): 1–21

DOI:10.1109/tro.2016.2597321

13 Eckenhoff K, Geneva P, Huang G. Continuous preintegration theory for graph-based visual-inertial navigation. arXiv:

1805. 02774, 2018

14 Davison A J, Reid I D, Molton N D, Stasse O. MonoSLAM: real-time single camera SLAM. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2007, 29(6): 1052–1067

DOI:10.1109/tpami.2007.1049

15 Mourikis A I, Roumeliotis S I. A multi-state constraint kalman filter for vision-aided inertial navigation. In: IEEE

International Conference on Robotics and Automation. Roma, Italy, 2007: 3565–3572

407

https://doi.org/10.1109/tpami.2007.1049
https://doi.org/10.1109/tro.2016.2597321
https://doi.org/10.1007/3-540-44480-7_21
https://doi.org/10.1017/cbo9780511811685. 020
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1177/0278364915620033
https://doi.org/10.3969/j.issn.1003-9775.2016.06.001
https://doi.org/10.1109/mra.2006.1678144
https://doi.org/10.1109/mra.2006.1638022
https://doi.org/10.1007/s10462-012-9365-8
https://doi.org/10.1109/tro.2016.2624754

Virtual Reality & Intelligent Hardware 2019 Vol 1 Issue 4：386—410

DOI:10.1109/ROBOT.2007.364024

16 Li M Y, Mourikis A I. Improving the accuracy of EKF-based visual-inertial odometry. In: IEEE International

Conference on Robotics and Automation. Saint Paul, MN, USA: 2012, 828–835

DOI:10.1109/ICRA.2012.6225229

17 Huang G P, Mourikis A I, Roumeliotis S I. Analysis and improvement of the consistency of extended Kalman filter

based SLAM. In: IEEE International Conference on Robotics and Automation. Pasadena, CA, USA: 2008, 473–479

DOI:10.1109/ROBOT.2008.4543252

18 Jones E S, Soatto S. Visual-inertial navigation, mapping and localization: A scalable real-time causal approach. The

International Journal of Robotics Research, 2011, 30(4): 407–430

DOI:10.1177/0278364910388963

19 Huang G P, Mourikis A I, Roumeliotis S I. An observability-constrained sliding window filter for SLAM. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems. San Francisco, CA, USA: 2011, 65–72

DOI:10.1109/IROS.2011.6095161

20 Huang G P, Mourikis A I, Roumeliotis S I. A quadratic-complexity observability-constrained unscented kalman filter for

SLAM. IEEE Transactions on Robotics, 2013, 29(5): 1226–1243

DOI:10.1109/tro.2013.2267991

21 Barrau A, Bonnabel S. An EKF-SLAM algorithm with consistency properties. arXiv: 1510. 06263, 2015

22 Strasdat H, Montiel J M M, Davison A J. Visual SLAM: why filter? Image and Vision Computing, 2012, 30(2): 65–77

DOI:10.1016/j.imavis.2012.02.009

23 Dellaert F, Kaess M. Square root SAM: Simultaneous localization and mapping via square root information smoothing.

The International Journal of Robotics Research, 2006, 25(12): 1181–1203

DOI:10.1177/0278364906072768

24 Thrun S, Montemerlo M. The graph SLAM algorithm with applications to large-scale mapping of urban structures. The

International Journal of Robotics Research, 2006, 25(5/6): 403–429

DOI:10.1177/0278364906065387

25 Chen Y, Davis T A, Hager W W, Rajamanickam S. Algorithm 887: CHOLMOD, supernodal sparse cholesky

factorization and update/downdate. ACM Transactions on Mathematical Software, 2008, 35(3): 1−14

DOI:10.1145/1391989.1391995

26 Davis T A, Gilbert J R, Larimore S I, Ng E G. A column approximate minimum degree ordering algorithm. ACM

Transactions on Mathematical Software, 2004, 30(3): 353−376

27 Kaess M, Ranganathan A, Dellaert F. iSAM: incremental smoothing and mapping. IEEE Transactions on Robotics,

2008, 24(6): 1365–1378

DOI:10.1109/tro.2008.2006706

28 Kaess M, Johannsson H, Roberts R, Ila V, Leonard J J, Dellaert F. iSAM2: Incremental smoothing and mapping using

the Bayes tree. The International Journal of Robotics Research, 2012, 31(2): 216–235

DOI:10.1177/0278364911430419

29 Ila V, Polok L, Solony M, Svoboda P. SLAM++-A highly efficient and temporally scalable incremental SLAM

framework. The International Journal of Robotics Research, 2017, 36(2): 210–230

DOI:10.1177/0278364917691110

30 Ila V, Polok L, Solony M, Istenic K. Fast incremental bundle adjustment with covariance recovery. International

Conference on 3D Vision (3DV). Qingdao, China: 2017, 175–184

DOI:10.1109/3DV.2017.00029

31 Liu H M, Chen M Y, Zhang G F, Bao H J, Bao Y Z. ICE-BA: incremental, consistent and efficient bundle adjustment for

visual-inertial SLAM. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT,

USA: 2018, 1974–1982

DOI:10.1109/CVPR.2018.00211

32 Klein G, Murray D. Parallel tracking and mapping for small AR workspaces. In: 6th IEEE and ACM International

Symposium on Mixed and Augmented Reality. Nara, Japan, 2007: 225–234

DOI:10.1109/ISMAR.2007.4538852

33 Mur-Artal R, Montiel J M M, Tardos J D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE

408408

https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/CVPR.2018.00211
https://doi.org/10.1109/3DV.2017.00029
https://doi.org/10.1177/0278364917691110
https://doi.org/10.1177/0278364911430419
https://doi.org/10.1109/tro.2008.2006706
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1177/0278364906065387
https://doi.org/10.1177/0278364906072768
https://doi.org/10.1016/j.imavis.2012.02.009
https://doi.org/10.1109/tro.2013.2267991
https://doi.org/10.1109/IROS.2011.6095161
https://doi.org/10.1177/0278364910388963
https://doi.org/10.1109/ROBOT.2008.4543252
https://doi.org/10.1109/ICRA.2012.6225229
https://doi.org/10.1109/ROBOT.2007.364024

Jinyu LI et al: Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality
Transactions on Robotics, 2015, 31(5): 1147–1163

DOI:10.1109/tro.2015.2463671

34 Mur-Artal R, Tardos J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras.

IEEE Transactions on Robotics, 2017, 33(5): 1255–1262

DOI:10.1109/tro.2017.2705103

35 Mur-Artal R, Tardos J D. Visual-inertial monocular SLAM with map reuse. IEEE Robotics and Automation Letters,

2017, 2(2): 796–803

DOI:10.1109/lra.2017.2653359

36 Leutenegger S, Lynen S, Bosse M, Siegwart R, Furgale P. Keyframe-based visual – inertial odometry using nonlinear

optimization. The International Journal of Robotics Research, 2015, 34(3): 314–334

DOI:10.1177/0278364914554813

37 Qin T, Li P L, Shen S J. VINS-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Transactions

on Robotics, 2018, 34(4): 1004–1020

DOI:10.1109/tro.2018.2853729

38 Lu F, Milios E. Globally consistent range scan alignment for environment mapping. Autonomous Robots, 1997, 4(4):

333–349

DOI:10.1023/A:1008854305733

39 Li P L, Qin T, Hu B T, Zhu F Y, Shen S J. Monocular visual-inertial state estimation for mobile augmented reality. In:

IEEE International Symposium on Mixed and Augmented Reality (ISMAR). Nantes, France, 2017: 11–21

DOI:10.1109/ISMAR.2017.18

40 Galvez-López D, Tardos J D. Bags of binary words for fast place recognition in image sequences. IEEE Transactions on

Robotics, 2012, 28(5): 1188–1197

DOI:10.1109/tro.2012.2197158

41 Engel J, Koltun V, Cremers D. Direct sparse odometry. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2018, 40(3): 611–625

DOI:10.1109/tpami.2017.2658577

42 Jin H L, Favaro P, Soatto S. A semi-direct approach to structure from motion. The Visual Computer, 2003, 19(6): 377–394

DOI:10.1007/s00371-003-0202-6

43 Newcombe R A, Lovegrove S J, Davison A J. DTAM: Dense tracking and mapping in real-time. In: International

Conference on Computer Vision. Barcelona, Spain: 2011, 2320–2327

DOI:10.1109/ICCV.2011.6126513

44 Engel J, Schöps T, Cremers D. LSD-SLAM: Large-Scale Direct Monocular SLAM. Computer Vision – ECCV 2014.

Cham: Springer International Publishing, 2014: 834−849

DOI:10.1007/978-3-319-10605-2_54

45 Newcombe R A, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison AJ, Kohi P, Shotton J, Hodges S, Fitzgibbon A.

KinectFusion: Real-time dense surface mapping and tracking. In: IEEE International Symposium on Mixed and

Augmented Reality (ISMAR). Basel, Switzerland: 2011, 127−136

46 Whelan T, Salas-Moreno R F, Glocker B, Davison A J, Leutenegger S. ElasticFusion: Real-time dense SLAM and light

source estimation. The International Journal of Robotics Research, 2016, 35(14): 1697–1716

DOI:10.1177/0278364916669237

47 Zhu A Z, Atanasov N, Daniilidis K. Event-based visual inertial odometry. In: IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). Honolulu, HI, USA: 2017, 5816–5824

DOI:10.1109/CVPR.2017.616

48 Zhou H Z, Zou D P, Pei L, Ying R D, Liu P L, Yu W X. StructSLAM: visual SLAM with building structure lines. IEEE

Transactions on Vehicular Technology, 2015, 64(4): 1364−1375

DOI:10.1109/tvt.2015.2388780

49 Hsiao M, Westman E, Kaess M. Dense planar-inertial SLAM with structural constraints. In: IEEE International

Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia: 2018, 6521−6528

DOI:10.1109/ICRA.2018.8461094

50 Radwan N, Valada A, Burgard W. VLocNet++: deep multitask learning for semantic visual localization and odometry.

409

https://doi.org/10.1109/ICRA.2018.8461094
https://doi.org/10.1109/tvt.2015.2388780
https://doi.org/10.1109/CVPR.2017.616
https://doi.org/10.1177/0278364916669237
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1109/ICCV.2011.6126513
https://doi.org/10.1007/s00371-003-0202-6
https://doi.org/10.1109/tpami.2017.2658577
https://doi.org/10.1109/tro.2012.2197158
https://doi.org/10.1109/ISMAR.2017.18
https://doi.org/10.1023/A:1008854305733
https://doi.org/10.1109/tro.2018.2853729
https://doi.org/10.1177/0278364914554813
https://doi.org/10.1109/lra.2017.2653359
https://doi.org/10.1109/tro.2017.2705103
https://doi.org/10.1109/tro.2015.2463671

Virtual Reality & Intelligent Hardware 2019 Vol 1 Issue 4：386—410

In: IEEE Robotics and Automation Letters, 2018, 3(4): 4407−4414

DOI:10.1109/lra.2018.2869640

51 Wang S, Clark R, Wen H K, Trigoni N. DeepVO: Towards end-to-end visual odometry with deep Recurrent

Convolutional Neural Networks. In: IEEE International Conference on Robotics and Automation (ICRA). Singapore,

Singapore: 2017, 2043–2050

DOI:10.1109/ICRA.2017.7989236

52 Lianos K N, Schönberger J L, Pollefeys M, Sattler T. VSO: Visual Semantic Odometry. Computer Vision—ECCV 2018.

Cham: Springer International Publishing, 2018: 246−263.

DOI:10.1007/978-3-030-01225-0_15

53 Schubert D, Goll T, Demmel N, Usenko V, Stückler J, Cremers D. The TUM VI benchmark for evaluating visual-

inertial odometry. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain:

2018, 1680−1687

DOI:10.1109/IROS.2018.8593419

54 Pfrommer B, Sanket N, Daniilidis K, Cleveland J. PennCOSYVIO: A challenging visual inertial odometry benchmark.

In: IEEE International Conference on Robotics and Automation (ICRA). Singapore, Singapore: 2017, 3847–3854

DOI:10.1109/ICRA.2017.7989443

55 Cortés S, Solin A, Rahtu E, Kannala J. ADVIO: An Authentic Dataset for Visual-Inertial Odometry. Computer Vision—

ECCV 2018. Cham: Springer International Publishing, 2018, 425−440

DOI:10.1007/978-3-030-01249-6_26

56 Furgale P, Rehder J, Siegwart R. Unified temporal and spatial calibration for multi-sensor systems. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems. Tokyo, Japan: 2013, 1280–1286

DOI:10.1109/IROS.2013.6696514

57 Olson E. AprilTag: A robust and flexible visual fiducial system. In: IEEE International Conference on Robotics and

Automation. Shanghai, China: 2011, 3400–3407

DOI:10.1109/ICRA.2011.5979561

58 Umeyama S. Least-squares estimation of transformation parameters between two point patterns. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 1991, 13(4): 376–380

DOI:10.1109/34.88573

59 Weiss S, Achtelik M W, Lynen S, Chli M, Siegwart R. Real-time onboard visual-inertial state estimation and self-

calibration of MAVs in unknown environments. In: IEEE International Conference on Robotics and Automation. Saint

Paul, MN, USA: 2012, 957–964

DOI:10.1109/ICRA.2012.6225147

60 Delmerico J, Scaramuzza D. A benchmark comparison of monocular visual-inertial odometry algorithms for flying

robots. In: IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia: 2018, 2502–2509

DOI:10.1109/ICRA.2018.8460664

61 Qin T, Shen S. Online Temporal Calibration for Monocular Visual-Inertial Systems. In: IEEE/RSJ International

Conference on Intelligent Robots and Systems. Madrid, Spain: 2018, 3662–3669.

DOI: 10.1109/IROS.2018.8593603.

62 Klein G, Murray D. Parallel tracking and mapping on a camera phone. In: 8th IEEE International Symposium on Mixed

and Augmented Reality. Orlando, FL, USA: 2009, 83–86

DOI:10.1109/ISMAR.2009.5336495

410410

https://doi.org/10.1109/ISMAR.2009.5336495
https://doi.org/10.1109/IROS.2018.8593603
https://doi.org/10.1109/ICRA.2018.8460664
https://doi.org/10.1109/ICRA.2012.6225147
https://doi.org/10.1109/34.88573
https://doi.org/10.1109/ICRA.2011.5979561
https://doi.org/10.1109/IROS.2013.6696514
https://doi.org/10.1007/978-3-030-01249-6_26
https://doi.org/10.1109/ICRA.2017.7989443
https://doi.org/10.1109/IROS.2018.8593419
https://doi.org/10.1007/978-3-030-01225-0_15
https://doi.org/10.1109/ICRA.2017.7989236
https://doi.org/10.1109/lra.2018.2869640

